aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/load_and_remap_matrix_op.cc
blob: 9d5a4b2f035a79f705581221a38f21ba1f3be63f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <algorithm>
#include <string>
#include <unordered_map>
#include <vector>

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/kernel_def_builder.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_types.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/map_util.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/util/tensor_bundle/tensor_bundle.h"

namespace tensorflow {

namespace {
// Returning a Status instead of using OP_REQUIRES directly since that doesn't
// seem to work outside the main OpKernel functions.
Status RemapVectorToMap(const TTypes<const int64>::Vec& remapping,
                        std::vector<bool>* id_present,
                        std::unordered_map<int64, int64>* old_id_to_new_id) {
  id_present->clear();
  id_present->resize(remapping.size(), false);
  for (int i = 0; i < remapping.size(); ++i) {
    const int64 old_id = remapping(i);
    if (old_id < 0) continue;
    (*id_present)[i] = true;
    if (!gtl::InsertIfNotPresent(old_id_to_new_id, old_id, i)) {
      return errors::Unimplemented(
          strings::StrCat("Old ID ", old_id, " is mapped to both new ID ",
                          old_id_to_new_id->at(old_id), " and ", i,
                          ", which is not supported."));
    }
  }
  return Status::OK();
}
}  // anonymous namespace

// This op loads a rank-2 Tensor (matrix) from a TensorFlow checkpoint (V2) and
// swaps around the rows/columns according to row_remapping/col_remapping.
// "Missing" cells are initialized with values from initializing_values.
class LoadAndRemapMatrixOp : public OpKernel {
 public:
  explicit LoadAndRemapMatrixOp(OpKernelConstruction* context)
      : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("num_rows", &num_rows_));
    OP_REQUIRES_OK(context, context->GetAttr("num_cols", &num_cols_));
    OP_REQUIRES_OK(
        context, context->GetAttr("max_rows_in_memory", &max_rows_in_memory_));
  }

  void Compute(OpKernelContext* context) override {
    // Checks what we're remapping and inverts the relevant remapping Tensors to
    // be maps with key = old ID, value = new ID.
    std::unordered_map<int64, int64> old_row_to_new_row_map;
    std::vector<bool> row_id_present;
    const Tensor* row_remapping_t;
    OP_REQUIRES_OK(context, context->input("row_remapping", &row_remapping_t));
    const auto row_remapping = row_remapping_t->vec<int64>();
    OP_REQUIRES(context, row_remapping.size() == num_rows_,
                errors::InvalidArgument(strings::StrCat(
                    "Size of row_remapping is ", row_remapping.size(),
                    " instead of being equal to num_rows=", num_rows_)));
    OP_REQUIRES_OK(context, RemapVectorToMap(row_remapping, &row_id_present,
                                             &old_row_to_new_row_map));

    // Calculates the min/max old row ID that we need to read, to save us from
    // reading some unnecessary slices of the old tensor.
    int64 min_old_row = -1;
    int64 max_old_row = -1;
    for (int i = 0; i < row_remapping.size(); ++i) {
      if (min_old_row < 0 ||
          (row_remapping(i) >= 0 && row_remapping(i) < min_old_row)) {
        min_old_row = row_remapping(i);
      }
      if (max_old_row < 0 ||
          (row_remapping(i) >= 0 && row_remapping(i) > max_old_row)) {
        max_old_row = row_remapping(i);
      }
    }

    // Processes the remapping for columns.
    std::unordered_map<int64, int64> old_col_to_new_col_map;
    std::vector<bool> col_id_present;
    const Tensor* col_remapping_t;
    OP_REQUIRES_OK(context, context->input("col_remapping", &col_remapping_t));
    const auto col_remapping = col_remapping_t->vec<int64>();
    // Note that we always "remap rows", even when the row vocabulary does
    // not change, because partitioning requires a mapping from partitioned
    // Variables to the full checkpoints we load.
    const bool remap_cols = col_remapping.size() > 0;
    if (remap_cols) {
      OP_REQUIRES(
          context, col_remapping.size() == num_cols_,
          errors::InvalidArgument(strings::StrCat(
              "Provided col_remapping, but its size is ", col_remapping.size(),
              " instead of being equal to num_cols=", num_cols_)));
      OP_REQUIRES_OK(context, RemapVectorToMap(col_remapping, &col_id_present,
                                               &old_col_to_new_col_map));
    } else {
      col_id_present.clear();
      col_id_present.resize(num_cols_, true);
    }

    // Processes the checkpoint source and the provided Tensor name.
    const Tensor* ckpt_path_t;
    OP_REQUIRES_OK(context, context->input("ckpt_path", &ckpt_path_t));
    const string ckpt_path = *(ckpt_path_t->scalar<string>().data());
    const Tensor* old_tensor_name_t;
    OP_REQUIRES_OK(context,
                   context->input("old_tensor_name", &old_tensor_name_t));
    const string old_tensor_name =
        *(old_tensor_name_t->scalar<string>().data());

    LOG(INFO) << "Processing checkpoint : " << ckpt_path;
    BundleReader reader(context->env(), ckpt_path);
    OP_REQUIRES_OK(context, reader.status());

    DataType tensor_type;
    TensorShape tensor_shape;
    OP_REQUIRES_OK(context, reader.LookupDtypeAndShape(
                                old_tensor_name, &tensor_type, &tensor_shape));
    OP_REQUIRES(context, tensor_type == DT_FLOAT,
                errors::InvalidArgument(strings::StrCat(
                    "Tensor ", old_tensor_name, " has invalid type ",
                    DataTypeString(tensor_type), " instead of expected type ",
                    DataTypeString(DT_FLOAT))));
    // This op is limited to loading Tensors of rank 2 (matrices).
    OP_REQUIRES(
        context, tensor_shape.dims() == 2,
        errors::InvalidArgument(strings::StrCat(
            "Tensor ", old_tensor_name, " has shape ",
            tensor_shape.DebugString(), " of invalid rank ",
            tensor_shape.dims(), " instead of expected shape of rank 2.")));

    if (!remap_cols) {
      // TODO(weiho): Consider relaxing this restriction to allow partial column
      // loading (even when no column remapping is specified) if there turns out
      // to be a use case for it.
      OP_REQUIRES(context, num_cols_ == tensor_shape.dim_size(1),
                  errors::InvalidArgument(strings::StrCat(
                      "Tensor ", old_tensor_name, " has shape ",
                      tensor_shape.DebugString(),
                      ", where the size of its 2nd dimension is ",
                      tensor_shape.dim_size(1),
                      " instead of being equal to num_cols=", num_cols_)));
    }

    // Uses TensorSlice to potentially load the old tensor in chunks in case
    // memory usage is a concern.
    std::vector<TensorSlice> tensor_slices;
    TensorSlice slice(tensor_shape.dims());
    if (min_old_row >= 0 && max_old_row >= 0) {
      int64 row_start = min_old_row;
      // TODO(weiho): Given the list of old row IDs of interest (the keys of
      // old_row_to_new_row_map), we could also try something smarter to
      // find some minimal set of covering ranges for the list of old row IDs
      // such that the size of each range is less than max_rows_in_memory_.
      while (row_start <= max_old_row) {
        const int64 slice_length =
            max_rows_in_memory_ <= 0
                // If max_rows_in_memory_ <= 0, we just load the entire chunk.
                ? max_old_row - row_start + 1
                : std::min(max_rows_in_memory_, max_old_row - row_start + 1);
        slice.set_start(0, row_start);
        slice.set_length(0, slice_length);
        tensor_slices.push_back(slice);
        row_start += slice_length;
      }
    }

    // Allocates the output matrix.
    Tensor* output_matrix_t = nullptr;
    OP_REQUIRES_OK(context,
                   context->allocate_output("output_matrix",
                                            TensorShape({num_rows_, num_cols_}),
                                            &output_matrix_t));
    auto output_matrix = output_matrix_t->matrix<float>();

    // Iterates through tensor slices and copies over values from the old tensor
    // to the output matrix.
    int64 row_index = min_old_row;
    int64 rows_copied = 0;
    Tensor loaded_tensor_t;
    for (const TensorSlice& tensor_slice : tensor_slices) {
      LOG(INFO) << "Loading slice " << tensor_slice.DebugString();
      TensorShape slice_shape;
      OP_REQUIRES_OK(context,
                     tensor_slice.SliceTensorShape(tensor_shape, &slice_shape));
      // Potentially re-allocates the tensor buffer since the last slice may
      // have fewer rows than the other slices.
      if (loaded_tensor_t.shape() != slice_shape) {
        loaded_tensor_t = Tensor(DT_FLOAT, slice_shape);
      }
      OP_REQUIRES_OK(context, reader.LookupSlice(old_tensor_name, tensor_slice,
                                                 &loaded_tensor_t));

      // Iterates through the old loaded tensor slice row-by-row.
      for (int row = 0; row < loaded_tensor_t.dim_size(0); ++row, ++row_index) {
        if (row_index % 500000 == min_old_row) {
          LOG(INFO) << "Processing old row " << row_index;
        }

        // If the old row ID is not found in old_row_to_new_row_map, continue
        // to the next row; otherwise, copy it to the output matrix.
        const int64* new_row_ptr =
            gtl::FindOrNull(old_row_to_new_row_map, row_index);
        if (new_row_ptr == nullptr) {
          continue;
        }
        ++rows_copied;
        const int64 new_row = *new_row_ptr;

        // Copies over the row element-by-element, in case remapping is needed
        // along the column axis.
        const auto& loaded_tensor = loaded_tensor_t.matrix<float>();
        for (int old_col = 0; old_col < loaded_tensor_t.dim_size(1);
             ++old_col) {
          int64 new_col = old_col;
          if (remap_cols) {
            const int64* new_col_ptr =
                gtl::FindOrNull(old_col_to_new_col_map, old_col);
            if (new_col_ptr == nullptr) {
              // Column remapping is specified, but this column is not found in
              // old_col_to_new_col_map, so we leave it uninitialized, to be
              // filled in with initializing_values later.
              continue;
            }
            new_col = *new_col_ptr;
          }

          OP_REQUIRES(context,
                      new_row < num_rows_ && new_col < num_cols_ &&
                          new_row >= 0 && new_col >= 0,
                      errors::Internal(strings::StrCat(
                          "new_row=", new_row, " and new_col=", new_col,
                          " should have been less than num_rows_=", num_rows_,
                          " and num_cols_=", num_cols_,
                          " and non-negative. This should never have happened "
                          "if the code were correct. Please file a bug.")));
          output_matrix(new_row, new_col) = loaded_tensor(row, old_col);
        }
      }
    }
    LOG(INFO) << "Copied " << rows_copied << " rows from old matrix (with "
              << tensor_shape.dim_size(0) << " rows) to new matrix (with "
              << num_rows_ << " rows).";

    // At this point, there are potentially whole rows/columns uninitialized
    // (corresponding to the indices where row_id_present/col_id_present are
    // false). We fill this in cell-by-cell using row_id_present and
    // col_id_present while dequeuing from the initializing_values vector.
    const Tensor* initializing_values_t;
    OP_REQUIRES_OK(
        context, context->input("initializing_values", &initializing_values_t));
    const auto initializing_values = initializing_values_t->flat<float>();
    int64 initializing_values_index = 0;
    for (int i = 0; i < num_rows_; ++i) {
      for (int j = 0; j < num_cols_; ++j) {
        if (row_id_present[i] && col_id_present[j]) continue;
        OP_REQUIRES(
            context, initializing_values_index < initializing_values.size(),
            errors::InvalidArgument(
                "initializing_values contained ", initializing_values.size(),
                " elements, but more missing values remain."));
        output_matrix(i, j) = initializing_values(initializing_values_index);
        ++initializing_values_index;
      }
    }

    // Checks that we used all the given initializing values.
    OP_REQUIRES(
        context, initializing_values_index == initializing_values.size(),
        errors::InvalidArgument(
            "initializing_values contained ", initializing_values.size(),
            " elements, but only ", initializing_values_index,
            " elements were used to fill in missing values."));
  }

 private:
  int64 num_rows_;
  int64 num_cols_;
  int64 max_rows_in_memory_;
};

REGISTER_KERNEL_BUILDER(Name("LoadAndRemapMatrix").Device(DEVICE_CPU),
                        LoadAndRemapMatrixOp);

}  // namespace tensorflow