aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/mkl_conv_grad_filter_ops.cc
blob: 85198d89f568d8522b7b11b8258b1bffc459f175 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/nn_ops.cc.

#ifdef INTEL_MKL

#include <algorithm>
#include <vector>

#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_slice.h"
#include "tensorflow/core/kernels/conv_grad_ops.h"
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"
#include "tensorflow/core/util/use_cudnn.h"
#include "tensorflow/core/util/work_sharder.h"

#include "third_party/mkl/include/mkl_dnn.h"
#include "third_party/mkl/include/mkl_dnn_types.h"
#include "tensorflow/core/util/mkl_util.h"

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;

template <typename Device, class T>
class MklConv2DCustomBackpropFilterOp : public OpKernel {
 public:
  explicit MklConv2DCustomBackpropFilterOp(OpKernelConstruction* context)
      : OpKernel(context) {
    string data_format;
    OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
    OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                errors::InvalidArgument("Invalid data format"));

    OP_REQUIRES_OK(context, context->GetAttr("strides", &strides_));
    int stride_n = GetTensorDim(strides_, data_format_, 'N');
    int stride_c = GetTensorDim(strides_, data_format_, 'C');
    OP_REQUIRES(
        context, (stride_n == 1 && stride_c == 1),
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));
    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
  }

  void Compute(OpKernelContext* context) override {
    MklConv2DGradFilterOpContext mkl_context;
    const Tensor& input = MklGetInput(context, 0);
    GetMklShape(context, 0, &(mkl_context.input_shape));
    bool input_in_mkl_format = mkl_context.input_shape.IsMklTensor();

    const Tensor& filter_sizes = MklGetInput(context, 1);

    const Tensor& out_backprop = MklGetInput(context, 2);
    GetMklShape(context, 2, &(mkl_context.out_backprop_shape));
    bool out_backprop_in_mkl_format =
        mkl_context.out_backprop_shape.IsMklTensor();

    TensorShape input_shape, filter_shape, out_backprop_shape;

    OP_REQUIRES(
        context, TensorShapeUtils::IsVector(filter_sizes.shape()),
        errors::InvalidArgument(
            "Conv2DCustomBackpropFilter: filter_sizes input must be 1-dim, "
            "not ",
            filter_sizes.dims()));
    OP_REQUIRES_OK(context, TensorShapeUtils::MakeShape(
                                filter_sizes.vec<int32>(), &filter_shape));

    ConvBackpropDimensions backprop_dims;

    // Generate shape for input if input is in MKL format.
    if (input_in_mkl_format) {
      OP_REQUIRES(context, mkl_context.input_shape.GetDimension() == 4,
                  errors::InvalidArgument(
                      "Conv2DCustomBackpropFilter: input size must be 4-dim"));

      MklSizesToTFSizes(context, data_format_, mkl_context.input_shape,
                        &input_shape);
    } else {
      input_shape = input.shape();
    }

    // Generate shape for outback prop if input is in MKL format.
    if (out_backprop_in_mkl_format) {
      OP_REQUIRES(
          context, mkl_context.out_backprop_shape.GetDimension() == 4,
          errors::InvalidArgument(
              "Conv2DCustomBackpropFilter: outbackprop size must be 4-dim"));

      MklSizesToTFSizes(context, data_format_, mkl_context.out_backprop_shape,
                        &out_backprop_shape);
    } else {
      out_backprop_shape = out_backprop.shape();
    }

    OP_REQUIRES_OK(context,
                   ConvBackpropComputeDimensions(
                       "Conv2DCustomBackpropFilter", /*num_spatial_dims=*/2,
                       input_shape, filter_shape, out_backprop_shape, strides_,
                       padding_, data_format_, &backprop_dims));

    int64 pad_top, pad_bottom;
    int64 pad_left, pad_right;
    OP_REQUIRES_OK(context, GetWindowedOutputSizeVerbose(
                                backprop_dims.spatial_dims[0].input_size,
                                backprop_dims.spatial_dims[0].filter_size,
                                backprop_dims.spatial_dims[0].stride, padding_,
                                &backprop_dims.spatial_dims[0].output_size,
                                &pad_top, &pad_bottom));
    OP_REQUIRES_OK(context, GetWindowedOutputSizeVerbose(
                                backprop_dims.spatial_dims[1].input_size,
                                backprop_dims.spatial_dims[1].filter_size,
                                backprop_dims.spatial_dims[1].stride, padding_,
                                &backprop_dims.spatial_dims[1].output_size,
                                &pad_left, &pad_right));

    // Create MKL primitives for convolution filter grad
    mkl_context.in_dims = input_in_mkl_format
                              ? mkl_context.input_shape.GetDimension()
                              : input.dims();
    mkl_context.out_dims = out_backprop_in_mkl_format
                               ? mkl_context.out_backprop_shape.GetDimension()
                               : out_backprop.dims();
    mkl_context.in_sizes[0] =
        static_cast<size_t>(backprop_dims.spatial_dims[1].input_size);
    mkl_context.in_sizes[1] =
        static_cast<size_t>(backprop_dims.spatial_dims[0].input_size);
    mkl_context.in_sizes[2] = static_cast<size_t>(backprop_dims.in_depth);
    mkl_context.in_sizes[3] = static_cast<size_t>(backprop_dims.batch_size);
    mkl_context.out_sizes[0] =
        static_cast<size_t>(backprop_dims.spatial_dims[1].output_size);
    mkl_context.out_sizes[1] =
        static_cast<size_t>(backprop_dims.spatial_dims[0].output_size);
    mkl_context.out_sizes[2] = static_cast<size_t>(backprop_dims.out_depth);
    mkl_context.out_sizes[3] = static_cast<size_t>(backprop_dims.batch_size);
    mkl_context.input_offsets[0] = static_cast<int>(-pad_left);
    mkl_context.input_offsets[1] = static_cast<int>(-pad_top);
    mkl_context.conv_strides[0] =
        static_cast<size_t>(backprop_dims.spatial_dims[1].stride);
    mkl_context.conv_strides[1] =
        static_cast<size_t>(backprop_dims.spatial_dims[0].stride);

    GetStridesFromSizes(data_format_, mkl_context.in_strides,
                        mkl_context.in_sizes);
    GetStridesFromSizes(data_format_, mkl_context.out_strides,
                        mkl_context.out_sizes);

    // MKL understands dimensions in 0, 1, 2, and 3 indices denotes
    // filter cols, rows, input channels, and output depth/channels.
    mkl_context.filter_dims = 4;
    mkl_context.filter_sizes[0] = backprop_dims.spatial_dims[1].filter_size;
    mkl_context.filter_sizes[1] = backprop_dims.spatial_dims[0].filter_size;
    mkl_context.filter_sizes[2] = backprop_dims.in_depth;
    mkl_context.filter_sizes[3] = backprop_dims.out_depth;

    // We want filter grad to be in TF format, so
    // make the strides accordingly to reflect this fact.
    // Note TF filter layout : (rows, cols, in_depth, out_depth),
    // while row is the innermost dimension.
    mkl_context.filter_strides[0] =
        backprop_dims.out_depth * backprop_dims.in_depth;
    mkl_context.filter_strides[1] = backprop_dims.out_depth *
                                    backprop_dims.in_depth *
                                    backprop_dims.spatial_dims[1].filter_size;
    mkl_context.filter_strides[2] = backprop_dims.out_depth;
    mkl_context.filter_strides[3] = 1;

    mkl_context.conv_strides[0] = backprop_dims.spatial_dims[1].stride;
    mkl_context.conv_strides[1] = backprop_dims.spatial_dims[0].stride;

    // Create convolution-grad-filter primitive
    CHECK_EQ(dnnConvolutionCreateBackwardFilter_F32(
                 &mkl_context.prim_conv_bwdfilter, nullptr,
                 dnnAlgorithmConvolutionDirect, mkl_context.in_dims,
                 mkl_context.in_sizes, mkl_context.out_sizes,
                 mkl_context.filter_sizes, mkl_context.conv_strides,
                 mkl_context.input_offsets, dnnBorderZeros),
             E_SUCCESS);

    // Create the layouts for entities in received context.
    mkl_context.MklCreateInputLayouts(context);

    // Mkl needs the entities in its native format.
    // So create temporary tensors along with buffers to
    // convert the received entities.
    Tensor mkl_tmp_input_buf_tensor, mkl_tmp_out_backprop_buf_tensor;
    // This preparation sets (1) dnnResourceSrc (2) dnnResourceDiffDst
    mkl_context.MklPrepareInputs(context, &mkl_tmp_input_buf_tensor,
                                 &mkl_tmp_out_backprop_buf_tensor);

    // Final conv-grad-filter should be in TF layout.
    Tensor* grad_filter;
    mkl_context.grad_filter_shape.SetMklTensor(false);
    mkl_context.grad_filter_shape.SetTfLayout(mkl_context.filter_dims,
                                              mkl_context.filter_sizes,
                                              mkl_context.filter_strides);
    AllocateOutputSetMklshape(context, 0, &grad_filter, filter_shape,
                              mkl_context.grad_filter_shape);

    // Need to set member variable for TF layout
    mkl_context.lt_grad_filter = mkl_context.grad_filter_shape.GetTfLayout();

    // MKL conv-grad-filter might produce grad in its internal layout
    Tensor mkl_tmp_grad_filter_buf_tensor;
    // This preparation sets conversion primitive if required
    // and allocates temporary tensor and its buffer without doing conversions.
    // Also sets (3) dnnResourceDiffFilter accordingly
    mkl_context.MklPrepareGradFilter(context, grad_filter,
                                     &mkl_tmp_grad_filter_buf_tensor);

    // After setting all the required dnnResources, ready for execution!
    CHECK_EQ(
        dnnExecute_F32(mkl_context.prim_conv_bwdfilter, mkl_context.conv_res),
        E_SUCCESS);

    // Convert grad-filter to TF layout
    if (mkl_context.convert_bwdfilter != nullptr) {
      void* mkl_buf_convert_grad_filter =
          const_cast<void*>(static_cast<const void*>(
              mkl_tmp_grad_filter_buf_tensor.flat<T>().data()));
      void* mkl_buf_grad_filter = const_cast<void*>(
          static_cast<const void*>(grad_filter->flat<T>().data()));
      CHECK_EQ(dnnConversionExecute_F32(mkl_context.convert_bwdfilter,
                                        mkl_buf_convert_grad_filter,
                                        mkl_buf_grad_filter),
               E_SUCCESS);
    }

    mkl_context.MklCleanup();
  }

 private:
  typedef struct {
    int in_dims;
    size_t in_sizes[4];
    size_t in_strides[4];
    int out_dims;
    size_t out_sizes[4];
    size_t out_strides[4];
    int filter_dims;
    size_t filter_sizes[4];
    size_t filter_strides[4];
    int input_offsets[2];
    size_t conv_strides[2];
    MklShape input_shape, grad_filter_shape, out_backprop_shape;
    dnnPrimitive_t prim_conv_bwdfilter, convert_bwdfilter;
    dnnLayout_t lt_input, lt_grad_filter, lt_out_backprop;
    void* conv_res[dnnResourceNumber];

    void MklCleanup() {
      // Cleanup member layouts and primitives except "lt_grad_filter_"
      // which points to MklShape's TFLayout
      bool input_in_mkl_format = input_shape.IsMklTensor();
      bool out_backprop_in_mkl_format = out_backprop_shape.IsMklTensor();
      if (!input_in_mkl_format) dnnLayoutDelete_F32(lt_input);
      if (!out_backprop_in_mkl_format) dnnLayoutDelete_F32(lt_out_backprop);
      if (convert_bwdfilter != nullptr) dnnDelete_F32(convert_bwdfilter);
      dnnDelete_F32(prim_conv_bwdfilter);
    }

    // Create MKL dnnLayout_t objects for tensors coming into the layer
    void MklCreateInputLayouts(OpKernelContext* context) {
      bool input_in_mkl_format = input_shape.IsMklTensor();
      if (input_in_mkl_format) {
        lt_input = static_cast<dnnLayout_t>(input_shape.GetCurLayout());
      } else {
        CHECK_EQ(dnnLayoutCreate_F32(&lt_input, in_dims, in_sizes, in_strides),
                 E_SUCCESS);
      }

      bool out_backprop_in_mkl_format = out_backprop_shape.IsMklTensor();
      if (out_backprop_in_mkl_format) {
        lt_out_backprop =
            static_cast<dnnLayout_t>(out_backprop_shape.GetCurLayout());
      } else {
        CHECK_EQ(dnnLayoutCreate_F32(&lt_out_backprop, out_dims, out_sizes,
                                     out_strides),
                 E_SUCCESS);
      }
    }

    // Compare incoming tensor layouts with MKL preferred layouts and convert
    // data to the preferred layout if necessary
    void MklPrepareInputs(OpKernelContext* context,
                          Tensor* mkl_tmp_input_buf_tensor,
                          Tensor* mkl_tmp_out_backprop_buf_tensor) {
      bool mkl_convert_input, mkl_convert_out_backprop;
      dnnPrimitive_t mkl_prim_convert_input, mkl_prim_convert_out_backprop;
      dnnLayout_t mkl_lt_internal_input, mkl_lt_internal_out_backprop;
      void *mkl_buf_convert_input, *mkl_buf_convert_out_backprop;

      mkl_prim_convert_input = nullptr;
      mkl_prim_convert_out_backprop = nullptr;
      mkl_lt_internal_input = nullptr;
      mkl_lt_internal_out_backprop = nullptr;
      mkl_buf_convert_input = nullptr;
      mkl_buf_convert_out_backprop = nullptr;

      // Compare with internal layouts and convert if needed
      const Tensor& input = MklGetInput(context, 0);
      void* mkl_buf_input =
          const_cast<void*>(static_cast<const void*>(input.flat<T>().data()));
      CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(
                   &mkl_lt_internal_input, prim_conv_bwdfilter, dnnResourceSrc),
               E_SUCCESS);
      mkl_convert_input =
          !dnnLayoutCompare_F32(mkl_lt_internal_input, lt_input);
      if (mkl_convert_input) {
        CHECK_EQ(dnnConversionCreate_F32(&mkl_prim_convert_input, lt_input,
                                         mkl_lt_internal_input),
                 E_SUCCESS);
        AllocTmpBuffer(context, mkl_tmp_input_buf_tensor, mkl_lt_internal_input,
                       &mkl_buf_convert_input);
        CHECK_EQ(dnnConversionExecute_F32(mkl_prim_convert_input, mkl_buf_input,
                                          mkl_buf_convert_input),
                 E_SUCCESS);
        dnnDelete_F32(mkl_prim_convert_input);
      }
      dnnLayoutDelete_F32(mkl_lt_internal_input);

      conv_res[dnnResourceSrc] =
          (mkl_convert_input) ? mkl_buf_convert_input : mkl_buf_input;

      const Tensor& out_backprop = MklGetInput(context, 2);
      void* mkl_buf_out_backprop = const_cast<void*>(
          static_cast<const void*>(out_backprop.flat<T>().data()));
      CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(&mkl_lt_internal_out_backprop,
                                                prim_conv_bwdfilter,
                                                dnnResourceDiffDst),
               E_SUCCESS);
      mkl_convert_out_backprop =
          !dnnLayoutCompare_F32(mkl_lt_internal_out_backprop, lt_out_backprop);
      if (mkl_convert_out_backprop) {
        CHECK_EQ(dnnConversionCreate_F32(&mkl_prim_convert_out_backprop,
                                         lt_out_backprop,
                                         mkl_lt_internal_out_backprop),
                 E_SUCCESS);
        AllocTmpBuffer(context, mkl_tmp_out_backprop_buf_tensor,
                       lt_out_backprop, &mkl_buf_convert_out_backprop);
        CHECK_EQ(dnnConversionExecute_F32(mkl_prim_convert_out_backprop,
                                          mkl_buf_out_backprop,
                                          mkl_buf_convert_out_backprop),
                 E_SUCCESS);
        dnnDelete_F32(mkl_prim_convert_out_backprop);
      }
      dnnLayoutDelete_F32(mkl_lt_internal_out_backprop);

      conv_res[dnnResourceDiffDst] = (mkl_convert_out_backprop)
                                         ? mkl_buf_convert_out_backprop
                                         : mkl_buf_out_backprop;
    }

    void MklPrepareGradFilter(OpKernelContext* context, Tensor* grad_filter,
                              Tensor* mkl_tmp_grad_filter_buf_tensor) {
      bool mkl_convert_grad_filter;
      dnnLayout_t mkl_lt_internal_grad_filter = nullptr;
      void* mkl_buf_convert_grad_filter = nullptr;
      void* mkl_buf_grad_filter = const_cast<void*>(
          static_cast<const void*>(grad_filter->flat<T>().data()));
      CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(&mkl_lt_internal_grad_filter,
                                                prim_conv_bwdfilter,
                                                dnnResourceDiffFilter),
               E_SUCCESS);
      mkl_convert_grad_filter =
          !dnnLayoutCompare_F32(mkl_lt_internal_grad_filter, lt_grad_filter);
      if (mkl_convert_grad_filter) {
        CHECK_EQ(dnnConversionCreate_F32(&convert_bwdfilter,
                                         mkl_lt_internal_grad_filter,
                                         lt_grad_filter),
                 E_SUCCESS);
        AllocTmpBuffer(context, mkl_tmp_grad_filter_buf_tensor,
                       mkl_lt_internal_grad_filter,
                       &mkl_buf_convert_grad_filter);
      }
      dnnLayoutDelete_F32(mkl_lt_internal_grad_filter);

      conv_res[dnnResourceDiffFilter] = (mkl_convert_grad_filter)
                                            ? mkl_buf_convert_grad_filter
                                            : mkl_buf_grad_filter;
    }
  } MklConv2DGradFilterOpContext;

  std::vector<int32> strides_;
  Padding padding_;
  TensorFormat data_format_;
};

#define REGISTER_MKL_FILTER_KERNELS(T)                                    \
  REGISTER_KERNEL_BUILDER(Name("MklConv2DBackpropFilter")                 \
                              .Device(DEVICE_CPU)                         \
                              .TypeConstraint<T>("T")                     \
                              .Label(mkl_layer_registry::kMklLayerLabel), \
                          MklConv2DCustomBackpropFilterOp<CPUDevice, T>);

TF_CALL_float(REGISTER_MKL_FILTER_KERNELS);
#undef REGISTER_MKL_FILTER_KERNELS
}  // namespace tensorflow

#endif  // INTEL_MKL