aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/map_stage_op.cc
blob: dd89597369bce0dcfd8ae8ad7e2bfc47d8ae2817 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <cstddef>
#include <functional>
#include <map>
#include <mutex>
#include <numeric>
#include <unordered_map>
#include <vector>

#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/resource_mgr.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/lib/gtl/optional.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/thread_annotations.h"

namespace tensorflow {
namespace {

// Partial Ordering Comparator for Tensor keys containing scalar int64's
struct KeyTensorLess {
  bool operator()(const Tensor& lhs, const Tensor& rhs) const {
    return std::less<int64>{}(lhs.scalar<int64>()(), rhs.scalar<int64>()());
  }
};

// Key Equality operator for Tensor keys containing scalar int64's
struct KeyTensorEqual {
  bool operator()(const Tensor& lhs, const Tensor& rhs) const {
    return std::equal_to<int64>{}(lhs.scalar<int64>()(), rhs.scalar<int64>()());
  }
};

// Hash for Tensor keys containing scalar int64's
struct KeyTensorHash {
  std::size_t operator()(const Tensor& key) const {
    return std::hash<int64>{}(key.scalar<int64>()());
  }
};

// Primary template.
template <bool Ordered, typename Data>
struct MapTraits;

// Partial specialization for ordered.
template <typename Data>
struct MapTraits<true, Data> {
  using KeyType = Tensor;
  using DataType = Data;
  using MapType = std::map<KeyType, Data, KeyTensorLess>;
};

// Partial specialization for unordered.
template <typename Data>
struct MapTraits<false, Data> {
  using KeyType = Tensor;
  using DataType = Data;
  using MapType =
      std::unordered_map<KeyType, Data, KeyTensorHash, KeyTensorEqual>;
};

// Wrapper around map/unordered_map.
template <bool Ordered>
class StagingMap : public ResourceBase {
 public:
  // Public typedefs
  using Tuple = std::vector<Tensor>;
  using OptionalTensor = gtl::optional<Tensor>;
  using OptionalTuple = std::vector<OptionalTensor>;

  using MapType = typename MapTraits<Ordered, OptionalTuple>::MapType;
  using KeyType = typename MapTraits<Ordered, OptionalTuple>::KeyType;

  using IncompleteType = typename MapTraits<false, OptionalTuple>::MapType;

 private:
  // Private variables
  DataTypeVector dtypes_ GUARDED_BY(mu_);
  std::size_t capacity_ GUARDED_BY(mu_);
  std::size_t memory_limit_ GUARDED_BY(mu_);
  std::size_t current_bytes_ GUARDED_BY(mu_);
  tensorflow::mutex mu_;
  tensorflow::condition_variable not_empty_;
  tensorflow::condition_variable full_;
  IncompleteType incomplete_ GUARDED_BY(mu_);
  MapType map_ GUARDED_BY(mu_);

 private:
  // private methods

  // If map is configured for bounded capacity, notify
  // waiting inserters that space is now available
  void notify_inserters_if_bounded() EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    if (has_capacity() || has_memory_limit()) {
      // Notify all inserters. The removal of an element
      // may make memory available for many inserters
      // to insert new elements
      full_.notify_all();
    }
  }

  // Notify all removers waiting to extract values
  // that data is now available
  void notify_removers() {
    // Notify all removers. This is because they are
    // waiting for specific keys to appear in the map
    // so we don't know which one to wake up.
    not_empty_.notify_all();
  }

  bool has_capacity() const EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    return capacity_ > 0;
  }

  bool has_memory_limit() const EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    return memory_limit_ > 0;
  }

  bool would_exceed_memory_limit(std::size_t bytes) const
      EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    return has_memory_limit() && bytes + current_bytes_ > memory_limit_;
  }

  bool is_capacity_full() const EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    return has_capacity() && map_.size() >= capacity_;
  }

  // Get number of bytes in the tuple
  std::size_t get_tuple_bytes(const Tuple& tuple) {
    return std::accumulate(tuple.begin(), tuple.end(),
                           static_cast<std::size_t>(0),
                           [](const std::size_t& lhs, const Tensor& rhs) {
                             return lhs + rhs.TotalBytes();
                           });
  }

  // Get number of bytes in the incomplete tuple
  std::size_t get_tuple_bytes(const OptionalTuple& tuple) {
    return std::accumulate(
        tuple.begin(), tuple.end(), static_cast<std::size_t>(0),
        [](const std::size_t& lhs, const OptionalTensor& rhs) {
          return (lhs + rhs.has_value()) ? rhs.value().TotalBytes() : 0;
        });
  }

  // Check that the index is within bounds
  Status check_index(const Tensor& key, std::size_t index)
      EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    if (index >= dtypes_.size()) {
      return Status(errors::InvalidArgument(
          "Index '", index, "' for key '", key.scalar<int64>()(),
          "' was out of bounds '", dtypes_.size(), "'."));
    }

    return Status::OK();
  }

  Status copy_or_move_tensors(OptionalTuple* map_tuple, const Tensor& key,
                              const Tensor& indices, Tuple* output,
                              bool copy = false) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    auto findices = indices.flat<int>();

    // Return values at specified indices
    for (std::size_t i = 0; i < findices.dimension(0); ++i) {
      std::size_t index = findices(i);

      TF_RETURN_IF_ERROR(check_index(key, index));

      // Insist on a value present at the specified index
      if (!(*map_tuple)[index].has_value()) {
        return Status(errors::InvalidArgument(
            "Tensor at index '", index, "' for key '", key.scalar<int64>()(),
            "' has already been removed."));
      }

      // Copy the contained tensor and
      // remove from the OptionalTuple
      output->push_back((*map_tuple)[index].value());

      // Clear out the entry if we're not copying (moving)
      if (!copy) {
        (*map_tuple)[index].reset();
      }
    }

    return Status::OK();
  }

  // Check that the optional value at the specified index
  // is uninitialized
  Status check_index_uninitialized(const Tensor& key, std::size_t index,
                                   const OptionalTuple& tuple)
      EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    if (tuple[index].has_value()) {
      return Status(errors::InvalidArgument(
          "The tensor for index '", index, "' for key '", key.scalar<int64>()(),
          "' was already initialized '", dtypes_.size(), "'."));
    }

    return Status::OK();
  }

  // Check that the indices are strictly ordered
  Status check_index_ordering(const Tensor& indices) {
    auto findices = indices.flat<int>();

    for (std::size_t i = 0; i < findices.dimension(0) - 1; ++i) {
      if (findices(i) < findices(i + 1)) {
        continue;
      }

      return Status(
          errors::InvalidArgument("Indices are not strictly ordered"));
    }

    return Status::OK();
  }

  // Check bytes are within memory limits memory limits
  Status check_memory_limit(std::size_t bytes) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    if (has_memory_limit() && bytes > memory_limit_) {
      return Status(errors::ResourceExhausted(
          "Attempted to insert tensors with combined size of '", bytes,
          "' bytes into Staging Area with a memory limit of '", memory_limit_,
          "'."));
    }

    return Status::OK();
  }

  // Insert incomplete data into the Barrier
  Status put_incomplete(const KeyType& key, const Tensor& indices,
                        OptionalTuple* tuple, tensorflow::mutex_lock* lock)
      EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    auto findices = indices.flat<int>();

    // Search for the key in our incomplete set
    auto it = incomplete_.find(key);

    // Check that the tuple fits within the memory limit
    std::size_t tuple_bytes = get_tuple_bytes(*tuple);
    TF_RETURN_IF_ERROR(check_memory_limit(tuple_bytes));

    // Wait until we don't exceed the memory limit
    while (would_exceed_memory_limit(tuple_bytes)) {
      full_.wait(*lock);
    }

    // This key isn't present in the incomplete set
    // Create OptionalTuple and insert
    if (it == incomplete_.end()) {
      OptionalTuple empty(dtypes_.size());

      // Initialize empty tuple with given dta
      for (std::size_t i = 0; i < findices.dimension(0); ++i) {
        std::size_t index = findices(i);
        TF_RETURN_IF_ERROR(check_index(key, index));

        // Assign tuple at this index
        empty[index] = std::move((*tuple)[i]);
      }

      // Insert into incomplete map
      incomplete_.insert({key, std::move(empty)});

      // Increment size
      current_bytes_ += tuple_bytes;
    }
    // Found an entry in the incomplete index
    // Update with given data and insert complete entries
    // into the main map
    else {
      // Reference existing incomplete tuple
      OptionalTuple& present = it->second;

      // Assign given data
      for (std::size_t i = 0; i < findices.dimension(0); ++i) {
        std::size_t index = findices(i);
        TF_RETURN_IF_ERROR(check_index(key, index));
        TF_RETURN_IF_ERROR(check_index_uninitialized(key, index, present));

        // Assign tuple at this index
        present[index] = std::move((*tuple)[i]);
      }

      // Increment size
      current_bytes_ += tuple_bytes;

      // Do we have values at all tuple elements?
      bool complete =
          std::all_of(present.begin(), present.end(),
                      [](const OptionalTensor& v) { return v.has_value(); });

      // If so, put the tuple in the actual map
      if (complete) {
        OptionalTuple insert_tuple = std::move(it->second);

        // Remove from incomplete
        incomplete_.erase(it);

        TF_RETURN_IF_ERROR(put_complete(key, &insert_tuple));
      }
    }

    return Status::OK();
  }

  // Does the insertion into the actual staging area
  Status put_complete(const KeyType& key, OptionalTuple* tuple)
      EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    // Insert key and tuples into the map
    map_.insert({key, std::move(*tuple)});

    notify_removers();

    return Status::OK();
  }

 public:
  // public methods
  explicit StagingMap(const DataTypeVector& dtypes, std::size_t capacity,
                      std::size_t memory_limit)
      : dtypes_(dtypes),
        capacity_(capacity),
        memory_limit_(memory_limit),
        current_bytes_(0) {}

  Status put(KeyType* key, const Tensor* indices, OptionalTuple* tuple) {
    tensorflow::mutex_lock lock(mu_);

    // Sanity check the indices
    TF_RETURN_IF_ERROR(check_index_ordering(*indices));

    // Handle incomplete inserts
    if (indices->NumElements() != dtypes_.size()) {
      return put_incomplete(*key, *indices, tuple, &lock);
    }

    std::size_t tuple_bytes = get_tuple_bytes(*tuple);
    // Check that tuple_bytes fits within the memory limit
    TF_RETURN_IF_ERROR(check_memory_limit(tuple_bytes));

    // Wait until there's space for insertion.
    while (would_exceed_memory_limit(tuple_bytes) || is_capacity_full()) {
      full_.wait(lock);
    }

    // Do the put operation
    TF_RETURN_IF_ERROR(put_complete(*key, tuple));

    // Update the current size
    current_bytes_ += tuple_bytes;

    return Status::OK();
  }

  Status get(const KeyType* key, const Tensor* indices, Tuple* tuple) {
    tensorflow::mutex_lock lock(mu_);

    // Sanity check the indices
    TF_RETURN_IF_ERROR(check_index_ordering(*indices));

    typename MapType::iterator it;

    // Wait until the element with the requested key is present
    while ((it = map_.find(*key)) == map_.end()) {
      not_empty_.wait(lock);
    }

    TF_RETURN_IF_ERROR(
        copy_or_move_tensors(&it->second, *key, *indices, tuple, true));

    // Update bytes in the Staging Area
    current_bytes_ -= get_tuple_bytes(*tuple);

    return Status::OK();
  }

  Status pop(const KeyType* key, const Tensor* indices, Tuple* tuple) {
    tensorflow::mutex_lock lock(mu_);

    // Sanity check the indices
    TF_RETURN_IF_ERROR(check_index_ordering(*indices));

    typename MapType::iterator it;

    // Wait until the element with the requested key is present
    while ((it = map_.find(*key)) == map_.end()) {
      not_empty_.wait(lock);
    }

    TF_RETURN_IF_ERROR(
        copy_or_move_tensors(&it->second, *key, *indices, tuple));

    // Remove entry if all the values have been consumed
    if (!std::any_of(
            it->second.begin(), it->second.end(),
            [](const OptionalTensor& tensor) { return tensor.has_value(); })) {
      map_.erase(it);
    }

    // Update bytes in the Staging Area
    current_bytes_ -= get_tuple_bytes(*tuple);

    notify_inserters_if_bounded();

    return Status::OK();
  }

  Status popitem(KeyType* key, const Tensor* indices, Tuple* tuple) {
    tensorflow::mutex_lock lock(mu_);

    // Sanity check the indices
    TF_RETURN_IF_ERROR(check_index_ordering(*indices));

    // Wait until map is not empty
    while (this->map_.empty()) {
      not_empty_.wait(lock);
    }

    // Move from the first element and erase it

    auto it = map_.begin();

    TF_RETURN_IF_ERROR(
        copy_or_move_tensors(&it->second, *key, *indices, tuple));

    *key = it->first;

    // Remove entry if all the values have been consumed
    if (!std::any_of(
            it->second.begin(), it->second.end(),
            [](const OptionalTensor& tensor) { return tensor.has_value(); })) {
      map_.erase(it);
    }

    // Update bytes in the Staging Area
    current_bytes_ -= get_tuple_bytes(*tuple);

    notify_inserters_if_bounded();

    return Status::OK();
  }

  Status clear() {
    tensorflow::mutex_lock lock(mu_);
    map_.clear();
    incomplete_.clear();
    current_bytes_ = 0;

    notify_inserters_if_bounded();

    return Status::OK();
  }

  std::size_t incomplete_size() {
    tensorflow::mutex_lock lock(mu_);
    return incomplete_.size();
  }

  std::size_t size() {
    tensorflow::mutex_lock lock(mu_);
    return map_.size();
  }

  string DebugString() override { return "StagingMap"; }
};

template <bool Ordered>
Status GetStagingMap(OpKernelContext* ctx, const NodeDef& ndef,
                     StagingMap<Ordered>** map) {
  auto rm = ctx->resource_manager();
  ContainerInfo cinfo;

  // Lambda for creating the Staging Area
  auto create_fn = [&ndef](StagingMap<Ordered>** ret) -> Status {
    DataTypeVector dtypes;
    int64 capacity;
    int64 memory_limit;
    TF_RETURN_IF_ERROR(GetNodeAttr(ndef, "dtypes", &dtypes));
    TF_RETURN_IF_ERROR(GetNodeAttr(ndef, "capacity", &capacity));
    TF_RETURN_IF_ERROR(GetNodeAttr(ndef, "memory_limit", &memory_limit));
    *ret = new StagingMap<Ordered>(dtypes, capacity, memory_limit);
    return Status::OK();
  };

  TF_RETURN_IF_ERROR(cinfo.Init(rm, ndef, true /* use name() */));
  TF_RETURN_IF_ERROR(rm->LookupOrCreate<StagingMap<Ordered>>(
      cinfo.container(), cinfo.name(), map, create_fn));
  return Status::OK();
}

template <bool Ordered>
class MapStageOp : public OpKernel {
 public:
  explicit MapStageOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    StagingMap<Ordered>* map = nullptr;
    OP_REQUIRES_OK(ctx, GetStagingMap(ctx, def(), &map));
    core::ScopedUnref scope(map);
    typename StagingMap<Ordered>::OptionalTuple tuple;

    const Tensor* key_tensor;
    const Tensor* indices_tensor;
    OpInputList values_tensor;

    OP_REQUIRES_OK(ctx, ctx->input("key", &key_tensor));
    OP_REQUIRES_OK(ctx, ctx->input("indices", &indices_tensor));
    OP_REQUIRES_OK(ctx, ctx->input_list("values", &values_tensor));

    // Create copy for insertion into Staging Area
    Tensor key(*key_tensor);

    // Create the tuple to store
    for (std::size_t i = 0; i < values_tensor.size(); ++i) {
      tuple.push_back(values_tensor[i]);
    }

    // Store the tuple in the map
    OP_REQUIRES_OK(ctx, map->put(&key, indices_tensor, &tuple));
  }
};

REGISTER_KERNEL_BUILDER(Name("MapStage").Device(DEVICE_CPU), MapStageOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapStage").Device(DEVICE_CPU),
                        MapStageOp<true>);

#if GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(
    Name("MapStage").HostMemory("key").HostMemory("indices").Device(DEVICE_GPU),
    MapStageOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapStage")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_GPU),
                        MapStageOp<true>);
#endif  // GOOGLE_CUDA

#ifdef TENSORFLOW_USE_SYCL
REGISTER_KERNEL_BUILDER(Name("MapStage")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_SYCL),
                        MapStageOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapStage")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_SYCL),
                        MapStageOp<true>);
#endif  // TENSORFLOW_USE_SYCL

template <bool Ordered>
class MapUnstageOp : public OpKernel {
 public:
  explicit MapUnstageOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  // Using this op in such a way that it blocks forever
  // is an error.  As such cancellation is not handled.
  void Compute(OpKernelContext* ctx) override {
    StagingMap<Ordered>* map = nullptr;
    OP_REQUIRES_OK(ctx, GetStagingMap(ctx, def(), &map));
    core::ScopedUnref scope(map);
    typename StagingMap<Ordered>::Tuple tuple;

    const Tensor* key_tensor;
    const Tensor* indices_tensor;
    OpInputList values_tensor;

    OP_REQUIRES_OK(ctx, ctx->input("key", &key_tensor));
    OP_REQUIRES_OK(ctx, ctx->input("indices", &indices_tensor));
    OP_REQUIRES_OK(ctx, map->pop(key_tensor, indices_tensor, &tuple));

    OP_REQUIRES(
        ctx, tuple.size() == indices_tensor->NumElements(),
        errors::InvalidArgument("output/indices size mismatch: ", tuple.size(),
                                " vs. ", indices_tensor->NumElements()));

    for (std::size_t i = 0; i < tuple.size(); ++i) {
      ctx->set_output(i, tuple[i]);
    }
  }
};

REGISTER_KERNEL_BUILDER(Name("MapUnstage").Device(DEVICE_CPU),
                        MapUnstageOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapUnstage").Device(DEVICE_CPU),
                        MapUnstageOp<true>);

#if GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(Name("MapUnstage")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_GPU),
                        MapUnstageOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapUnstage")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_GPU),
                        MapUnstageOp<true>);
#endif
#ifdef TENSORFLOW_USE_SYCL
REGISTER_KERNEL_BUILDER(Name("MapUnstage")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_SYCL),
                        MapUnstageOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapUnstage")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_SYCL),
                        MapUnstageOp<true>);
#endif  // TENSORFLOW_USE_SYCL

template <bool Ordered>
class MapPeekOp : public OpKernel {
 public:
  explicit MapPeekOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  // Using this op in such a way that it blocks forever
  // is an error.  As such cancellation is not handled.
  void Compute(OpKernelContext* ctx) override {
    StagingMap<Ordered>* map = nullptr;
    OP_REQUIRES_OK(ctx, GetStagingMap(ctx, def(), &map));
    core::ScopedUnref scope(map);
    typename StagingMap<Ordered>::Tuple tuple;

    const Tensor* key_tensor;
    const Tensor* indices_tensor;
    OpInputList values_tensor;

    OP_REQUIRES_OK(ctx, ctx->input("key", &key_tensor));
    OP_REQUIRES_OK(ctx, ctx->input("indices", &indices_tensor));
    OP_REQUIRES_OK(ctx, map->get(key_tensor, indices_tensor, &tuple));

    OP_REQUIRES(
        ctx, tuple.size() == indices_tensor->NumElements(),
        errors::InvalidArgument("output/indices size mismatch: ", tuple.size(),
                                " vs. ", indices_tensor->NumElements()));

    for (std::size_t i = 0; i < tuple.size(); ++i) {
      ctx->set_output(i, tuple[i]);
    }
  }
};

REGISTER_KERNEL_BUILDER(Name("MapPeek").Device(DEVICE_CPU), MapPeekOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapPeek").Device(DEVICE_CPU),
                        MapPeekOp<true>);

#if GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(
    Name("MapPeek").HostMemory("key").HostMemory("indices").Device(DEVICE_GPU),
    MapPeekOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapPeek")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_GPU),
                        MapPeekOp<true>);
#endif

#ifdef TENSORFLOW_USE_SYCL
REGISTER_KERNEL_BUILDER(
    Name("MapPeek").HostMemory("key").HostMemory("indices").Device(DEVICE_SYCL),
    MapPeekOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapPeek")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_SYCL),
                        MapPeekOp<true>);
#endif  // TENSORFLOW_USE_SYCL

template <bool Ordered>
class MapUnstageNoKeyOp : public OpKernel {
 public:
  explicit MapUnstageNoKeyOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  // Using this op in such a way that it blocks forever
  // is an error.  As such cancellation is not handled.
  void Compute(OpKernelContext* ctx) override {
    StagingMap<Ordered>* map = nullptr;
    OP_REQUIRES_OK(ctx, GetStagingMap(ctx, def(), &map));
    core::ScopedUnref scope(map);

    // Pop a random (key, value) off the map
    typename StagingMap<Ordered>::KeyType key;
    typename StagingMap<Ordered>::Tuple tuple;

    const Tensor* indices_tensor;

    OP_REQUIRES_OK(ctx, ctx->input("indices", &indices_tensor));
    OP_REQUIRES_OK(ctx, map->popitem(&key, indices_tensor, &tuple));

    // Allocate a key tensor and assign the key as the first output
    ctx->set_output(0, key);

    // Set the rest of the outputs to the tuple Tensors
    OP_REQUIRES(
        ctx, tuple.size() == indices_tensor->NumElements(),
        errors::InvalidArgument("output/indices size mismatch: ", tuple.size(),
                                " vs. ", indices_tensor->NumElements()));

    for (std::size_t i = 0; i < tuple.size(); ++i) {
      ctx->set_output(i + 1, tuple[i]);
    }
  }
};

REGISTER_KERNEL_BUILDER(Name("MapUnstageNoKey").Device(DEVICE_CPU),
                        MapUnstageNoKeyOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapUnstageNoKey").Device(DEVICE_CPU),
                        MapUnstageNoKeyOp<true>);

#if GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(Name("MapUnstageNoKey")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_GPU),
                        MapUnstageNoKeyOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapUnstageNoKey")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_GPU),
                        MapUnstageNoKeyOp<true>);
#endif

#ifdef TENSORFLOW_USE_SYCL
REGISTER_KERNEL_BUILDER(Name("MapUnstageNoKey")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_SYCL),
                        MapUnstageNoKeyOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapUnstageNoKey")
                            .HostMemory("key")
                            .HostMemory("indices")
                            .Device(DEVICE_SYCL),
                        MapUnstageNoKeyOp<true>);
#endif  // TENSORFLOW_USE_SYCL

template <bool Ordered>
class MapSizeOp : public OpKernel {
 public:
  explicit MapSizeOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    StagingMap<Ordered>* map = nullptr;
    OP_REQUIRES_OK(ctx, GetStagingMap(ctx, def(), &map));
    core::ScopedUnref scope(map);

    // Allocate size output tensor
    Tensor* size = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &size));

    // Set it to the actual size
    size->scalar<int32>().setConstant(map->size());
  }
};

REGISTER_KERNEL_BUILDER(Name("MapSize").Device(DEVICE_CPU), MapSizeOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapSize").Device(DEVICE_CPU),
                        MapSizeOp<true>);

#if GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(Name("MapSize").Device(DEVICE_GPU).HostMemory("size"),
                        MapSizeOp<false>);
REGISTER_KERNEL_BUILDER(
    Name("OrderedMapSize").Device(DEVICE_GPU).HostMemory("size"),
    MapSizeOp<true>);
#endif
#ifdef TENSORFLOW_USE_SYCL
REGISTER_KERNEL_BUILDER(Name("MapSize").Device(DEVICE_SYCL).HostMemory("size"),
                        MapSizeOp<false>);
REGISTER_KERNEL_BUILDER(
    Name("OrderedMapSize").Device(DEVICE_SYCL).HostMemory("size"),
    MapSizeOp<true>);
#endif  // TENSORFLOW_USE_SYCL

template <bool Ordered>
class MapIncompleteSizeOp : public OpKernel {
 public:
  explicit MapIncompleteSizeOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    StagingMap<Ordered>* map = nullptr;
    OP_REQUIRES_OK(ctx, GetStagingMap(ctx, def(), &map));
    core::ScopedUnref scope(map);

    // Allocate size output tensor
    Tensor* size = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &size));

    // Set it to the actual size
    size->scalar<int32>().setConstant(map->incomplete_size());
  }
};

REGISTER_KERNEL_BUILDER(Name("MapIncompleteSize").Device(DEVICE_CPU),
                        MapIncompleteSizeOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapIncompleteSize").Device(DEVICE_CPU),
                        MapIncompleteSizeOp<true>);

#if GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(
    Name("MapIncompleteSize").Device(DEVICE_GPU).HostMemory("size"),
    MapIncompleteSizeOp<false>);
REGISTER_KERNEL_BUILDER(
    Name("OrderedMapIncompleteSize").Device(DEVICE_GPU).HostMemory("size"),
    MapIncompleteSizeOp<true>);
#endif
#ifdef TENSORFLOW_USE_SYCL
REGISTER_KERNEL_BUILDER(
    Name("MapIncompleteSize").Device(DEVICE_SYCL).HostMemory("size"),
    MapIncompleteSizeOp<false>);
REGISTER_KERNEL_BUILDER(
    Name("OrderedMapIncompleteSize").Device(DEVICE_SYCL).HostMemory("size"),
    MapIncompleteSizeOp<true>);
#endif  // TENSORFLOW_USE_SYCL

template <bool Ordered>
class MapClearOp : public OpKernel {
 public:
  explicit MapClearOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    StagingMap<Ordered>* map = nullptr;
    OP_REQUIRES_OK(ctx, GetStagingMap(ctx, def(), &map));
    core::ScopedUnref scope(map);

    OP_REQUIRES_OK(ctx, map->clear());
  }
};

REGISTER_KERNEL_BUILDER(Name("MapClear").Device(DEVICE_CPU), MapClearOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapClear").Device(DEVICE_CPU),
                        MapClearOp<true>);

#if GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(Name("MapClear").Device(DEVICE_GPU), MapClearOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapClear").Device(DEVICE_GPU),
                        MapClearOp<true>);
#endif
#ifdef TENSORFLOW_USE_SYCL
REGISTER_KERNEL_BUILDER(Name("MapClear").Device(DEVICE_SYCL),
                        MapClearOp<false>);
REGISTER_KERNEL_BUILDER(Name("OrderedMapClear").Device(DEVICE_SYCL),
                        MapClearOp<true>);
#endif  // TENSORFLOW_USE_SYCL

}  // namespace
}  // namespace tensorflow