aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/partitioned_function_ops.cc
blob: 7bb403290d9152abe87ed569d3ea08d9710df967 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/common_runtime/function.h"
#include "tensorflow/core/common_runtime/optimization_registry.h"
#include "tensorflow/core/common_runtime/placer.h"
#include "tensorflow/core/common_runtime/rendezvous_mgr.h"
#include "tensorflow/core/framework/function.h"
#include "tensorflow/core/framework/graph_to_functiondef.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/graph/graph.h"
#include "tensorflow/core/graph/graph_constructor.h"
#include "tensorflow/core/graph/graph_partition.h"
#include "tensorflow/core/util/ptr_util.h"
#include "tensorflow/core/util/reffed_status_callback.h"

#if GOOGLE_CUDA
#include "tensorflow/stream_executor/stream.h"
#endif  // GOOGLE_CUDA

namespace tensorflow {
typedef FunctionLibraryRuntime::Handle FHandle;

namespace {

// A `PartitionedCallOp` asynchronously executes a function, potentially across
// multiple devices but within a single process. The kernel places and
// partitions a given function's underlying graph, and executes each of the
// partitioned subgraphs as a function.
//
// TODO(akshayka): Support distributed execution.
class PartitionedCallOp : public AsyncOpKernel {
 public:
  explicit PartitionedCallOp(OpKernelConstruction* ctx) : AsyncOpKernel(ctx) {
    OP_REQUIRES_OK(ctx, ctx->GetAttr("f", &func_));
  }

  ~PartitionedCallOp() override {}

  void ComputeAsync(OpKernelContext* ctx, DoneCallback done) override {
    FunctionLibraryRuntime* lib = ctx->function_library();
    OP_REQUIRES_ASYNC(ctx, lib != nullptr,
                      errors::Internal("No function library is provided."),
                      done);

    OpInputList args;
    OP_REQUIRES_OK_ASYNC(ctx, ctx->input_list("args", &args), done);

    // The function body's graph is placed and partitioned the first time
    // `ComputeAsync` is invoked; every subsequent invocation calls each
    // of the function shards yielded by partitioning.
    //
    // The partitioning step yields a set of devices on which to run the
    // function, and exactly one function shard is created for each device
    // Inputs and outputs are pinned to the local device, for simplicity.
    //
    // TODO(akshayka): Support re-sharding the function on subsequent calls,
    // via, e.g., virtual device annotations and a list of device names supplied
    // through an attribute.
    //
    // TODO(akshayka): Add a fastpath for functions that execute on a single
    // device.
    {
      mutex_lock l(mu_);
      if (function_handles_.find(lib) == function_handles_.end()) {
        if (local_device_name_.empty()) {
          // The full local device name isn't known at kernel construction
          // time, hence the need to set it here.
          local_device_name_ = lib->device()->name();
        }

        // TODO(b/37549631): Because this kernel may correspond to a stateful
        // op, it may be shared by multiple subgraphs, which in turn may have
        // different `FunctionLibraryRuntime` objects and therefore different
        // `FHandle` namespaces. As such, we partition on a per-FLR basis.
        FunctionLibraryRuntime::InstantiateOptions opts;
        FHandle handle;
        OP_REQUIRES_OK_ASYNC(
            ctx,
            lib->Instantiate(func_.name(), AttrSlice(&func_.attr()), opts,
                             &handle),
            done);
        const FunctionBody* fbody = lib->GetFunctionBody(handle);
        OP_REQUIRES_ASYNC(ctx, fbody != nullptr,
                          errors::Internal("Could not find handle ", handle),
                          done);
        auto graph = tensorflow::MakeUnique<Graph>(fbody->graph->flib_def());
        CopyGraph(*fbody->graph, graph.get());
        OP_REQUIRES_OK_ASYNC(ctx, PinResourceArgs(graph.get(), args), done);

        DeviceSet device_set;
        for (auto d : lib->device_mgr()->ListDevices()) {
          device_set.AddDevice(d);
        }

        // The FunctionLibraryRuntime's library cannot be mutated from within
        // an OpKernel, so functions are instantiated in an overlay library.
        OP_REQUIRES_ASYNC(
            ctx, overlay_libs_.find(lib) == overlay_libs_.end(),
            errors::Internal("Found an overlay library but did not "
                             "find cached function partitions; "
                             "this indicates a bug."),
            done);
        FunctionLibraryDefinition* overlay_lib =
            new FunctionLibraryDefinition(*lib->GetFunctionLibraryDefinition());
        overlay_libs_.emplace(lib, overlay_lib);

        GraphOptimizationPassOptions optimization_options;
        // TODO(akshayka): Thread SessionOptions (if any) into this kernel, or
        // make it possible to specify the relevant options via attributes.
        SessionOptions session_options;
        session_options.env = ctx->env();
        optimization_options.session_options = &session_options;
        optimization_options.graph = &graph;
        optimization_options.flib_def = overlay_lib;
        optimization_options.device_set = &device_set;
        Placer placer(graph.get(), &device_set);
        OP_REQUIRES_OK_ASYNC(
            ctx,
            OptimizationPassRegistry::Global()->RunGrouping(
                OptimizationPassRegistry::PRE_PLACEMENT, optimization_options),
            done);
        OP_REQUIRES_OK_ASYNC(ctx, placer.Run(), done);
        OP_REQUIRES_OK_ASYNC(
            ctx,
            OptimizationPassRegistry::Global()->RunGrouping(
                OptimizationPassRegistry::POST_PLACEMENT, optimization_options),
            done);
        OP_REQUIRES_OK_ASYNC(
            ctx,
            OptimizationPassRegistry::Global()->RunGrouping(
                OptimizationPassRegistry::POST_REWRITE_FOR_EXEC,
                optimization_options),
            done);

        std::unordered_map<string, std::unique_ptr<Graph>> subgraphs;
        OP_REQUIRES_OK_ASYNC(
            ctx, PartitionHelper(device_set, std::move(graph), &subgraphs),
            done);
        optimization_options.graph = nullptr;
        optimization_options.device_set = nullptr;
        optimization_options.partition_graphs = &subgraphs;
        OP_REQUIRES_OK_ASYNC(ctx,
                             OptimizationPassRegistry::Global()->RunGrouping(
                                 OptimizationPassRegistry::POST_PARTITIONING,
                                 optimization_options),
                             done);

        auto handles = tensorflow::MakeUnique<gtl::FlatMap<string, FHandle>>();
        for (const auto& pair : subgraphs) {
          // TODO(akshayka): Fail gracefully if the set of devices corresponds
          // to more than one address space.
          const string& target = pair.first;
          const auto& subgraph = pair.second;
          OP_REQUIRES_OK_ASYNC(
              ctx, UpdateArgAndRetMetadata(target, subgraph.get()), done);
          FunctionDef shard;
          string unique_name = UniquifyFunctionName(overlay_lib, func_.name());
          OP_REQUIRES_OK_ASYNC(
              ctx, GraphToFunctionDef(*subgraph, unique_name, &shard), done);
          OP_REQUIRES_OK_ASYNC(ctx, overlay_lib->AddFunctionDef(shard), done);
          FunctionLibraryRuntime::InstantiateOptions opts;
          opts.target = target;
          opts.overlay_lib = overlay_lib;
          FHandle handle;
          OP_REQUIRES_OK_ASYNC(
              ctx,
              lib->Instantiate(unique_name, AttrSlice(&shard.attr()), opts,
                               &handle),
              done);
          handles->emplace(target, handle);
        }

        function_handles_.emplace(lib, std::move(handles));
      }
    }
    ExecuteFunctions(lib, ctx, args, std::move(done));
  }

 private:
  typedef std::pair<string, FHandle> DeviceAndFHandle;
  typedef std::pair<std::vector<int>, std::vector<int>> ArgAndRetIndices;
  typedef std::pair<std::vector<AllocatorAttributes>,
                    std::vector<AllocatorAttributes>>
      ArgAndRetAllocAttrs;

  // Pins each arg that emits a `DT_RESOURCE` tensor to the device on which the
  // corresponding resource lives. This ensures that the Placer assigns ops that
  // access these resources to the appropriate devices.
  Status PinResourceArgs(Graph* graph, const OpInputList& args) {
    for (Node* node : graph->op_nodes()) {
      string node_type = node->type_string();
      if (node_type == FunctionLibraryDefinition::kArgOp) {
        const AttrValue* attr_value;
        TF_RETURN_IF_ERROR(node->attrs().Find("index", &attr_value));
        int index = attr_value->i();
        TF_RETURN_IF_ERROR(node->attrs().Find("T", &attr_value));
        DataType dtype = attr_value->type();
        if (dtype == DT_RESOURCE) {
          ResourceHandle handle = args[index].flat<ResourceHandle>()(0);
          node->set_assigned_device_name(handle.device());
        }
      }
    }
    return Status::OK();
  }

  // Partitions `graph` and populates `subgraphs` with the partitions.
  Status PartitionHelper(
      const DeviceSet& device_set, std::unique_ptr<Graph> graph,
      std::unordered_map<string, std::unique_ptr<Graph>>* subgraphs) {
    PartitionOptions partition_options;
    partition_options.node_to_loc = [](const Node* node) {
      // TODO(akshayka): To better support the distributed case, first split
      // the graph by worker (e.g,. using the master session's
      // `SplitByWorker` policy), and then recursively partition the
      // per-worker shards at the remote worker(s).
      return node->assigned_device_name();
    };
    int64 edge_name_counter = 0;
    partition_options.new_name = [&edge_name_counter](const string& prefix) {
      return strings::StrCat(prefix, "/_", ++edge_name_counter);
    };
    partition_options.get_incarnation =
        [&device_set](const string& name) -> int64 {
      const Device* d = device_set.FindDeviceByName(name);
      if (d == nullptr) {
        return PartitionOptions::kIllegalIncarnation;
      } else {
        return d->attributes().incarnation();
      }
    };
    partition_options.control_flow_added = false;
    std::unordered_map<string, GraphDef> partitions;
    TF_RETURN_IF_ERROR(Partition(partition_options, graph.get(), &partitions));

    VLOG(3) << "Partitioned function '" << func_.name() << "', yielding "
            << partitions.size() << " shards.";

    const FunctionLibraryDefinition* flib_def = &graph->flib_def();
    for (const auto& partition : partitions) {
      std::unique_ptr<Graph> subgraph(new Graph(flib_def));
      GraphConstructorOptions opts;
      opts.allow_internal_ops = true;
      opts.expect_device_spec = true;
      const string& device = partition.first;
      const GraphDef& graph_def = partition.second;
      TF_RETURN_IF_ERROR(
          ConvertGraphDefToGraph(opts, graph_def, subgraph.get()));
      subgraphs->emplace(device, std::move(subgraph));
    }

    return Status::OK();
  }

  // Each subgraph produced by partitioning the function body contains a subset
  // of the original `Arg` and `Retval` nodes. This function performs
  // bookkeeping to track which `Arg` and `Retval` nodes were placed on a
  // particular device / subgraph.
  //
  // More specifically, this function
  //  (1) rewrites the indices of the `Arg` and `Retval` nodes placed on a
  //      particular device,
  //  (2) records the subsets of `Arg` and `Retval` nodes assigned to the
  //      device, and
  //  (3) records which `Arg` and `Retval` nodes live in host memory.
  Status UpdateArgAndRetMetadata(const string& device, Graph* subgraph) {
    ArgAndRetIndices indices;
    std::vector<int>* arg_indices = &indices.first;
    std::vector<int>* ret_indices = &indices.second;
    std::vector<std::pair<Node*, int>> arg_nodes;
    std::vector<std::pair<Node*, int>> ret_nodes;
    const AttrValue* attr_value;

    // Find the Arg and Retval nodes, along with their corresponding indices
    // in the original function.
    for (Node* node : subgraph->op_nodes()) {
      string node_type = node->type_string();
      if (node_type == FunctionLibraryDefinition::kArgOp) {
        TF_RETURN_IF_ERROR(node->attrs().Find("index", &attr_value));
        int index = attr_value->i();
        arg_indices->push_back(index);
        arg_nodes.push_back(std::make_pair(node, index));
      } else if (node_type == FunctionLibraryDefinition::kRetOp) {
        TF_RETURN_IF_ERROR(node->attrs().Find("index", &attr_value));
        int index = attr_value->i();
        ret_indices->push_back(index);
        ret_nodes.push_back(std::make_pair(node, index));
      }
    }

    // Rewrite the indices of the Arg and Retval nodes for this function
    // to range from 0 to the number of Arg nodes, Retval nodes, respectively.
    auto sort_by_index = [](std::pair<Node*, int> one,
                            std::pair<Node*, int> two) -> bool {
      return one.second < two.second;
    };
    std::sort(arg_nodes.begin(), arg_nodes.end(), sort_by_index);
    std::sort(ret_nodes.begin(), ret_nodes.end(), sort_by_index);
    for (int i = 0; i < arg_nodes.size(); ++i) {
      Node* arg = arg_nodes[i].first;
      arg->AddAttr("index", i);
      TF_RETURN_IF_ERROR(arg->attrs().Find("T", &attr_value));
      AllocatorAttributes alloc_attr;
      DataType type = attr_value->type();
      if (MTypeFromDType(type) == HOST_MEMORY) {
        alloc_attr.set_on_host(true);
      }
      arg_and_ret_alloc_attrs_[device].first.push_back(alloc_attr);
    }
    for (int i = 0; i < ret_nodes.size(); ++i) {
      Node* ret = ret_nodes[i].first;
      ret->AddAttr("index", i);
      TF_RETURN_IF_ERROR(ret->attrs().Find("T", &attr_value));
      AllocatorAttributes alloc_attr;
      DataType type = attr_value->type();
      if (MTypeFromDType(type) == HOST_MEMORY) {
        alloc_attr.set_on_host(true);
      }
      arg_and_ret_alloc_attrs_[device].second.push_back(alloc_attr);
    }

    // If this kernel execution corresponds to a StatefulPartitionedCallOp,
    // `arg_and_ret_indices_` might have been populated by a previous
    // invocation.
    if (arg_and_ret_indices_.find(device) == arg_and_ret_indices_.end()) {
      arg_and_ret_indices_.emplace(device, indices);
    }
    return Status::OK();
  }

  std::vector<Tensor> GetArgsForIndices(const std::vector<int>& indices,
                                        const OpInputList& arguments) {
    std::vector<Tensor> args;
    args.reserve(indices.size());
    for (int i : indices) {
      args.push_back(arguments[i]);
    }
    return args;
  }

  void ExecuteFunctions(FunctionLibraryRuntime* lib, OpKernelContext* ctx,
                        const OpInputList& op_args, DoneCallback done)
      LOCKS_EXCLUDED(mu_) {
    const gtl::FlatMap<string, FHandle>* handles;
    {
      mutex_lock l(mu_);
      handles = function_handles_[lib].get();
    }
    if (handles->empty()) {
      // Trivial case where the function body is empty.
      ctx->SetStatus(Status::OK());
      done();
      return;
    }

    FunctionLibraryRuntime::Options opts;
    opts.step_id = ctx->step_id();
    opts.step_container = ctx->step_container();
    opts.cancellation_manager = ctx->cancellation_manager();
    opts.stats_collector = ctx->stats_collector();
    // TODO(akshayka): Consider selecting a runner on a per-device basis, i.e.,
    // using device-specific threadpools when available.
    opts.runner = ctx->runner();
    opts.source_device = local_device_name_;
    opts.allow_dead_tensors = true;
    // TODO(akshayka): Accommodate the multiple-worker scenario by adding the
    // constructed rendezvous to a rendezvous manager.
    Rendezvous* rendez = new IntraProcessRendezvous(lib->device_mgr());
    opts.rendezvous = rendez;

    StatusCallback callback = std::bind(
        [](Rendezvous* rendez, DoneCallback& done, const Status& status) {
          rendez->Unref();
          done();
        },
        rendez, std::move(done), std::placeholders::_1);
    auto* refcounted_done = new ReffedStatusCallback(std::move(callback));
    for (int i = 1; i < handles->size(); ++i) {
      refcounted_done->Ref();
    }

    for (const auto& pair : *handles) {
      const string& target = pair.first;
      FHandle handle = pair.second;
      VLOG(3) << "Running function shard on device " << target;
      ArgAndRetIndices indices = arg_and_ret_indices_[target];
      ArgAndRetAllocAttrs alloc_attrs = arg_and_ret_alloc_attrs_[target];
      const std::vector<int>& arg_indices = indices.first;
      const std::vector<int>& ret_indices = indices.second;
      opts.args_alloc_attrs = alloc_attrs.first;
      opts.rets_alloc_attrs = alloc_attrs.second;
      if (target == local_device_name_) {
        opts.remote_execution = false;
        std::vector<Tensor> args = GetArgsForIndices(arg_indices, op_args);
        std::vector<Tensor>* rets = new std::vector<Tensor>;
        lib->Run(
            opts, handle, args, rets,
            [rets, ret_indices, refcounted_done, ctx](const Status& status) {
              if (!status.ok()) {
                VLOG(3) << "Local execution failed: " << status;
                ctx->SetStatus(status);
              } else {
                for (int i = 0; i < rets->size(); ++i) {
                  ctx->set_output(ret_indices[i], (*rets)[i]);
                }
              }
              delete rets;
              VLOG(3) << "Finished local execution.";
              refcounted_done->Unref();
            });
      } else {
        opts.remote_execution = true;
        std::vector<Tensor> args = GetArgsForIndices(arg_indices, op_args);
        std::vector<Tensor>* rets = new std::vector<Tensor>;
        lib->Run(
            opts, handle, args, rets,
            [rets, ret_indices, refcounted_done, ctx](const Status& status) {
              if (!status.ok()) {
                VLOG(3) << "Remote execution failed: " << status;
                ctx->SetStatus(status);
              } else {
                for (int i = 0; i < rets->size(); ++i) {
                  ctx->set_output(ret_indices[i], (*rets)[i]);
                }
              }
              delete rets;
              VLOG(3) << "Finished remote execution.";
              refcounted_done->Unref();
            });
      }
    }
  }

  string UniquifyFunctionName(const FunctionLibraryDefinition* function_library,
                              const string& name) {
    for (;; ++suffix_) {
      const string candidate = strings::StrCat(name, "_", suffix_);
      if (function_library->Find(candidate) == nullptr) {
        return candidate;
      }
    }
  }

  NameAttrList func_;
  string local_device_name_;
  // Contains maps from device names to handles of function partitions, keyed by
  // FunctionLibraryRuntime pointers. (Because this kernel may be instantiated
  // for a stateful op, different invocations of it may use different FLRs.)
  gtl::FlatMap<FunctionLibraryRuntime*,
               std::unique_ptr<gtl::FlatMap<string, FHandle>>>
      function_handles_ GUARDED_BY(mu_);
  // Function partitions are added to overlay libraries.
  gtl::FlatMap<FunctionLibraryRuntime*,
               std::unique_ptr<FunctionLibraryDefinition>>
      overlay_libs_ GUARDED_BY(mu_);
  // Map from device name to the indices of the arguments and return values
  // placed on that device. Read-only after the first invocation.
  gtl::FlatMap<string, ArgAndRetIndices> arg_and_ret_indices_;
  // Map from device name to alloc attrs for arguments and return values of the
  // function placed on that device. Read-only after the first invocation.
  gtl::FlatMap<string, ArgAndRetAllocAttrs> arg_and_ret_alloc_attrs_;

  mutex mu_;

  // Used to uniquify function names in `overlay_libs_`.
  uint32 suffix_ = 0;
};
REGISTER_KERNEL_BUILDER(Name("PartitionedCall").Device(DEVICE_CPU),
                        PartitionedCallOp);
REGISTER_KERNEL_BUILDER(Name("StatefulPartitionedCall").Device(DEVICE_CPU),
                        PartitionedCallOp);
REGISTER_KERNEL_BUILDER(Name("PartitionedCall").Device(DEVICE_GPU),
                        PartitionedCallOp);
REGISTER_KERNEL_BUILDER(Name("StatefulPartitionedCall").Device(DEVICE_GPU),
                        PartitionedCallOp);
#if TENSORFLOW_USE_SYCL
REGISTER_KERNEL_BUILDER(Name("PartitionedCall").Device(DEVICE_SYCL),
                        PartitionedCallOp);
REGISTER_KERNEL_BUILDER(Name("StatefulPartitionedCall").Device(DEVICE_SYCL),
                        PartitionedCallOp);
#endif  // TENSORFLOW_USE_SYCL

}  // namespace
}  // namespace tensorflow