aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/hexagon/hexagon_control_wrapper.cc
blob: 1580b72605256ae95c874dbb8db010e4c4bc99fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
vcyou may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/kernels/hexagon/hexagon_control_wrapper.h"

#include "tensorflow/core/framework/graph_transfer_info.pb.h"
#include "tensorflow/core/framework/remote_fused_graph_execute_info.pb.h"
#include "tensorflow/core/framework/tensor_shape.pb.h"
#include "tensorflow/core/kernels/hexagon/hexagon_ops_definitions.h"
#include "tensorflow/core/kernels/hexagon/soc_interface.h"
#include "tensorflow/core/platform/profile_utils/cpu_utils.h"

namespace tensorflow {

constexpr const char* const OUTPUT_OP_NAME = "OUTPUT";
constexpr const char* const REMOTE_FUSED_GRAPH_NODE_NAME_PREFIX =
    "hexagon_remote_fused_graph";
/* static */ constexpr const char* const
    HexagonControlWrapper::REMOTE_FUSED_GRAPH_EXECUTOR_NAME;

constexpr int ALIGNMENT_BYTES = 16;
constexpr int MAX_IN_OUT_COUNT = 128;

const bool DBG_DUMP_VERIFICATION_STRING = false;
const int DBG_LEVEL = 0;  // -2: verbose, -1: debug, 0: info
const bool DBG_USE_DUMMY_INPUT = false;
const bool DBG_USE_SAMPLE_INPUT = false;
const int64 FLAG_ENABLE_PANDA_BINARY_INPUT = 0x01;
const bool DBG_DUMP_INPUT_TENSOR_AS_FLOAT_DATA = false;

static string AddPort(const string& node_name) {
  if (node_name.find(':') != string::npos) {
    return node_name;
  } else {
    return strings::StrCat(node_name, ":", 0);
  }
}

static uint8* FindAlignedPointer(uint8* ptr) {
  const uintptr_t data_ptr_int = reinterpret_cast<uintptr_t>(ptr);
  const int shift_count =
      (ALIGNMENT_BYTES - data_ptr_int % ALIGNMENT_BYTES) % ALIGNMENT_BYTES;
  uint8* data_ptr = ptr + shift_count;
  return data_ptr;
}

/* static */ GraphTransferNodeInfo* HexagonControlWrapper::FindNodeInfo(
    const string& name, GraphTransferInfo* graph_transfer_info) {
  for (GraphTransferNodeInfo& node_info :
       *graph_transfer_info->mutable_node_info()) {
    if (node_info.name() == name) {
      return &node_info;
    }
  }
  return nullptr;
}

int HexagonControlWrapper::GetVersion() {
  return soc_interface_GetSocControllerVersion();
}

bool HexagonControlWrapper::Init(const RemoteFusedGraphExecuteInfo& info) {
  soc_interface_SetLogLevel(DBG_LEVEL);
  if (DBG_USE_SAMPLE_INPUT) {
    soc_interface_SetDebugFlag(FLAG_ENABLE_PANDA_BINARY_INPUT);
  }
  if (info.serialized_executor_parameters().empty()) {
    std::vector<std::pair<string, Tensor>> inputs;
    std::vector<string> outputs;
    RemoteFusedGraphExecuteUtils::BuildRemoteGraphInputsAndOutputsFromProto(
        info, &inputs, &outputs);
    Status status = graph_transferer_.LoadGraphFromProto(
        HexagonOpsDefinitions::getInstance(), info.remote_graph(), inputs,
        outputs,
        false  // shape_inference_for_unknown_shape
    );
    TF_CHECK_OK(status) << status;
  } else {
    // If graph transfer info is attached, just import it.
    graph_transferer_.SetSerializedGraphTransferInfo(
        info.serialized_executor_parameters());
  }
  execute_info_ = &info;
  bool success = soc_interface_Init();
  if (!success) {
    LOG(ERROR) << "Hexagon initialization was failed.  See log output.";
    return false;
  }
  std::vector<int> input_sizes;
  std::vector<int> output_sizes;
  CHECK_NOTNULL(execute_info_);
  for (int i = 0; i < execute_info_->graph_input_node_name_size(); ++i) {
    const string& input = execute_info_->graph_input_node_name(i);
    LOG(INFO) << "Add input: " << input << ", " << i;
    CHECK(input_port_map_.emplace(AddPort(input), i).second);
    const RemoteFusedGraphExecuteInfo::TensorShapeTypeProto& shape_type =
        execute_info_->default_graph_input_tensor_shape(i);
    int64 buf_size = DataTypeSize(shape_type.dtype());
    for (const TensorShapeProto::Dim& dim : shape_type.shape().dim()) {
      buf_size *= dim.size();
    }
    input_sizes.emplace_back(static_cast<int>(buf_size));
  }
  for (int i = 0; i < execute_info_->graph_output_node_name_size(); ++i) {
    const string& output = execute_info_->graph_output_node_name(i);
    CHECK(output_port_map_.emplace(AddPort(output), i).second);
    const RemoteFusedGraphExecuteInfo::TensorShapeTypeProto& shape_type =
        execute_info_->default_graph_output_tensor_shape(i);

    int64 buf_size = DataTypeSize(shape_type.dtype());
    for (const TensorShapeProto::Dim& dim : shape_type.shape().dim()) {
      buf_size *= dim.size();
    }
    output_sizes.emplace_back(static_cast<int>(buf_size));
  }

  LOG(INFO) << "Allocate inout buffer";
  success &= soc_interface_AllocateInOutNodeBuffers(
      input_sizes.size(), input_sizes.data(), output_sizes.size(),
      output_sizes.data());
  return success;
}

bool HexagonControlWrapper::Finalize() { return soc_interface_Finalize(); }
bool HexagonControlWrapper::SetupGraph() {
  // Copy graph transfer info to modify to adapt hexnn library
  GraphTransferInfo& graph_transfer_info =
      graph_transferer_.GetMutableGraphTransferInfo();

  // Overwrite op type of input nodes for hexagon
  for (const GraphTransferGraphInputNodeInfo& graph_input :
       graph_transfer_info.graph_input_node_info()) {
    GraphTransferNodeInfo* node_info =
        FindNodeInfo(graph_input.name(), &graph_transfer_info);
    CHECK_NE(node_info, nullptr);
  }

  // Generate a new output node which is connected to graph output node
  // TODO(satok): Support multiple output nodes
  CHECK_EQ(graph_transfer_info.graph_output_node_info_size(), 1);
  for (const GraphTransferGraphOutputNodeInfo& graph_output :
       graph_transfer_info.graph_output_node_info()) {
    const int new_output_node_id = graph_transfer_info.node_info_size() +
                                   graph_transfer_info.const_node_info_size() +
                                   2 /* offset for ids */;
    // Register a new output node
    GraphTransferNodeInfo& new_output_node_info =
        *graph_transfer_info.add_node_info();
    new_output_node_info.set_name(OUTPUT_OP_NAME);
    new_output_node_info.set_node_id(new_output_node_id);
    new_output_node_info.set_type_name(OUTPUT_OP_NAME);
    new_output_node_info.set_soc_op_id(
        HexagonOpsDefinitions::getInstance().GetOpIdFor(OUTPUT_OP_NAME, {}));
    new_output_node_info.set_padding_id(0 /* PADDING_NA_ID */);
    new_output_node_info.set_input_count(1);
    new_output_node_info.set_output_count(0);

    const TensorId tid = ParseTensorName(graph_output.name());
    const string node_name = std::string(tid.first);
    const int port = tid.second;
    // Register node input for the new output node
    const GraphTransferNodeInfo* node_info =
        FindNodeInfo(node_name, &graph_transfer_info);
    CHECK_NE(node_info, nullptr);
    GraphTransferNodeInputInfo& node_input_info =
        *graph_transfer_info.add_node_input_info();
    node_input_info.set_node_id(new_output_node_id);
    GraphTransferNodeInput& node_input = *node_input_info.add_node_input();
    node_input.set_node_id(node_info->node_id());
    node_input.set_output_port(port);
  }

  if (DBG_DUMP_VERIFICATION_STRING) {
    GraphTransferer gt;
    gt.SetSerializedGraphTransferInfo(graph_transfer_info.SerializeAsString());
    gt.DumpVerificationStringOfNodeTransferParams();
  }

  int inputs_count = 0;
  int outputs_count = 0;
  for (const GraphTransferNodeInputInfo& input_params :
       graph_transfer_info.node_input_info()) {
    inputs_count += input_params.node_input_size();
  }

  for (const GraphTransferNodeOutputInfo& output_params :
       graph_transfer_info.node_output_info()) {
    outputs_count += output_params.max_byte_size_size();
  }
  // Allocate memory for node inputs and node outputs
  soc_interface_AllocateNodeInputAndNodeOutputArray(inputs_count,
                                                    outputs_count);

  // Construct node input parameters
  std::unordered_map<int, std::tuple<void*, int>> inputs_map;
  for (const GraphTransferNodeInputInfo& input_params :
       graph_transfer_info.node_input_info()) {
    const int count = input_params.node_input_size();
    CHECK(count <= MAX_IN_OUT_COUNT);
    int node_ids[MAX_IN_OUT_COUNT];
    int ports[MAX_IN_OUT_COUNT];
    for (int i = 0; i < count; ++i) {
      const GraphTransferNodeInput& node_input = input_params.node_input(i);
      node_ids[i] = node_input.node_id() + NODE_ID_OFFSET;
      ports[i] = node_input.output_port();
    }
    void* inputs_ptr = soc_interface_SetOneNodeInputs(count, node_ids, ports);
    const int node_id = input_params.node_id();
    CHECK(inputs_map.count(node_id) == 0);
    inputs_map.emplace(node_id, std::make_tuple(inputs_ptr, count));
  }

  // Construct node output parameters
  std::unordered_map<int, std::tuple<void*, int>> outputs_map;
  for (const GraphTransferNodeOutputInfo& output_params :
       graph_transfer_info.node_output_info()) {
    const int count = output_params.max_byte_size_size();
    CHECK(count <= MAX_IN_OUT_COUNT);
    int sizes[MAX_IN_OUT_COUNT];
    for (int i = 0; i < count; ++i) {
      const int size = output_params.max_byte_size(i);
      sizes[i] = size;
    }
    void* outputs_ptr = soc_interface_SetOneNodeOutputs(count, sizes);
    const int node_id = output_params.node_id();
    CHECK(outputs_map.count(node_id) == 0);
    outputs_map.emplace(node_id, std::make_tuple(outputs_ptr, count));
  }

  // Instantiate graph
  soc_interface_InstantiateGraph();

  // Initialize graph
  // 1. Setup const nodes
  for (const GraphTransferConstNodeInfo& params :
       graph_transfer_info.const_node_info()) {
    const int node_id = params.node_id();
    // TODO(satok): Stop assuming shape size is 4.
    CHECK(params.shape_size() == 4);
    const int64 shape_0 = params.shape(0);
    const int64 shape_1 = params.shape(1);
    const int64 shape_2 = params.shape(2);
    const int64 shape_3 = params.shape(3);
    const int data_size = params.data().length();
    CHECK(dummy_const_data_.count(node_id) == 0);
    auto data = dummy_const_data_.emplace(
        std::piecewise_construct, std::make_tuple(node_id), std::make_tuple());
    CHECK(data.second);
    data.first->second.resize(data_size + ALIGNMENT_BYTES - 1);
    uint8* data_ptr = FindAlignedPointer(data.first->second.data());
    std::memcpy(data_ptr, params.data().data(), data_size);
    soc_interface_AppendConstNode(params.name().c_str(),
                                  node_id + NODE_ID_OFFSET, shape_0, shape_1,
                                  shape_2, shape_3, data_ptr, data_size);
  }

  // 2. Setup op nodes
  for (const GraphTransferNodeInfo& params : graph_transfer_info.node_info()) {
    const int node_id = params.node_id();
    const int op_id = params.soc_op_id();
    CHECK(inputs_map.count(node_id) == 1);
    CHECK(outputs_map.count(node_id) <= 1);
    // Only output node doesn't have output
    const bool has_output = outputs_map.count(node_id) == 1;
    const auto& input_ptr_and_count = inputs_map.at(node_id);
    const void* input_ptr = std::get<0>(input_ptr_and_count);
    const int input_count = std::get<1>(input_ptr_and_count);
    void* output_ptr = nullptr;
    int output_count = 0;
    if (has_output) {
      const auto& output_ptr_and_count = outputs_map.at(node_id);
      output_ptr = std::get<0>(output_ptr_and_count);
      output_count = std::get<1>(output_ptr_and_count);
      // CHECK(output_count > 0);
    }
    int padding_id = -1;
    if (params.padding_id() == 0) {
      padding_id = 0;
    } else if (params.padding_id() == Padding::SAME) {
      padding_id = 1;
    } else if (params.padding_id() == Padding::VALID) {
      padding_id = 2;
    } else {
      LOG(FATAL);
    }
    soc_interface_AppendNode(params.name().c_str(), node_id + NODE_ID_OFFSET,
                             op_id, padding_id, input_ptr, input_count,
                             output_ptr, output_count);
  }

  LOG(INFO) << "Setup graph completed";

  // 3. construct graph
  return soc_interface_ConstructGraph();

  // Keep following comment to use dummy graph construction
  // return soc_interface_setupDummyGraph(3 /* inception version */);
}

bool HexagonControlWrapper::ExecuteGraph() {
  return soc_interface_ExecuteGraph();
}

bool HexagonControlWrapper::TeardownGraph() {
  soc_interface_ReleaseNodeInputAndNodeOutputArray();
  return soc_interface_TeardownGraph();
}

bool HexagonControlWrapper::FillInputNode(
    const string& node_name,
    const std::array<int64, GraphTransferer::SHAPE_ARRAY_SIZE>& shape,
    const ConstByteArray bytes) {
  const string tensor_name = AddPort(node_name);
  CHECK(input_port_map_.count(tensor_name) > 0);
  const int port = input_port_map_.at(tensor_name);
  if (input_tensor_data_.count(port) <= 0) {
    input_tensor_data_.emplace(port, std::vector<uint8>{});
  }
  std::vector<uint8>& input_tensor_data = input_tensor_data_.at(port);

  // hexagon only supports 32bit dimension
  const int x = static_cast<int>(shape[0]);
  const int y = static_cast<int>(shape[1]);
  const int z = static_cast<int>(shape[2]);
  const int d = static_cast<int>(shape[3]);

  const uint64 byte_size = x * y * z * d * DataTypeSize(std::get<2>(bytes));
  CHECK_EQ(byte_size, std::get<1>(bytes));
  input_tensor_data.resize(byte_size + ALIGNMENT_BYTES);
  uint8* data_ptr = FindAlignedPointer(input_tensor_data.data());

  if (DBG_USE_DUMMY_INPUT) {
    std::memset(data_ptr, 0, byte_size);
  } else {
    std::memcpy(data_ptr, std::get<0>(bytes), byte_size);
  }

  return soc_interface_FillInputNodeWithPort(port, x, y, z, d, data_ptr,
                                             byte_size);
}

bool HexagonControlWrapper::ReadOutputNode(
    const string& node_name, TensorAllocatorFunc tensor_allocator) {
  CHECK_NE(execute_info_, nullptr);
  TensorShape output_shape;
  // TODO(satok): Switch shape corresponding to input shape
  for (int i = 0; i < execute_info_->graph_output_node_name_size(); ++i) {
    if (execute_info_->graph_output_node_name(i) == node_name) {
      for (const TensorShapeProto::Dim& dim :
           execute_info_->default_graph_output_tensor_shape(i).shape().dim()) {
        output_shape.AddDim(dim.size());
      }
      break;
    }
  }
  std::vector<ByteArray> outputs;
  ReadOutputNode(node_name, &outputs);
  CHECK_EQ(1, outputs.size());
  ByteArray& output = outputs[0];
  Tensor* output_tensor = tensor_allocator(output_shape);
  CHECK(output_tensor->TotalBytes() >= std::get<1>(output))
      << output_tensor->TotalBytes() << ", " << std::get<1>(output);
  TF_CHECK_OK(RemoteFusedGraphExecuteUtils::CopyByteArrayToTensor(
      std::get<0>(output), std::get<1>(output), output_tensor));
  return true;
}

bool HexagonControlWrapper::ReadOutputNode(
    const string& node_name, std::vector<ByteArray>* const outputs) {
  CHECK(outputs != nullptr);
  ByteArray output;
  const string tensor_name = AddPort(node_name);
  CHECK(output_port_map_.count(tensor_name) > 0);
  const int port = output_port_map_.at(tensor_name);
  soc_interface_ReadOutputNodeWithPort(
      port, &std::get<0>(output),
      reinterpret_cast<uint64_t*>(&std::get<1>(output)));
  // TODO: Accept all results
  // std::get<2>(output) = DT_FLOAT;
  outputs->emplace_back(output);
  return true;
}

Status HexagonControlWrapper::FuseRemoteGraph(
    const GraphDef& original_graph_def, const std::vector<string>& inputs,
    const std::vector<string>& outputs, GraphDef* fused_graph_def) {
  const std::unordered_set<string> fused_node_names =
      RemoteFusedGraphExecuteUtils::BuildNodeMapFromOpsDefinitions(
          original_graph_def, HexagonOpsDefinitions::getInstance());
  // TODO(satok): We may want to place shape and type inside this function
  // if they are not placed in the given graph.
  TF_RETURN_IF_ERROR(RemoteFusedGraphExecuteUtils::FuseRemoteGraphByNodeNames(
      original_graph_def, inputs, outputs, REMOTE_FUSED_GRAPH_NODE_NAME_PREFIX,
      fused_node_names, REMOTE_FUSED_GRAPH_EXECUTOR_NAME,
      /*require_shape_type=*/true, fused_graph_def));
  return Status::OK();
}

bool HexagonControlWrapper::FillInputNode(const string& node_name,
                                          const Tensor& tensor) {
  StringPiece tensor_data = tensor.tensor_data();
  const ConstByteArray ba =
      ConstByteArray(reinterpret_cast<const uint8*>(tensor_data.data()),
                     tensor_data.size(), tensor.dtype());
  if (DBG_DUMP_INPUT_TENSOR_AS_FLOAT_DATA) {
    LOG(INFO) << "Input tensor data: element size = " << tensor.NumElements()
              << ", byte syze = " << tensor.TotalBytes();
    std::stringstream line;
    for (int i = 0; i < tensor.NumElements(); ++i) {
      line << tensor.flat<float>().data()[i] << ", ";
      if ((i - 2) % 3 == 0 || i == tensor.NumElements() - 1) {
        LOG(INFO) << "(" << ((i - 2) / 3) << ") " << line.str();
        line.str("");
        line.clear();
      }
    }
  }
  const std::array<int64, GraphTransferer::SHAPE_ARRAY_SIZE> shape =
      GraphTransferer::ToTensorShapeArray(tensor.shape());
  FillInputNode(node_name, shape, ba);
  return true;
}

bool HexagonControlWrapper::IsEnabled() const { return true; };
}  // namespace tensorflow