aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/mkl_conv_ops.cc
blob: a9872b8d6d3ea89da0a73017af19cabbc25f78ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/nn_ops.cc.
#ifdef INTEL_MKL

#include <string.h>
#include <map>
#include <vector>
#include <string>

#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_slice.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/kernels/mkl_conv_ops.h"
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/lib/strings/numbers.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"

#include "tensorflow/core/util/mkl_util.h"
#include "mkl_dnn.h"
#include "mkl_dnn_types.h"

#ifdef INTEL_MKL_DNN
#include "mkldnn.hpp"

using mkldnn::stream;
using mkldnn::prop_kind;

using mkldnn::convolution_forward;
using mkldnn::convolution_direct;
#endif

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;

// For now, MKL-ML is default. So making MKL-DNN not a default choice.
#ifndef INTEL_MKL_DNN

template <typename Device, typename T, bool biasEnabled>
class MklConv2DOp : public OpKernel {
 public:
  ~MklConv2DOp() {}

  explicit MklConv2DOp(OpKernelConstruction* context) : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("strides", &strides_));
    string data_format;
    OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
    OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                errors::InvalidArgument("Invalid data format"));
    OP_REQUIRES(context, strides_.size() == 4,
                errors::InvalidArgument("Sliding window strides field must "
                                        "specify 4 dimensions"));

    const int64 stride_n = GetTensorDim(strides_, data_format_, 'N');
    const int64 stride_c = GetTensorDim(strides_, data_format_, 'C');
    OP_REQUIRES(
        context, stride_n == 1 && stride_c == 1,
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));
    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
  }

  void Compute(OpKernelContext* context) override {
    MklConv2DOpContext mkl_context;
    const Tensor& input = MklGetInput(context, 0);
    GetMklShape(context, 0, &(mkl_context.input_shape));
    bool input_in_mkl_format = mkl_context.input_shape.IsMklTensor();

    const Tensor& filter = MklGetInput(context, 1);
    MklShape mkl_filter_shape;
    GetMklShape(context, 1, &mkl_filter_shape);
    CHECK(!mkl_filter_shape.IsMklTensor())
        << "Conv filter should not be in MKL Layout";

    if (biasEnabled) {
      const Tensor& bias = MklGetInput(context, 2);
      OP_REQUIRES(context, bias.dims() == 1,
                  errors::InvalidArgument("bias must be 1-dimensional: ",
                                          bias.shape().DebugString()));
    }

    if (!input_in_mkl_format) {
      OP_REQUIRES(context, input.dims() == 4,
                  errors::InvalidArgument("input must be 4-dimensional",
                                          input.shape().DebugString()));
    }

    OP_REQUIRES(context, filter.dims() == 4,
                errors::InvalidArgument("filter must be 4-dimensional: ",
                                        filter.shape().DebugString()));

    for (int i = 0; i < 3; i++) {
      OP_REQUIRES(context, FastBoundsCheck(filter.dim_size(i),
                                           std::numeric_limits<int>::max()),
                  errors::InvalidArgument("filter too large"));
    }

    const int64 input_depth =
        input_in_mkl_format ? GetMklTensorDim(mkl_context.input_shape, 'C')
                            : GetTensorDim(input, data_format_, 'C');
    OP_REQUIRES(
        context, input_depth == filter.dim_size(2),
        errors::InvalidArgument("input and filter must have the same depth: ",
                                input_depth, " vs ", filter.dim_size(2)));
    // The last dimension for filter is out_depth.
    const int out_depth = static_cast<int>(filter.dim_size(3));

    // The second dimension for input is rows/height.
    // The first dimension for filter is rows/height.
    const int64 input_rows_raw =
        input_in_mkl_format ? GetMklTensorDim(mkl_context.input_shape, 'H')
                            : GetTensorDim(input, data_format_, 'H');
    OP_REQUIRES(context, FastBoundsCheck(input_rows_raw,
                                         std::numeric_limits<int>::max()),
                errors::InvalidArgument("Input rows too large"));
    const int input_rows = static_cast<int>(input_rows_raw);
    const int filter_rows = static_cast<int>(filter.dim_size(0));

    // The third dimension for input is columns/width.
    // The second dimension for filter is columns/width.
    const int64 input_cols_raw =
        input_in_mkl_format ? GetMklTensorDim(mkl_context.input_shape, 'W')
                            : GetTensorDim(input, data_format_, 'W');
    OP_REQUIRES(context, FastBoundsCheck(input_cols_raw,
                                         std::numeric_limits<int>::max()),
                errors::InvalidArgument("Input cols too large"));
    const int input_cols = static_cast<int>(input_cols_raw);
    const int filter_cols = static_cast<int>(filter.dim_size(1));

    // The first dimension for input is batch.
    const int64 input_batch_raw =
        input_in_mkl_format ? GetMklTensorDim(mkl_context.input_shape, 'N')
                            : GetTensorDim(input, data_format_, 'N');
    OP_REQUIRES(context, FastBoundsCheck(input_batch_raw,
                                         std::numeric_limits<int>::max()),
                errors::InvalidArgument("batch is too large"));
    const int batch = static_cast<int>(input_batch_raw);

    // For now we take the stride from the second and third dimensions only (we
    // do not support striding on the batch or depth dimension).
    const int stride_rows = GetTensorDim(strides_, data_format_, 'H');
    const int stride_cols = GetTensorDim(strides_, data_format_, 'W');

    int64 out_rows = 0, out_cols = 0, pad_rows = 0, pad_cols = 0;
    OP_REQUIRES_OK(context,
                   GetWindowedOutputSize(input_rows, filter_rows, stride_rows,
                                         padding_, &out_rows, &pad_rows));
    OP_REQUIRES_OK(context,
                   GetWindowedOutputSize(input_cols, filter_cols, stride_cols,
                                         padding_, &out_cols, &pad_cols));
    TensorShape out_shape =
        ShapeFromFormat(data_format_, batch, out_rows, out_cols, out_depth);

    // Output tensor is of the following dimensions:
    // [ in_batch, out_rows, out_cols, out_depth ]
    Tensor* output = nullptr;

    // If there is nothing to compute, return.
    if (out_shape.num_elements() == 0) {
      // Nothing to do, allocate output tensor and return
      MklShape mkl_output_mkl_shape;
      mkl_output_mkl_shape.SetMklTensor(false);
      AllocateOutputSetMklShape(context, 0, &output, input.shape(),
                                mkl_output_mkl_shape);
      return;
    }

    if (batch == 0) {
      // Nothing to do, allocate output tensor and return
      MklShape mkl_output_mkl_shape;
      mkl_output_mkl_shape.SetMklTensor(false);
      AllocateOutputSetMklShape(context, 0, &output, input.shape(),
                                mkl_output_mkl_shape);
      return;
    }

    // Create MKL convolution primitives
    mkl_context.in_dims = input_in_mkl_format
                              ? mkl_context.input_shape.GetDimension()
                              : input.dims();
    mkl_context.filter_dims = filter.dims();

    mkl_context.in_sizes[MklDims::W] = static_cast<size_t>(input_cols);
    mkl_context.in_sizes[MklDims::H] = static_cast<size_t>(input_rows);
    mkl_context.in_sizes[MklDims::C] = static_cast<size_t>(input_depth);
    mkl_context.in_sizes[MklDims::N] = static_cast<size_t>(batch);

    mkl_context.out_sizes[MklDims::W] = static_cast<size_t>(out_cols);
    mkl_context.out_sizes[MklDims::H] = static_cast<size_t>(out_rows);
    mkl_context.out_sizes[MklDims::C] = static_cast<size_t>(out_depth);
    mkl_context.out_sizes[MklDims::N] = static_cast<size_t>(batch);

    mkl_context.input_offset[0] = static_cast<int>(-pad_cols);
    mkl_context.input_offset[1] = static_cast<int>(-pad_rows);

    mkl_context.conv_stride[0] = static_cast<size_t>(stride_cols);
    mkl_context.conv_stride[1] = static_cast<size_t>(stride_rows);

    GetStridesFromSizes(data_format_, mkl_context.out_strides,
                        mkl_context.out_sizes);
    GetStridesFromSizes(data_format_, mkl_context.in_strides,
                        mkl_context.in_sizes);

    // TF filter dimension order (out_depth, in_depth, cols, rows) ->
    // MKL filter dimension order (out_depth, in_depth, rows, cols)
    mkl_context.filter_sizes[0] = filter.dim_size(1);  // cols
    mkl_context.filter_sizes[1] = filter.dim_size(0);  // rows
    mkl_context.filter_sizes[2] = filter.dim_size(2);  // in_depth
    mkl_context.filter_sizes[3] = filter.dim_size(3);  // out_depth

    // TF filter layout - (rows, cols, in_depth, out_depth)
    mkl_context.filter_strides[0] =
        filter.dim_size(2) * filter.dim_size(3);  // cols
    mkl_context.filter_strides[1] =
        filter.dim_size(1) * filter.dim_size(2) * filter.dim_size(3);  // rows
    mkl_context.filter_strides[2] = filter.dim_size(3);  // in_depth
    mkl_context.filter_strides[3] = 1;                   // out_depth

    if (biasEnabled) {
      const Tensor& bias = MklGetInput(context, 2);
      mkl_context.bias_sizes[0] = {static_cast<size_t>(bias.dim_size(0))};
      mkl_context.bias_strides[0] = {1};
    }

    // Create Convolution Primitive
    if (biasEnabled) {
      CHECK_EQ(
          dnnConvolutionCreateForwardBias_F32(
              &mkl_context.prim_fwd, nullptr, dnnAlgorithmConvolutionDirect,
              mkl_context.in_dims, mkl_context.in_sizes, mkl_context.out_sizes,
              mkl_context.filter_sizes, mkl_context.conv_stride,
              mkl_context.input_offset, dnnBorderZeros),
          E_SUCCESS);
    } else {
      CHECK_EQ(
          dnnConvolutionCreateForward_F32(
              &mkl_context.prim_fwd, nullptr, dnnAlgorithmConvolutionDirect,
              mkl_context.in_dims, mkl_context.in_sizes, mkl_context.out_sizes,
              mkl_context.filter_sizes, mkl_context.conv_stride,
              mkl_context.input_offset, dnnBorderZeros),
          E_SUCCESS);
    }

    TensorShape mkl_output_tf_shape;
    MklShape mkl_output_mkl_shape;
    mkl_output_mkl_shape.SetMklTensor(true);
    mkl_output_mkl_shape.SetMklLayout(mkl_context.prim_fwd, dnnResourceDst);
    mkl_output_mkl_shape.SetTfLayout(mkl_context.in_dims, mkl_context.out_sizes,
                                     mkl_context.out_strides);
    // MKL might change the dimension ordering
    // Create mapping to recover the original TF dimension order
    mkl_output_mkl_shape.SetTfDimOrder(mkl_context.in_dims, data_format_);

    mkl_output_tf_shape.AddDim(
        dnnLayoutGetMemorySize_F32(
            static_cast<dnnLayout_t>(mkl_output_mkl_shape.GetMklLayout())) /
        sizeof(T));
    AllocateOutputSetMklShape(context, 0, &output, mkl_output_tf_shape,
                              mkl_output_mkl_shape);
    // Filter output to be used in the backprop_input
    TensorShape mkl_filter_output_tf_shape;
    MklShape mkl_filter_output_mkl_shape;
    mkl_filter_output_mkl_shape.SetMklTensor(true);
    mkl_filter_output_mkl_shape.SetMklLayout(mkl_context.prim_fwd,
                                             dnnResourceFilter);

    size_t filter_sizes[4] = {static_cast<size_t>(filter.dim_size(0)),
                              static_cast<size_t>(filter.dim_size(1)),
                              static_cast<size_t>(filter.dim_size(2)),
                              static_cast<size_t>(filter.dim_size(3))};
    mkl_filter_output_mkl_shape.SetTfLayout(filter.dims(), filter_sizes,
                                            mkl_context.filter_strides);

    mkl_filter_output_mkl_shape.SetTfDimOrder(mkl_context.filter_dims,
                                              data_format_);
    mkl_filter_output_tf_shape.AddDim(
        dnnLayoutGetMemorySize_F32(static_cast<dnnLayout_t>(
            mkl_filter_output_mkl_shape.GetMklLayout())) /
        sizeof(T));
    AllocateOutputSetMklShape(context, 1, &mkl_context.output_filter,
                              mkl_filter_output_tf_shape,
                              mkl_filter_output_mkl_shape);

    mkl_context.conv_res[dnnResourceDst] =
        static_cast<void*>(output->flat<T>().data());

    mkl_context.MklCreateInputLayouts(context);

    // Temp tensor used to allocate tmp buffers
    Tensor mkl_tmp_input_buf_tensor, mkl_tmp_filter_buf_tensor,
        mkl_tmp_bias_buf_tensor;
    mkl_context.MklPrepareConvolutionInputs(context,
                                            &mkl_tmp_input_buf_tensor,
                                            &mkl_tmp_filter_buf_tensor,
                                            &mkl_tmp_bias_buf_tensor);

    // Execute convolution
    CHECK_EQ(dnnExecute_F32(mkl_context.prim_fwd, mkl_context.conv_res),
             E_SUCCESS);

    mkl_context.MklCleanup();
  }

 private:
  typedef struct {
    int in_dims;
    size_t in_sizes[4];
    size_t in_strides[4];
    size_t out_sizes[4];
    size_t out_strides[4];
    int filter_dims;
    size_t filter_sizes[4];
    size_t filter_strides[4];
    size_t bias_sizes[1];
    size_t bias_strides[1];
    int input_offset[2];
    size_t conv_stride[2];
    MklShape input_shape;
    dnnPrimitive_t prim_fwd;
    void* conv_res[dnnResourceNumber];
    dnnLayout_t lt_filter, lt_bias, lt_input;
    Tensor* output_filter = nullptr;

    // Create MKL dnnLayout_t objects for tensors coming into the layer
    void MklCreateInputLayouts(OpKernelContext* context) {
      bool input_in_mkl_format = input_shape.IsMklTensor();
      if (input_in_mkl_format) {
        lt_input = static_cast<dnnLayout_t>(input_shape.GetCurLayout());
      } else {
        CHECK_EQ(dnnLayoutCreate_F32(&lt_input, in_dims, in_sizes, in_strides),
                 E_SUCCESS);
      }

      CHECK_EQ(dnnLayoutCreate_F32(&lt_filter, filter_dims, filter_sizes,
                                   filter_strides),
               E_SUCCESS);

      if (biasEnabled) {
        CHECK_EQ(dnnLayoutCreate_F32(&lt_bias, 1, bias_sizes, bias_strides),
                 E_SUCCESS);
      }
    }

    // Compare incoming tensor layouts with MKL preferred layouts and convert
    // data to the preferred layout if necessary
    void MklPrepareConvolutionInputs(OpKernelContext* context,
                                     Tensor* mkl_tmp_input_buf_tensor,
                                     Tensor* mkl_tmp_filter_buf_tensor,
                                     Tensor* mkl_tmp_bias_buf_tensor) {
      bool mkl_convert_input, mkl_convert_filter, mkl_convert_bias;
      dnnPrimitive_t mkl_prim_convert_filter, mkl_prim_convert_bias,
          mkl_prim_convert_input;
      dnnLayout_t mkl_lt_internal_filter, mkl_lt_internal_bias,
          mkl_lt_internal_input;
      void *mkl_buf_convert_input, *mkl_buf_convert_filter,
          *mkl_buf_convert_bias;
      mkl_prim_convert_filter = nullptr;
      mkl_prim_convert_bias = nullptr;
      mkl_prim_convert_input = nullptr;
      mkl_lt_internal_filter = nullptr;
      mkl_lt_internal_bias = nullptr;
      mkl_lt_internal_input = nullptr;
      mkl_buf_convert_input = nullptr;
      mkl_buf_convert_filter = nullptr;
      mkl_buf_convert_bias = nullptr;

      // Compare with internal layouts and convert if needed
      const Tensor& input = MklGetInput(context, 0);
      void* mkl_buf_input =
          const_cast<void*>(static_cast<const void*>(input.flat<T>().data()));
      CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(&mkl_lt_internal_input,
                                                prim_fwd, dnnResourceSrc),
               E_SUCCESS);
      mkl_convert_input =
          !dnnLayoutCompare_F32(mkl_lt_internal_input, lt_input);
      if (mkl_convert_input) {
        CHECK_EQ(dnnConversionCreate_F32(&mkl_prim_convert_input,
                 lt_input, mkl_lt_internal_input), E_SUCCESS);
        AllocTmpBuffer(context, mkl_tmp_input_buf_tensor, mkl_lt_internal_input,
                       &mkl_buf_convert_input);
        CHECK_EQ(dnnConversionExecute_F32(mkl_prim_convert_input, mkl_buf_input,
                                          mkl_buf_convert_input),
                 E_SUCCESS);
        dnnDelete_F32(mkl_prim_convert_input);
      }
      dnnLayoutDelete_F32(mkl_lt_internal_input);

      conv_res[dnnResourceSrc] =
          (mkl_convert_input) ? mkl_buf_convert_input : mkl_buf_input;

      const Tensor& filter = MklGetInput(context, 1);
      void* mkl_buf_filter =
          const_cast<void*>(static_cast<const void*>(filter.flat<T>().data()));
      CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(&mkl_lt_internal_filter,
                                                prim_fwd, dnnResourceFilter),
               E_SUCCESS);
      mkl_convert_filter =
          !dnnLayoutCompare_F32(mkl_lt_internal_filter, lt_filter);
      if (mkl_convert_filter) {
        CHECK_EQ(dnnConversionCreate_F32(&mkl_prim_convert_filter, lt_filter,
                                         mkl_lt_internal_filter),
                 E_SUCCESS);

        mkl_buf_convert_filter = const_cast<void*>(
            static_cast<const void*>(output_filter->flat<T>().data()));

        CHECK_EQ(
            dnnConversionExecute_F32(mkl_prim_convert_filter, mkl_buf_filter,
                                     mkl_buf_convert_filter),
            E_SUCCESS);
        dnnDelete_F32(mkl_prim_convert_filter);
      }
      dnnLayoutDelete_F32(mkl_lt_internal_filter);

      conv_res[dnnResourceFilter] =
          (mkl_convert_filter) ? mkl_buf_convert_filter : mkl_buf_filter;

      if (biasEnabled) {
        const Tensor& bias = MklGetInput(context, 2);
        void* mkl_buf_bias =
            const_cast<void*>(static_cast<const void*>(bias.flat<T>().data()));
        CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(&mkl_lt_internal_bias,
                                                  prim_fwd, dnnResourceBias),
                 E_SUCCESS);
        mkl_convert_bias = !dnnLayoutCompare_F32(mkl_lt_internal_bias, lt_bias);
        if (mkl_convert_bias) {
          CHECK_EQ(dnnConversionCreate_F32(&mkl_prim_convert_bias, lt_bias,
                                           mkl_lt_internal_bias),
                   E_SUCCESS);
          AllocTmpBuffer(context, mkl_tmp_bias_buf_tensor, mkl_lt_internal_bias,
                         &mkl_buf_convert_bias);
          CHECK_EQ(dnnConversionExecute_F32(mkl_prim_convert_bias, mkl_buf_bias,
                                            mkl_buf_convert_bias),
                   E_SUCCESS);
          dnnDelete_F32(mkl_prim_convert_bias);
        }
        dnnLayoutDelete_F32(mkl_lt_internal_bias);

        conv_res[dnnResourceBias] =
            (mkl_convert_bias) ? mkl_buf_convert_bias : mkl_buf_bias;
      }
    }

    void MklCleanup() {
      bool input_in_mkl_format = input_shape.IsMklTensor();
      dnnDelete_F32(prim_fwd);
      if (!input_in_mkl_format) dnnLayoutDelete_F32(lt_input);
      dnnLayoutDelete_F32(lt_filter);
      if (biasEnabled) dnnLayoutDelete_F32(lt_bias);
    }
  } MklConv2DOpContext;

  std::vector<int32> strides_;
  Padding padding_;
  TensorFormat data_format_;
};

#else

template <typename Device, typename T, bool biasEnabled>
class MklConv2DOp : public OpKernel {
 public:
  ~MklConv2DOp() {}

  explicit MklConv2DOp(OpKernelConstruction* context) : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("strides", &strides_));
    string data_format;
    OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
    OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                errors::InvalidArgument("Invalid data format"));
    OP_REQUIRES(context, strides_.size() == 4,
                errors::InvalidArgument("Sliding window strides field must "
                                        "specify 4 dimensions"));

    const int64 stride_n = GetTensorDim(strides_, data_format_, 'N');
    const int64 stride_c = GetTensorDim(strides_, data_format_, 'C');
    OP_REQUIRES(
        context, stride_n == 1 && stride_c == 1,
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));
    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
  }

  void Compute(OpKernelContext* context) override {
    try {
      auto cpu_engine = engine(engine::cpu, 0);

      // Input tensors
      size_t src_idx = 0, filter_idx = 1;
      const Tensor& src_tensor = MklGetInput(context, src_idx);
      const Tensor& filter_tensor = MklGetInput(context, filter_idx);

      MklDnnData<T> src(&cpu_engine);
      MklDnnData<T> filter(&cpu_engine);
      MklDnnData<T> output(&cpu_engine);

      memory::dims src_dims, filter_dims, padding_l, padding_r, strides;
      memory::dims output_dims_tf_order, output_dims_mkl_order;

      // Get shapes of input tensors in MKL-DNN order
      MklDnnConvUtil conv_utl(context, strides_, padding_, data_format_);
      conv_utl.GetConvFwdSizesInMklOrder(src_tensor.shape(),
                                         filter_tensor.shape(),
                                         &src_dims, &filter_dims, &strides,
                                         &output_dims_tf_order,
                                         &output_dims_mkl_order, &padding_l,
                                         &padding_r);
      if (!context->status().ok()) return;

      // Check for corner case - if there is nothing to compute, return.
      TensorShape tf_output_shape({output_dims_tf_order[0],
                                output_dims_tf_order[1],
                                output_dims_tf_order[2],
                                output_dims_tf_order[3]});
      Tensor* output_tensor = nullptr;
      MklShape mkl_output_mkl_shape;
      mkl_output_mkl_shape.SetMklTensor(false);
      AllocateOutputSetMklShape(context, 0, &output_tensor, tf_output_shape,
                                mkl_output_mkl_shape);

      // Forward filter in TF format from input at index 1 to output at index 1.
      ForwardTfTensorInToOut(context, 1, 1);

      if (tf_output_shape.num_elements() == 0) {
        // TODO(jbobba): Verify correctness here
        //               Need semantics for Null MKL tensor
        return;
      }

      // Corner case to handle 0 batch size.
      if (output_dims_tf_order[0] == 0) {
        // Nothing to do, allocate output tensor and return
        // TODO(nhasabni): remove this code later once serialization
        // in MKL-DNN is supported.
        AllocateOutputSetMklShape(context, 0, &output_tensor,
                                  src_tensor.shape(), mkl_output_mkl_shape);
        return;
      } else {
        // Otherwise regular output tensor allocation
        // Allocate output tensor.
      }
      CHECK_NOTNULL(output_tensor);

      // Create memory for user data.
      // Describe how the inputs and outputs of Convolution look like. Also
      // specify buffers containing actual input and output data.
      // Although input shape (src_dims) required is in MKL-DNN order,
      // the layout is Tensorflow's layout (NHWC or NCHW depending on data
      // format).
      src.SetUsrMem(src_dims, TFDataFormatToMklDnnDataFormat(data_format_),
                    const_cast<void*>(static_cast<const void*>(
                    src_tensor.flat<T>().data())));
      // Although filter shape (filter_dims) required is in MKL-DNN order,
      // the layout is Tensorflow's layout (HWIO).
      filter.SetUsrMem(filter_dims, memory::format::hwio,
                       const_cast<void*>(static_cast<const void*>(
                       filter_tensor.flat<T>().data())));
      // Although output shape (output_dims) required is in MKL-DNN order,
      // layout is Tensorflow's layout (NHWC or NCHW depending on data format).
      output.SetUsrMem(output_dims_mkl_order,
                       TFDataFormatToMklDnnDataFormat(data_format_),
                       output_tensor->flat<T>().data());

      // Create memory descriptors for convolution data w/ no specified format.
      src.SetOpMemDesc(src_dims, memory::format::any);
      filter.SetOpMemDesc(filter_dims, memory::format::any);
      output.SetOpMemDesc(output_dims_mkl_order, memory::format::any);

      // If bias is enabled, then do the same steps as above for bias.
      if (biasEnabled) {
        MklDnnData<T> bias(&cpu_engine);
        memory::dims bias_size;
        conv_utl.GetBiasSizeInMklOrder(2 /* bias idx */, &bias_size);
        const Tensor& bias_tensor = MklGetInput(context, 2);
        bias.SetUsrMem(bias_size, memory::format::x,
                       const_cast<void*>(static_cast<const void*>(
                       bias_tensor.flat<T>().data())));
        bias.SetOpMemDesc(bias_size, memory::format::any);

        // Create convolution primitive with Bias.
        auto conv_desc = convolution_forward::desc(prop_kind::forward,
            convolution_direct, src.GetOpMemDesc(), filter.GetOpMemDesc(),
            bias.GetOpMemDesc(), output.GetOpMemDesc(), strides,
            padding_l, padding_r, TFPaddingToMklDnnPadding(padding_));

        auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc,
                                                                cpu_engine);
        PrepareAndExecuteNet(conv_prim_desc, &src, &filter, &bias, &output);
      } else {
        // Create convolution primitive without Bias.
        auto conv_desc = convolution_forward::desc(prop_kind::forward,
            convolution_direct, src.GetOpMemDesc(), filter.GetOpMemDesc(),
            output.GetOpMemDesc(), strides, padding_l, padding_r,
            TFPaddingToMklDnnPadding(padding_));

        auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc,
                                                                cpu_engine);
        PrepareAndExecuteNet(conv_prim_desc, &src, &filter, nullptr, &output);
      }
    } catch (mkldnn::error &e) {
      string error_msg = "Status: " + std::to_string(e.status) +
                       ", message: " + std::string(e.message) +
                       ", in file " + std::string(__FILE__) + ":" +
                       std::to_string(__LINE__);
      OP_REQUIRES_OK(context,
        errors::Aborted("Operation received an exception:", error_msg));
    }
  }

 private:
  std::vector<int32> strides_;
  Padding padding_;
  TensorFormat data_format_;

  // Prepare and execute net - checks for input and output reorders.
  void PrepareAndExecuteNet(
                  const convolution_forward::primitive_desc& conv_prim_desc,
                  MklDnnData<T>* src, MklDnnData<T>* filter,
                  MklDnnData<T>* bias, MklDnnData<T>* output) {
    // Create reorders between user layout and MKL layout if it is needed and
    // add it to the net before convolution.
    std::vector<primitive> net;
    src->CheckReorderToOpMem(conv_prim_desc.src_primitive_desc(), &net);
    filter->CheckReorderToOpMem(conv_prim_desc.weights_primitive_desc(), &net);

    // Memory for output of convolution. Since we may need reorder on the
    // output side, we will prepare reorder primitive in case output
    // reorder to user memory is required.
    bool output_reorder_required = output->PrepareReorderToUserMemIfReq(
                                      conv_prim_desc.dst_primitive_desc());

    // Create convolution primitive and add it to net.
    if (bias) {
      CHECK_EQ(biasEnabled, true);
      net.push_back(convolution_forward(conv_prim_desc, src->GetOpMem(),
                                    filter->GetOpMem(), bias->GetOpMem(),
                                    output->GetOpMem()));
    } else {
      CHECK_EQ(biasEnabled, false);
      net.push_back(convolution_forward(conv_prim_desc, src->GetOpMem(),
                                    filter->GetOpMem(), output->GetOpMem()));
    }

    // Insert reorder primitive in the net for output reorder if reorder is
    // required.
    if (output_reorder_required) {
      output->InsertReorderToUserMem(&net);
    }

    // Handle output reorder
    stream(stream::kind::eager).submit(net).wait();
  }
};

#endif

#define REGISTER_MKL_CPU(T)                                         \
  REGISTER_KERNEL_BUILDER(Name("_MklConv2D")                        \
                              .Device(DEVICE_CPU)                   \
                              .TypeConstraint<T>("T")               \
                              .Label(mkl_op_registry::kMklOpLabel), \
                          MklConv2DOp<CPUDevice, T, false>);        \
  REGISTER_KERNEL_BUILDER(Name("_MklConv2DWithBias")                \
                              .Device(DEVICE_CPU)                   \
                              .TypeConstraint<T>("T")               \
                              .Label(mkl_op_registry::kMklOpLabel), \
                          MklConv2DOp<CPUDevice, T, true>);

TF_CALL_float(REGISTER_MKL_CPU);

}  // namespace tensorflow
#endif  // INTEL_MKL