aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/mkl_conv_grad_input_ops.cc
blob: b0f7faaa1ac5633c9fd09d49abb757911f1c8507 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/nn_ops.cc. This opkernel uses MKL library, create MKL
// layout and primitives, use MKL dnn primitives to compute convolution backward
// input

#ifdef INTEL_MKL

#define USE_EIGEN_TENSOR
#define EIGEN_USE_THREADS
#include <algorithm>
#include <vector>
#ifdef INTEL_MKL_ML
#include "mkl_dnn.h"
#include "mkl_dnn_types.h"
#endif
#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_slice.h"
#include "tensorflow/core/kernels/conv_grad_ops.h"
#include "tensorflow/core/kernels/mkl_conv_ops.h"
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/util/mkl_util.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"
#include "tensorflow/core/util/use_cudnn.h"
#include "tensorflow/core/util/work_sharder.h"

#ifndef INTEL_MKL_ML
#include "mkldnn.hpp"

using mkldnn::convolution_backward_data;
using mkldnn::prop_kind;
using mkldnn::stream;
#endif

namespace tensorflow {
typedef Eigen::ThreadPoolDevice CPUDevice;

#ifndef INTEL_MKL_ML

/// utility classes enabling primitive reuse for backward conv2d ops.
struct MklConvBwdInputParams {
  memory::dims diff_src_dims;
  memory::dims filter_dims;
  memory::dims diff_dst_dims;
  memory::dims strides;
  memory::dims dilations;
  memory::dims padding_left;
  memory::dims padding_right;
  padding_kind padding;

  MklConvBwdInputParams(memory::dims diff_src_dims,
    memory::dims filter_dims, memory::dims diff_dst_dims,
    memory::dims strides, memory::dims dilations,
    memory::dims padding_left, memory::dims padding_right,
    padding_kind padding) :
      diff_src_dims(diff_src_dims), filter_dims(filter_dims),
      diff_dst_dims(diff_dst_dims), strides(strides),
      dilations(dilations), padding_left(padding_left),
      padding_right(padding_right), padding(padding) {
  }
};

template <typename T>
class MklConv2DBwdInputPrimitive : public MklPrimitive {
 public:
  explicit MklConv2DBwdInputPrimitive(
      const MklConvBwdInputParams& convBwdInputDims) :
           cpu_engine_(engine::cpu, 0) {
    context_.bwd_input_stream.reset(new stream(stream::kind::eager));

    // create conv primitive
    if (context_.conv_bwd_input == nullptr) {
      Setup(convBwdInputDims);
    }
  }
  ~MklConv2DBwdInputPrimitive() {}

  // Convolution backward filter (weights)
  //   diff_src_data: output data buffer of diff_src
  //   filter_data:   input data buffer of filter (weights)
  //   diff_dst_data: input data buffer of dst
  // Bias does not matter here
  void Execute(const T* diff_src_data,
      const T* filter_data, const T* diff_dst_data) {
    context_.diff_src_mem->set_data_handle(
        static_cast<T*>(const_cast<T*>(diff_src_data)));
    context_.filter_mem->set_data_handle(
        static_cast<T*>(const_cast<T*>(filter_data)));
    context_.diff_dst_mem->set_data_handle(
        static_cast<T*>(const_cast<T*>(diff_dst_data)));

    context_.bwd_input_stream->submit(context_.bwd_input_primitives);

    // set back data handle
    context_.diff_src_mem->set_data_handle(DummyData);
    context_.filter_mem->set_data_handle(DummyData);
    context_.diff_dst_mem->set_data_handle(DummyData);
    return;
  }

  memory::format GetFilterMemoryFormat() const {
    return context_.filter_fmt;
  }

  memory::format GetDiffDstMemoryFormat() const {
    return context_.diff_dst_fmt;
  }

  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
  GetPrimitiveDesc() const {
    return context_.bwd_input_pd;
  }

 private:
  // Primitive reuse context for Conv2D Bwd Input op
  struct ConvBwdInputContext {
    // expected memory format for this primitive instance
    memory::format filter_fmt;
    memory::format diff_dst_fmt;

    // MKLDNN memory
    std::shared_ptr<mkldnn::memory> diff_src_mem;
    std::shared_ptr<mkldnn::memory> filter_mem;
    std::shared_ptr<mkldnn::memory> diff_dst_mem;

    // convolution primitive
    std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
        bwd_input_pd;
    std::shared_ptr<mkldnn::primitive> conv_bwd_input;

    // desc & prmitive desc
    std::shared_ptr<mkldnn::convolution_backward_data::desc> bwd_input_desc;
    std::shared_ptr<mkldnn::convolution_forward::desc> fwd_desc;
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> fwd_pd;

    // memory desc: forward & backward can share same memory::desc
    std::shared_ptr<memory::desc> diff_src_md;
    std::shared_ptr<memory::desc> filter_md;
    std::shared_ptr<memory::desc> diff_dst_md;

    // MKL pipeline
    std::shared_ptr<mkldnn::stream> bwd_input_stream;
    std::vector<mkldnn::primitive> bwd_input_primitives;

    ConvBwdInputContext() :
        filter_fmt(memory::format::any), diff_dst_fmt(memory::format::any),
        diff_src_mem(nullptr), filter_mem(nullptr), diff_dst_mem(nullptr),
        bwd_input_pd(nullptr), conv_bwd_input(nullptr),
        bwd_input_desc(nullptr), fwd_desc(nullptr), fwd_pd(nullptr),
        diff_src_md(nullptr), filter_md(nullptr), diff_dst_md(nullptr),
        bwd_input_stream(nullptr) {
    }
  };


  void Setup(const MklConvBwdInputParams& convBwdInputDims) {
    // create memory descriptors for convolution data w/ no specified format
    context_.diff_src_md.reset(new memory::desc(
        {convBwdInputDims.diff_src_dims},
        MklDnnType<T>(), memory::format::any));
    context_.filter_md.reset(new memory::desc(
        {convBwdInputDims.filter_dims},
        MklDnnType<T>(), memory::format::any));
    context_.diff_dst_md.reset(new memory::desc(
        {convBwdInputDims.diff_dst_dims},
        MklDnnType<T>(), memory::format::any));

    // create convolution primitives
    context_.bwd_input_desc.reset(new convolution_backward_data::desc(
        convolution_direct, *context_.diff_src_md, *context_.filter_md,
        *context_.diff_dst_md, convBwdInputDims.strides,
        convBwdInputDims.dilations, convBwdInputDims.padding_left,
        convBwdInputDims.padding_right, convBwdInputDims.padding));

    context_.fwd_desc.reset(new convolution_forward::desc(prop_kind::forward,
        convolution_direct, *context_.diff_src_md, *context_.filter_md,
        *context_.diff_dst_md, convBwdInputDims.strides,
        convBwdInputDims.dilations, convBwdInputDims.padding_left,
        convBwdInputDims.padding_right, convBwdInputDims.padding));

    context_.fwd_pd.reset(new convolution_forward::primitive_desc(
        *context_.fwd_desc, cpu_engine_));

    // create backward conv prim desc
    context_.bwd_input_pd.reset(
        new convolution_backward_data::primitive_desc(
        *context_.bwd_input_desc, cpu_engine_, *context_.fwd_pd));

    // create memory primitive based on dummy data
    context_.diff_src_mem.reset(new memory(
        context_.bwd_input_pd.get()->diff_src_primitive_desc(), DummyData));
    context_.filter_mem.reset(new memory(
        context_.bwd_input_pd.get()->weights_primitive_desc(), DummyData));
    context_.diff_dst_mem.reset(new memory(
        context_.bwd_input_pd.get()->diff_dst_primitive_desc(), DummyData));

    // store the expected memory format
    context_.filter_fmt = static_cast<memory::format>(
     context_.bwd_input_pd.get()->weights_primitive_desc().desc().data.format);
    context_.diff_dst_fmt = static_cast<memory::format>(
     context_.bwd_input_pd.get()->diff_dst_primitive_desc().desc().data.format);

    // create convolution primitive and add it to net
    context_.conv_bwd_input.reset(new convolution_backward_data(
        *context_.bwd_input_pd, *context_.diff_dst_mem,
        *context_.filter_mem, *context_.diff_src_mem));

    context_.bwd_input_primitives.push_back(*context_.conv_bwd_input);
  }

  struct ConvBwdInputContext context_;
  engine cpu_engine_;
};

template <typename T>
class MklConv2DBwdInputPrimitiveFactory : public MklPrimitiveFactory<T> {
 private:
  MklConv2DBwdInputPrimitiveFactory() {}
  ~MklConv2DBwdInputPrimitiveFactory() {}

 public:
  static MklConv2DBwdInputPrimitive<T>* Get(
      const MklConvBwdInputParams& convBwdInputDims) {
    MklConv2DBwdInputPrimitive<T>* conv2d_bwd_input = nullptr;

    // look into the pool for reusable primitive
    conv2d_bwd_input = dynamic_cast<MklConv2DBwdInputPrimitive<T>*> (
        MklConv2DBwdInputPrimitiveFactory<T>::GetInstance().GetConv2dBwdInput(
            convBwdInputDims));

    if (conv2d_bwd_input == nullptr) {
      conv2d_bwd_input = new MklConv2DBwdInputPrimitive<T>(
          convBwdInputDims);
      MklConv2DBwdInputPrimitiveFactory<T>::GetInstance().SetConv2dBwdInput(
          convBwdInputDims, conv2d_bwd_input);
    }
    return conv2d_bwd_input;
  }

 private:
  static MklConv2DBwdInputPrimitiveFactory& GetInstance() {
    static MklConv2DBwdInputPrimitiveFactory instance_;
    return instance_;
  }

  static std::string CreateKey(
      const MklConvBwdInputParams& convBwdInputDims) {
    std::string prefix = "conv2d_bwd_input";
    FactoryKeyCreator key_creator;
    key_creator.AddAsKey(prefix);
    key_creator.AddAsKey(convBwdInputDims.diff_src_dims);
    key_creator.AddAsKey(convBwdInputDims.filter_dims);
    key_creator.AddAsKey(convBwdInputDims.diff_dst_dims);
    key_creator.AddAsKey(convBwdInputDims.strides);
    key_creator.AddAsKey(convBwdInputDims.dilations);
    key_creator.AddAsKey(convBwdInputDims.padding_left);
    key_creator.AddAsKey(convBwdInputDims.padding_right);
    return key_creator.GetKey();
  }

  MklPrimitive* GetConv2dBwdInput(
      const MklConvBwdInputParams& convBwdInputDims) {
    std::string key = CreateKey(convBwdInputDims);
    return this->GetOp(key);
  }

  void SetConv2dBwdInput(
      const MklConvBwdInputParams& convBwdInputDims, MklPrimitive *op) {
    std::string key = CreateKey(convBwdInputDims);
    this->SetOp(key, op);
  }
};

#endif

#ifdef INTEL_MKL_ML

template <typename Device, class T>
class MklConv2DCustomBackpropInputOp : public OpKernel {
 public:
  ~MklConv2DCustomBackpropInputOp() {}
  explicit MklConv2DCustomBackpropInputOp(OpKernelConstruction* context)
      : OpKernel(context) {
    string dataformat;
    OP_REQUIRES_OK(context, context->GetAttr("data_format", &dataformat));
    OP_REQUIRES(context, FormatFromString(dataformat, &data_format),
                errors::InvalidArgument("Invalid data format"));
    OP_REQUIRES_OK(context, context->GetAttr("strides", &strides));
    int stride_n = GetTensorDim(strides, data_format, 'N');
    int stride_c = GetTensorDim(strides, data_format, 'C');
    OP_REQUIRES(
        context, (stride_n == 1 && stride_c == 1),
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));

    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding));
  }

  void Compute(OpKernelContext* context) override {
    MklConvBackInputOpContext mkl_context;
    const Tensor& input = MklGetInput(context, 0);
    const Tensor& filter = MklGetInput(context, 1);

    GetMklShape(context, 1, &(mkl_context.filter_shape));
    bool filter_in_mkl_format = mkl_context.filter_shape.IsMklTensor();

    const Tensor& out_backprop = MklGetInput(context, 2);
    GetMklShape(context, 2, &(mkl_context.outback_shape));
    bool outback_in_mkl_format = mkl_context.outback_shape.IsMklTensor();

    TensorShape input_shape, filter_shape, outback_shape;

    // Generate input shape.
    OP_REQUIRES(
        context, TensorShapeUtils::IsVector(input.shape()),
        errors::InvalidArgument(
            "Conv2DBackpropInput: input_sizes input must be 1-dim, not ",
            input.dims()));
    OP_REQUIRES_OK(
        context, TensorShapeUtils::MakeShape(input.vec<int32>(), &input_shape));

    // Generate shape for filter prop if input is in MKL format.
    if (filter_in_mkl_format) {
      OP_REQUIRES(context, mkl_context.filter_shape.GetDimension() == 4,
                  errors::InvalidArgument(
                      "Conv2DCustomBackpropInput: size must be 4-dim"));

      const int64* filter_sizes =
          (const int64*)mkl_context.filter_shape.GetSizes();
      const int64 filter_dims = mkl_context.filter_shape.GetDimension();

      OP_REQUIRES_OK(context, TensorShapeUtils::MakeShape(
                                  filter_sizes, filter_dims, &filter_shape));
    } else {
      filter_shape = filter.shape();
    }

    // Generate shape for outback prop if input is in MKL format.
    if (outback_in_mkl_format) {
      OP_REQUIRES(context, mkl_context.outback_shape.GetDimension() == 4,
                  errors::InvalidArgument(
                      "Conv2DCustomBackpropInput: size must be 4-dim"));

      MklSizesToTFSizes(context, data_format, mkl_context.outback_shape,
                        &outback_shape);
    } else {
      outback_shape = out_backprop.shape();
    }

    ConvBackpropDimensions dims;
    OP_REQUIRES_OK(
        context,
        ConvBackpropComputeDimensions(
            "Conv2DCustomBackpropInput", /*num_spatial_dims=*/2, input_shape,
            filter_shape, outback_shape, strides, padding, data_format, &dims));

    int64 pad_top, pad_bottom;
    int64 pad_left, pad_right;
    OP_REQUIRES_OK(
        context,
        GetWindowedOutputSizeVerbose(
            dims.spatial_dims[0].input_size, dims.spatial_dims[0].filter_size,
            dims.spatial_dims[0].stride, padding,
            &dims.spatial_dims[0].output_size, &pad_top, &pad_bottom));
    OP_REQUIRES_OK(
        context,
        GetWindowedOutputSizeVerbose(
            dims.spatial_dims[1].input_size, dims.spatial_dims[1].filter_size,
            dims.spatial_dims[1].stride, padding,
            &dims.spatial_dims[1].output_size, &pad_left, &pad_right));

    mkl_context.in_dims = 4;

    mkl_context.in_sizes[0] =
        static_cast<size_t>(dims.spatial_dims[1].input_size);
    mkl_context.in_sizes[1] =
        static_cast<size_t>(dims.spatial_dims[0].input_size);
    mkl_context.in_sizes[2] = static_cast<size_t>(dims.in_depth);
    mkl_context.in_sizes[3] = static_cast<size_t>(dims.batch_size);

    mkl_context.out_sizes[0] =
        static_cast<size_t>(dims.spatial_dims[1].output_size);
    mkl_context.out_sizes[1] =
        static_cast<size_t>(dims.spatial_dims[0].output_size);
    mkl_context.out_sizes[2] = static_cast<size_t>(dims.out_depth);
    mkl_context.out_sizes[3] = static_cast<size_t>(dims.batch_size);

    mkl_context.input_offset[0] = static_cast<int>(-pad_left);
    mkl_context.input_offset[1] = static_cast<int>(-pad_top);

    mkl_context.conv_strides[0] =
        static_cast<size_t>(dims.spatial_dims[1].stride);
    mkl_context.conv_strides[1] =
        static_cast<size_t>(dims.spatial_dims[0].stride);

    GetStridesFromSizes(data_format, mkl_context.out_strides,
                        mkl_context.out_sizes);
    GetStridesFromSizes(data_format, mkl_context.in_strides,
                        mkl_context.in_sizes);

    mkl_context.filter_size[0] = dims.spatial_dims[1].filter_size;
    mkl_context.filter_size[1] = dims.spatial_dims[0].filter_size;
    mkl_context.filter_size[2] = dims.in_depth;
    mkl_context.filter_size[3] = dims.out_depth;

    mkl_context.filter_stride[0] =
        mkl_context.filter_size[2] * mkl_context.filter_size[3];
    mkl_context.filter_stride[1] = mkl_context.filter_size[2] *
                                   mkl_context.filter_size[0] *
                                   mkl_context.filter_size[3];
    mkl_context.filter_stride[2] = mkl_context.filter_size[3];
    mkl_context.filter_stride[3] = 1;

    CHECK_EQ(
        dnnConvolutionCreateBackwardData_F32(
            &mkl_context.prim_bwddata, NULL, dnnAlgorithmConvolutionDirect,
            mkl_context.in_dims, mkl_context.in_sizes, mkl_context.out_sizes,
            mkl_context.filter_size, mkl_context.conv_strides,
            mkl_context.input_offset, dnnBorderZeros),
        E_SUCCESS);

    // Allocate output tensor and shape
    TensorShape mkl_out_shape;
    MklShape mklOutputShape;
    mklOutputShape.SetMklTensor(true);
    mklOutputShape.SetMklLayout(mkl_context.prim_bwddata, dnnResourceDiffSrc);
    mklOutputShape.SetTfLayout(mkl_context.in_dims, mkl_context.in_sizes,
                               mkl_context.in_strides);
    // MKL might change the dimension ordering.
    // Create mapping to recover the original TF dimension order
    mklOutputShape.SetTfDimOrder(mkl_context.in_dims, data_format);

    Tensor* in_backprop = nullptr;
    mkl_out_shape.AddDim(dnnLayoutGetMemorySize_F32(static_cast<dnnLayout_t>(
                             mklOutputShape.GetMklLayout())) /
                         sizeof(T));
    AllocateOutputSetMklShape(context, 0, &in_backprop, mkl_out_shape,
                              mklOutputShape);

    mkl_context.conv_res[dnnResourceDiffSrc] =
        static_cast<void*>(const_cast<T*>(in_backprop->flat<T>().data()));

    mkl_context.MklCreateInputLayouts(context);
    Tensor mkl_tmp_outbackprop_buf_tensor, mkl_tmp_filter_buf_tensor;
    mkl_context.MklPrepareConvolutionInputs(
        context, &mkl_tmp_outbackprop_buf_tensor, &mkl_tmp_filter_buf_tensor);

    CHECK_EQ(dnnExecute_F32(mkl_context.prim_bwddata, mkl_context.conv_res),
             E_SUCCESS);
    mkl_context.MklCleanup();
  }

 private:
  typedef struct {
    int in_dims;
    size_t in_sizes[4];
    size_t in_strides[4];
    size_t out_sizes[4];
    size_t out_strides[4];
    int input_offset[2];
    size_t filter_size[4];
    size_t filter_stride[4];
    size_t conv_strides[2];
    MklShape filter_shape, outback_shape;
    dnnPrimitive_t prim_bwddata;
    void* conv_res[dnnResourceNumber];
    dnnLayout_t lt_filter, lt_outbackprop;

    // Create MKL dnnLayout_t objects for tensors coming into the layer
    void MklCreateInputLayouts(OpKernelContext* context) {
      bool filter_in_mkl_format = filter_shape.IsMklTensor();
      bool outback_in_mkl_format = outback_shape.IsMklTensor();
      if (filter_in_mkl_format) {
        lt_filter = (dnnLayout_t)filter_shape.GetCurLayout();
      } else {
        CHECK_EQ(dnnLayoutCreate_F32(&lt_filter, in_dims, filter_size,
                                     filter_stride),
                 E_SUCCESS);
      }

      if (outback_in_mkl_format) {
        lt_outbackprop = (dnnLayout_t)outback_shape.GetCurLayout();
      } else {
        CHECK_EQ(dnnLayoutCreate_F32(&lt_outbackprop, in_dims, out_sizes,
                                     out_strides),
                 E_SUCCESS);
      }
    }

    // Compare incoming input tensor layouts with MKL preferred layouts and
    // convert data to the preferred layout if necessary
    void MklPrepareConvolutionInputs(OpKernelContext* context,
                                     Tensor* mkl_tmp_outbackprop_buf_tensor,
                                     Tensor* mkl_tmp_filter_buf_tensor) {
      dnnPrimitive_t mkl_convert_filter = nullptr,
                     mkl_convert_outbackprop = nullptr;
      void *mkl_filter_buf = nullptr, *mkl_outbackprop_buf = nullptr;
      dnnLayout_t mkl_lt_filter_internal = nullptr,
                  mkl_lt_outbackprop_internal = nullptr;
      CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(
                   &mkl_lt_filter_internal, prim_bwddata, dnnResourceFilter),
               E_SUCCESS);

      const Tensor& filter = MklGetInput(context, 1);

      CHECK_EQ(
          dnnLayoutCreateFromPrimitive_F32(&mkl_lt_outbackprop_internal,
                                           prim_bwddata, dnnResourceDiffDst),
          E_SUCCESS);
      if (!dnnLayoutCompare_F32(mkl_lt_filter_internal, lt_filter)) {
        // Create conversion primitive
        CHECK_EQ(dnnConversionCreate_F32(&mkl_convert_filter, lt_filter,
                                         mkl_lt_filter_internal),
                 E_SUCCESS);

        AllocTmpBuffer(context, mkl_tmp_filter_buf_tensor,
                       mkl_lt_filter_internal, &mkl_filter_buf);
        CHECK_EQ(
            dnnConversionExecute_F32(
                mkl_convert_filter,
                static_cast<void*>(const_cast<T*>(filter.flat<T>().data())),
                mkl_filter_buf),
            E_SUCCESS);

        // Assign filter buf to resources[] for convolution.
        conv_res[dnnResourceFilter] = mkl_filter_buf;
        dnnDelete_F32(mkl_convert_filter);
      } else {
        // If we do not need any layout conversion for filter, then
        // we directly assign input filter to resources[].
        conv_res[dnnResourceFilter] =
            static_cast<void*>(const_cast<T*>(filter.flat<T>().data()));
      }
      dnnLayoutDelete_F32(mkl_lt_filter_internal);
      const Tensor& out_backprop = MklGetInput(context, 2);
      // --
      // We do similar steps as above for outputbackprop.
      if (!dnnLayoutCompare_F32(mkl_lt_outbackprop_internal, lt_outbackprop)) {
        CHECK_EQ(
            dnnConversionCreate_F32(&mkl_convert_outbackprop, lt_outbackprop,
                                    mkl_lt_outbackprop_internal),
            E_SUCCESS);
        AllocTmpBuffer(context, mkl_tmp_outbackprop_buf_tensor,
                       mkl_lt_outbackprop_internal, &mkl_outbackprop_buf);

        CHECK_EQ(dnnConversionExecute_F32(mkl_convert_outbackprop,
                                          static_cast<void*>(const_cast<T*>(
                                              out_backprop.flat<T>().data())),
                                          mkl_outbackprop_buf),
                 E_SUCCESS);

        conv_res[dnnResourceDiffDst] = mkl_outbackprop_buf;
        dnnDelete_F32(mkl_convert_outbackprop);
      } else {
        conv_res[dnnResourceDiffDst] =
            static_cast<void*>(const_cast<T*>(out_backprop.flat<T>().data()));
      }
      dnnLayoutDelete_F32(mkl_lt_outbackprop_internal);
    }

    // Cleanup member layouts and primitives
    void MklCleanup() {
      bool filter_in_mkl_format = filter_shape.IsMklTensor();
      bool outback_in_mkl_format = outback_shape.IsMklTensor();
      if (!filter_in_mkl_format) dnnLayoutDelete_F32(lt_filter);
      if (!outback_in_mkl_format) dnnLayoutDelete_F32(lt_outbackprop);
      dnnDelete_F32(prim_bwddata);
    }
  } MklConvBackInputOpContext;

  std::vector<int32> strides;
  Padding padding;
  TensorFormat data_format;
};

#else

template <typename Device, class T>
class MklConv2DCustomBackpropInputOp
    : public MklConv2DBackpropCommonOp<Device, T> {
 public:
  explicit MklConv2DCustomBackpropInputOp(OpKernelConstruction* context)
      : MklConv2DBackpropCommonOp<Device, T>(context) {
  }

  ~MklConv2DCustomBackpropInputOp() {}

  void Compute(OpKernelContext* context) {
    try {
      MklDnnData<T> filter(&cpu_engine);
      MklDnnData<T> diff_dst(&cpu_engine);

      // Input tensors
      const int kInputIdx = 0, kFilterIdx = 1, kOutbpropIdx = 2;
      const Tensor& src_tensor = MklGetInput(context, kInputIdx);
      const Tensor& filter_tensor = MklGetInput(context, kFilterIdx);
      const Tensor& diff_dst_tensor = MklGetInput(context, kOutbpropIdx);

      MklDnnShape src_mkl_shape, filter_mkl_shape, diff_dst_mkl_shape;
      GetMklShape(context, kInputIdx, &src_mkl_shape);
      GetMklShape(context, kFilterIdx, &filter_mkl_shape);
      GetMklShape(context, kOutbpropIdx, &diff_dst_mkl_shape);
      // Allow operator-specific sanity checking of shapes.
      ValidateMklShapes(src_mkl_shape, filter_mkl_shape,
                        diff_dst_mkl_shape);

      // Allow operator-specific generation of shapes.
      // E.g., Conv2DBackpropFilter gets filter as filter_sizes. It is a
      // tensor containing shape of filter. So filter.shape() is not
      // a correct way to get filter shape. These operator-specific calls
      // allow this class to handle this case.
      TensorShape src_tf_shape = MakeInputTfShape(context, src_tensor);
      TensorShape filter_tf_shape = MakeFilterTfShape(context, filter_tensor);
      TensorShape diff_dst_tf_shape = GetTfShape(context, kOutbpropIdx);

      // Corner cases: output with 0 elements and 0 batch size.
      Tensor* diff_src_tensor = nullptr;
      if (src_tf_shape.num_elements() == 0 ||
          filter_tf_shape.num_elements() == 0 ||
          diff_dst_tf_shape.num_elements() == 0) {
        MklDnnShape diff_src_mkl_shape;
        diff_src_mkl_shape.SetMklTensor(false);
        TensorShape diff_src_tf_shape = GetOutputTfShape(
            src_tf_shape, filter_tf_shape, diff_dst_tf_shape);
        const int kOutputIdx = 0;
        AllocateOutputSetMklShape(context, kOutputIdx, &diff_src_tensor,
                       diff_src_tf_shape, diff_src_mkl_shape);
        CHECK_NOTNULL(diff_src_tensor);

        // if output tensor has more than 0 elements, we need to 0 them out.
        auto diff_src_data = diff_src_tensor->flat<T>().data();
        for (size_t i = 0; i < diff_src_tf_shape.num_elements(); ++i) {
          diff_src_data[i] = 0;
        }
        return;
      }
      // By default, all dims are in MKL order. Only dims in TF order
      // are those with postfix tf_order.
      memory::dims diff_dst_dims, fwd_src_dims, fwd_filter_dims;
      memory::dims padding_left, padding_right, dilations, strides;
      memory::dims fwd_output_dims, fwd_output_dims_tf_order;

      // Get forward convolution parameters.
      MklDnnConvUtil conv_utl(context, this->strides_, this->padding_,
          this->data_format_, this->dilations_);
      conv_utl.GetConvFwdSizesInMklOrder(
          src_tf_shape, filter_tf_shape, &fwd_src_dims, &fwd_filter_dims,
          &strides, &dilations, &fwd_output_dims_tf_order, &fwd_output_dims,
          &padding_left, &padding_right);
      if (!context->status().ok()) return;

      // Create Convolution forward descriptor since Convolution backward
      // API needs it. For that, we first need to create input, filter
      // and output memory descriptors.
      auto tf_fmt = TFDataFormatToMklDnnDataFormat(this->data_format_);

      // If filter is in MKL layout, then simply grab filter layout;
      // otherwise, construct filter in TF layout.
      // For TF layout, filter is in HWIO format.
      auto fwd_filter_md = filter_mkl_shape.IsMklTensor()
                         ? filter_mkl_shape.GetMklLayout()
                         : memory::desc(fwd_filter_dims, MklDnnType<T>(),
                                        memory::format::hwio);

      conv_utl.GetInputSizeInMklOrder(diff_dst_tf_shape, &diff_dst_dims);
      if (!context->status().ok()) return;
      auto diff_dst_md = diff_dst_mkl_shape.IsMklTensor()
                       ? diff_dst_mkl_shape.GetMklLayout()
                       : memory::desc(diff_dst_dims,
                           MklDnnType<T>(), tf_fmt);

      dilations[kDilationH] -= 1;
      dilations[kDilationW] -= 1;

      MklConv2DBwdInputPrimitive<T> *conv2d_bwd_input = nullptr;
      conv_utl.GetInputSizeInMklOrder(diff_dst_tf_shape, &diff_dst_dims);
      MklConvBwdInputParams convBwdInputDims(fwd_src_dims, fwd_filter_dims,
          diff_dst_dims, strides, dilations, padding_left, padding_right,
          TFPaddingToMklDnnPadding(this->padding_));
      conv2d_bwd_input = MklConv2DBwdInputPrimitiveFactory<T>::Get(
          convBwdInputDims);
      auto bwd_input_pd = conv2d_bwd_input->GetPrimitiveDesc();

      // allocate output tensor
      auto diff_src_pd = bwd_input_pd->diff_src_primitive_desc();
      auto bwd_diff_src_dims = GetOutputDims(fwd_src_dims, fwd_filter_dims);
      auto bwd_diff_src_format = GetOutputFormat(tf_fmt);
      MklDnnShape diff_src_mkl_shape;
      diff_src_mkl_shape.SetMklTensor(true);
      diff_src_mkl_shape.SetMklLayout(&diff_src_pd);
      diff_src_mkl_shape.SetElemType(MklDnnType<T>());
      diff_src_mkl_shape.SetTfLayout(bwd_diff_src_dims.size(),
          bwd_diff_src_dims, bwd_diff_src_format);
      TensorShape diff_src_tf_shape;
      diff_src_tf_shape.AddDim(diff_src_pd.get_size() / sizeof(T));
      AllocateOutputSetMklShape(context, 0, &diff_src_tensor,
          diff_src_tf_shape, diff_src_mkl_shape);

      T *diff_src_data = static_cast<T*>(const_cast<T*>(
          diff_src_tensor->flat<T>().data()));

      // check if filter and diff_dst need reorder
      T* filter_data = nullptr;
      if (fwd_filter_md.data.format !=
          conv2d_bwd_input->GetFilterMemoryFormat()) {
        filter.SetUsrMem(fwd_filter_md, &filter_tensor);
        filter.CheckReorderToOpMem(bwd_input_pd->weights_primitive_desc());
        filter_data = static_cast<T*>(filter.GetOpMem().get_data_handle());
      } else {
        filter_data = static_cast<T*>(const_cast<T*>(
                       filter_tensor.flat<T>().data()));
      }

      T* diff_dst_data = nullptr;
      if (diff_dst_md.data.format !=
          conv2d_bwd_input->GetDiffDstMemoryFormat()) {
        diff_dst.SetUsrMem(diff_dst_md, &diff_dst_tensor);
        diff_dst.CheckReorderToOpMem(bwd_input_pd->diff_dst_primitive_desc());
        diff_dst_data = static_cast<T*>(
                         diff_dst.GetOpMem().get_data_handle());
      } else {
        diff_dst_data = static_cast<T*>(const_cast<T*>(
                         diff_dst_tensor.flat<T>().data()));
      }

      // execute convolution input bwd
      conv2d_bwd_input->Execute(diff_src_data, filter_data, diff_dst_data);
    } catch (mkldnn::error& e) {
      string error_msg = "Status: " + std::to_string(e.status) +
                         ", message: " + string(e.message) + ", in file " +
                         string(__FILE__) + ":" + std::to_string(__LINE__);
      OP_REQUIRES_OK(
          context,
          errors::Aborted("Operation received an exception:", error_msg));
    }
  }

 private:
  const int kInputIndex_Filter = 1, kInputIndex_InputSizes = 0;
  const int kDilationH = 0, kDilationW = 1;
  engine cpu_engine = engine(engine::cpu, 0);

  // Validate input shapes.
  // Function asserts that input shapes are valid.
  void ValidateMklShapes(const MklDnnShape& input_mkl_shape,
                         const MklDnnShape& filter_mkl_shape,
                         const MklDnnShape& obp_mkl_shape) {
    // Tensor that feeds to 'Input' slot of BackpropInput is always just a shape
    // of the Tensor and never an actual tensor. So it will never be in MKL
    // layout.
    CHECK(!input_mkl_shape.IsMklTensor())
        << "Conv2DBackpropInput: input should not be in MKL Layout";
  }

  // Get TensorFlow shape of input tensor.
  TensorShape MakeInputTfShape(OpKernelContext* context,
                               const Tensor& input_tensor) {
    TensorShape input_tf_shape;
    CHECK_EQ(TensorShapeUtils::IsVector(input_tensor.shape()), true);
    CHECK_EQ(
        TensorShapeUtils::MakeShape(input_tensor.vec<int32>(), &input_tf_shape)
            .ok(),
        true);
    return input_tf_shape;
  }

  // Get TensorFlow shape of filter tensor.
  TensorShape MakeFilterTfShape(OpKernelContext* context,
                                const Tensor& filter_tensor) {
    return GetTfShape(context, kInputIndex_Filter);
  }

  // Get the Tensorflow shape of Output (diff_src),
  // which is same as shape of Conv2D 'input'.
  TensorShape GetOutputTfShape(const TensorShape& input_shape,
                               const TensorShape& filter_shape,
                               const TensorShape& outbprop_shape) {
    return input_shape;
  }

  // Get the Tensorflow shape of Output (diff_src),
  // which is same as shape of Conv2D 'input'.
  const memory::dims& GetOutputDims(const memory::dims& fwd_input_dims,
                                    const memory::dims& fwd_filter_dims) {
    return fwd_input_dims;
  }

  // Output layout is Tensorflow's layout in data format order.
  memory::format GetOutputFormat(const memory::format data_format) {
    return data_format;
  }

  // Allocate output tensor.
  void AllocateOutputTensor(
      OpKernelContext* context,
      const convolution_backward_data::primitive_desc& conv_pd,
      const memory::dims& output_dims_mkl_order,
      memory::format output_tf_format, Tensor** output_tensor) {
    CHECK_NOTNULL(output_tensor);

    // Output primitive descriptor for backward data is diff_src.
    auto dst_pd = conv_pd.diff_src_primitive_desc();

    // Allocate shape of Mkl tensor.
    MklDnnShape output_mkl_shape;
    output_mkl_shape.SetMklTensor(true);
    output_mkl_shape.SetMklLayout(&dst_pd);
    output_mkl_shape.SetElemType(MklDnnType<T>());
    output_mkl_shape.SetTfLayout(output_dims_mkl_order.size(),
                                 output_dims_mkl_order, output_tf_format);

    // Allocate shape of TF tensor.
    TensorShape output_tf_shape;
    output_tf_shape.AddDim(dst_pd.get_size() / sizeof(T));

    AllocateOutputSetMklShape(context, 0, output_tensor, output_tf_shape,
                              output_mkl_shape);
  }
};

#endif  // INTEL_MKL_ML

#define REGISTER_MKL_CPU_KERNELS(T)                                 \
  REGISTER_KERNEL_BUILDER(Name("_MklConv2DBackpropInput")           \
                              .Device(DEVICE_CPU)                   \
                              .TypeConstraint<T>("T")               \
                              .Label(mkl_op_registry::kMklOpLabel), \
                          MklConv2DCustomBackpropInputOp<CPUDevice, T>);

TF_CALL_float(REGISTER_MKL_CPU_KERNELS);
#undef REGISTER_MKL_CPU_KERNELS

}  // namespace tensorflow
#endif  // INTEL_MKL