aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/mkl_conv_grad_input_ops.cc
blob: 638ce4c0243538da904f05b3d86565560c418e26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/nn_ops.cc. This opkernel uses MKL library, create MKL
// layout and primitives, use MKL dnn primitives to compute convolution backward
// input

#ifdef INTEL_MKL

#define USE_EIGEN_TENSOR
#define EIGEN_USE_THREADS
#include <algorithm>
#include <vector>
#include "third_party/mkl/include/mkl_dnn.h"
#include "third_party/mkl/include/mkl_dnn_types.h"
#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_slice.h"
#include "tensorflow/core/kernels/conv_grad_ops.h"
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/util/mkl_util.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"
#include "tensorflow/core/util/use_cudnn.h"
#include "tensorflow/core/util/work_sharder.h"

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;

template <typename Device, class T>
class MklConv2DCustomBackpropInputOp : public OpKernel {
 public:
  ~MklConv2DCustomBackpropInputOp() {}
  explicit MklConv2DCustomBackpropInputOp(OpKernelConstruction* context)
      : OpKernel(context) {
    string dataformat;
    OP_REQUIRES_OK(context, context->GetAttr("data_format", &dataformat));
    OP_REQUIRES(context, FormatFromString(dataformat, &data_format),
                errors::InvalidArgument("Invalid data format"));
    OP_REQUIRES_OK(context, context->GetAttr("strides", &strides));
    int stride_n = GetTensorDim(strides, data_format, 'N');
    int stride_c = GetTensorDim(strides, data_format, 'C');
    OP_REQUIRES(
        context, (stride_n == 1 && stride_c == 1),
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));

    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding));
  }

  void Compute(OpKernelContext* context) override {
    MklConvBackInputOpContext mkl_context;
    const Tensor& input = MklGetInput(context, 0);
    const Tensor& filter = MklGetInput(context, 1);

    GetMklShape(context, 1, &(mkl_context.filter_shape));
    bool filter_in_mkl_format = mkl_context.filter_shape.IsMklTensor();

    const Tensor& out_backprop = MklGetInput(context, 2);
    GetMklShape(context, 2, &(mkl_context.outback_shape));
    bool outback_in_mkl_format = mkl_context.outback_shape.IsMklTensor();

    TensorShape input_shape, filter_shape, outback_shape;

    // Generate input shape.
    OP_REQUIRES(
        context, TensorShapeUtils::IsVector(input.shape()),
        errors::InvalidArgument(
            "Conv2DBackpropInput: input_sizes input must be 1-dim, not ",
            input.dims()));
    OP_REQUIRES_OK(
        context, TensorShapeUtils::MakeShape(input.vec<int32>(), &input_shape));

    // Generate shape for filter prop if input is in MKL format.
    if (filter_in_mkl_format) {
      OP_REQUIRES(context, mkl_context.filter_shape.GetDimension() == 4,
                  errors::InvalidArgument(
                      "Conv2DCustomBackpropInput: size must be 4-dim"));

      MklSizesToTFSizes(context, data_format, mkl_context.filter_shape,
                        &filter_shape);
    } else {
      filter_shape = filter.shape();
    }

    // Generate shape for outback prop if input is in MKL format.
    if (outback_in_mkl_format) {
      OP_REQUIRES(context, mkl_context.outback_shape.GetDimension() == 4,
                  errors::InvalidArgument(
                      "Conv2DCustomBackpropInput: size must be 4-dim"));

      MklSizesToTFSizes(context, data_format, mkl_context.outback_shape,
                        &outback_shape);
    } else {
      outback_shape = out_backprop.shape();
    }

    ConvBackpropDimensions dims;
    OP_REQUIRES_OK(
        context,
        ConvBackpropComputeDimensions(
            "Conv2DCustomBackpropInput", /*num_spatial_dims=*/2, input_shape,
            filter_shape, outback_shape, strides, padding, data_format, &dims));

    int64 pad_top, pad_bottom;
    int64 pad_left, pad_right;
    OP_REQUIRES_OK(
        context,
        GetWindowedOutputSizeVerbose(
            dims.spatial_dims[0].input_size, dims.spatial_dims[0].filter_size,
            dims.spatial_dims[0].stride, padding,
            &dims.spatial_dims[0].output_size, &pad_top, &pad_bottom));
    OP_REQUIRES_OK(
        context,
        GetWindowedOutputSizeVerbose(
            dims.spatial_dims[1].input_size, dims.spatial_dims[1].filter_size,
            dims.spatial_dims[1].stride, padding,
            &dims.spatial_dims[1].output_size, &pad_left, &pad_right));

    mkl_context.in_dims = 4;

    mkl_context.in_sizes[0] =
        static_cast<size_t>(dims.spatial_dims[1].input_size);
    mkl_context.in_sizes[1] =
        static_cast<size_t>(dims.spatial_dims[0].input_size);
    mkl_context.in_sizes[2] = static_cast<size_t>(dims.in_depth);
    mkl_context.in_sizes[3] = static_cast<size_t>(dims.batch_size);

    mkl_context.out_sizes[0] =
        static_cast<size_t>(dims.spatial_dims[1].output_size);
    mkl_context.out_sizes[1] =
        static_cast<size_t>(dims.spatial_dims[0].output_size);
    mkl_context.out_sizes[2] = static_cast<size_t>(dims.out_depth);
    mkl_context.out_sizes[3] = static_cast<size_t>(dims.batch_size);

    mkl_context.input_offset[0] = static_cast<int>(-pad_left);
    mkl_context.input_offset[1] = static_cast<int>(-pad_top);

    mkl_context.conv_strides[0] =
        static_cast<size_t>(dims.spatial_dims[1].stride);
    mkl_context.conv_strides[1] =
        static_cast<size_t>(dims.spatial_dims[0].stride);

    GetStridesFromSizes(data_format, mkl_context.out_strides,
                        mkl_context.out_sizes);
    GetStridesFromSizes(data_format, mkl_context.in_strides,
                        mkl_context.in_sizes);

    mkl_context.filter_size[0] = dims.spatial_dims[1].filter_size;
    mkl_context.filter_size[1] = dims.spatial_dims[0].filter_size;
    mkl_context.filter_size[2] = dims.in_depth;
    mkl_context.filter_size[3] = dims.out_depth;

    mkl_context.filter_stride[0] =
        mkl_context.filter_size[2] * mkl_context.filter_size[3];
    mkl_context.filter_stride[1] = mkl_context.filter_size[2] *
                                   mkl_context.filter_size[0] *
                                   mkl_context.filter_size[3];
    mkl_context.filter_stride[2] = mkl_context.filter_size[3];
    mkl_context.filter_stride[3] = 1;

    CHECK_EQ(
        dnnConvolutionCreateBackwardData_F32(
            &mkl_context.prim_bwddata, NULL, dnnAlgorithmConvolutionDirect,
            mkl_context.in_dims, mkl_context.in_sizes, mkl_context.out_sizes,
            mkl_context.filter_size, mkl_context.conv_strides,
            mkl_context.input_offset, dnnBorderZeros),
        E_SUCCESS);

    // Allocate output tensor and shape
    TensorShape mkl_out_shape;
    MklShape mklOutputShape;
    mklOutputShape.SetMklTensor(true);
    mklOutputShape.SetMklLayout(mkl_context.prim_bwddata, dnnResourceDiffSrc);
    mklOutputShape.SetTfLayout(mkl_context.in_dims, mkl_context.in_sizes,
                               mkl_context.in_strides);
    // MKL might change the dimension ordering.
    // Create mapping to recover the original TF dimension order
    mklOutputShape.SetTfDimOrder(mkl_context.in_dims, data_format);

    Tensor* in_backprop = nullptr;
    mkl_out_shape.AddDim(dnnLayoutGetMemorySize_F32(static_cast<dnnLayout_t>(
                             mklOutputShape.GetMklLayout())) /
                         sizeof(T));
    AllocateOutputSetMklShape(context, 0, &in_backprop, mkl_out_shape,
                              mklOutputShape);

    mkl_context.conv_res[dnnResourceDiffSrc] =
        static_cast<void*>(const_cast<T*>(in_backprop->flat<T>().data()));

    mkl_context.MklCreateInputLayouts(context);
    Tensor mkl_tmp_outbackprop_buf_tensor, mkl_tmp_filter_buf_tensor;
    mkl_context.MklPrepareConvolutionInputs(
        context, &mkl_tmp_outbackprop_buf_tensor, &mkl_tmp_filter_buf_tensor);

    CHECK_EQ(dnnExecute_F32(mkl_context.prim_bwddata, mkl_context.conv_res),
             E_SUCCESS);
    mkl_context.MklCleanup();
  }

 private:
  typedef struct {
    int in_dims;
    size_t in_sizes[4];
    size_t in_strides[4];
    size_t out_sizes[4];
    size_t out_strides[4];
    int input_offset[2];
    size_t filter_size[4];
    size_t filter_stride[4];
    size_t conv_strides[2];
    MklShape filter_shape, outback_shape;
    dnnPrimitive_t prim_bwddata;
    void* conv_res[dnnResourceNumber];
    dnnLayout_t lt_filter, lt_outbackprop;

    // Create MKL dnnLayout_t objects for tensors coming into the layer
    void MklCreateInputLayouts(OpKernelContext* context) {
      bool filter_in_mkl_format = filter_shape.IsMklTensor();
      bool outback_in_mkl_format = outback_shape.IsMklTensor();
      if (filter_in_mkl_format) {
        lt_filter = (dnnLayout_t)filter_shape.GetCurLayout();
      } else {
        CHECK_EQ(dnnLayoutCreate_F32(&lt_filter, in_dims, filter_size,
                                     filter_stride),
                 E_SUCCESS);
      }

      if (outback_in_mkl_format) {
        lt_outbackprop = (dnnLayout_t)outback_shape.GetCurLayout();
      } else {
        CHECK_EQ(dnnLayoutCreate_F32(&lt_outbackprop, in_dims, out_sizes,
                                     out_strides),
                 E_SUCCESS);
      }
    }

    // Compare incoming input tensor layouts with MKL preferred layouts and
    // convert data to the preferred layout if necessary
    void MklPrepareConvolutionInputs(OpKernelContext* context,
                                     Tensor* mkl_tmp_outbackprop_buf_tensor,
                                     Tensor* mkl_tmp_filter_buf_tensor) {
      dnnPrimitive_t mkl_convert_filter = nullptr,
                     mkl_convert_outbackprop = nullptr;
      void *mkl_filter_buf = nullptr, *mkl_outbackprop_buf = nullptr;
      dnnLayout_t mkl_lt_filter_internal = nullptr,
                  mkl_lt_outbackprop_internal = nullptr;
      CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(
                   &mkl_lt_filter_internal, prim_bwddata, dnnResourceFilter),
               E_SUCCESS);

      const Tensor& filter = MklGetInput(context, 1);

      CHECK_EQ(
          dnnLayoutCreateFromPrimitive_F32(&mkl_lt_outbackprop_internal,
                                           prim_bwddata, dnnResourceDiffDst),
          E_SUCCESS);
      if (!dnnLayoutCompare_F32(mkl_lt_filter_internal, lt_filter)) {
        // Create conversion primitive
        CHECK_EQ(dnnConversionCreate_F32(&mkl_convert_filter, lt_filter,
                                         mkl_lt_filter_internal),
                 E_SUCCESS);

        AllocTmpBuffer(context, mkl_tmp_filter_buf_tensor,
                       mkl_lt_filter_internal, &mkl_filter_buf);
        CHECK_EQ(
            dnnConversionExecute_F32(
                mkl_convert_filter,
                static_cast<void*>(const_cast<T*>(filter.flat<T>().data())),
                mkl_filter_buf),
            E_SUCCESS);

        // Assign filter buf to resources[] for convolution.
        conv_res[dnnResourceFilter] = mkl_filter_buf;
        dnnDelete_F32(mkl_convert_filter);
      } else {
        // If we do not need any layout conversion for filter, then
        // we direclty assign input filter to resources[].
        conv_res[dnnResourceFilter] =
            static_cast<void*>(const_cast<T*>(filter.flat<T>().data()));
      }
      dnnLayoutDelete_F32(mkl_lt_filter_internal);
      const Tensor& out_backprop = MklGetInput(context, 2);
      // --
      // We do similar steps as above for outputbackprop.
      if (!dnnLayoutCompare_F32(mkl_lt_outbackprop_internal, lt_outbackprop)) {
        CHECK_EQ(
            dnnConversionCreate_F32(&mkl_convert_outbackprop, lt_outbackprop,
                                    mkl_lt_outbackprop_internal),
            E_SUCCESS);
        AllocTmpBuffer(context, mkl_tmp_outbackprop_buf_tensor,
                       mkl_lt_outbackprop_internal, &mkl_outbackprop_buf);

        CHECK_EQ(dnnConversionExecute_F32(mkl_convert_outbackprop,
                                          static_cast<void*>(const_cast<T*>(
                                              out_backprop.flat<T>().data())),
                                          mkl_outbackprop_buf),
                 E_SUCCESS);

        conv_res[dnnResourceDiffDst] = mkl_outbackprop_buf;
        dnnDelete_F32(mkl_convert_outbackprop);
      } else {
        conv_res[dnnResourceDiffDst] =
            static_cast<void*>(const_cast<T*>(out_backprop.flat<T>().data()));
      }
      dnnLayoutDelete_F32(mkl_lt_outbackprop_internal);
    }

    // Cleanup member layouts and primitives
    void MklCleanup() {
      bool filter_in_mkl_format = filter_shape.IsMklTensor();
      bool outback_in_mkl_format = outback_shape.IsMklTensor();
      if (!filter_in_mkl_format) dnnLayoutDelete_F32(lt_filter);
      if (!outback_in_mkl_format) dnnLayoutDelete_F32(lt_outbackprop);
      dnnDelete_F32(prim_bwddata);
    }
  } MklConvBackInputOpContext;

  std::vector<int32> strides;
  Padding padding;
  TensorFormat data_format;
};

#define REGISTER_MKL_CPU_KERNELS(T)                                 \
  REGISTER_KERNEL_BUILDER(Name("_MklConv2DBackpropInput")            \
                              .Device(DEVICE_CPU)                   \
                              .TypeConstraint<T>("T")               \
                              .Label(mkl_op_registry::kMklOpLabel), \
                          MklConv2DCustomBackpropInputOp<CPUDevice, T>);

TF_CALL_float(REGISTER_MKL_CPU_KERNELS);
#undef REGISTER_MKL_CPU_KERNELS

}  // namespace tensorflow
#endif  // INTEL_MKL