aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/eigen_volume_patch.h
blob: 80ab745bfecbd73a7be84ab1af8ebd20320b5b98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_VOLUME_PATCH_H_
#define TENSORFLOW_CORE_KERNELS_EIGEN_VOLUME_PATCH_H_

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"

namespace Eigen {

// Changes the interpretation of padding in TensorVolumePatchOp to be compatible
// with the rest of TensorFlow (odd padding is split so that more padding is put
// on the right end of the tensor).
template <DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType,
          typename Device>
struct CustomTensorEvaluator {
  typedef TensorVolumePatchOp<Planes, Rows, Cols, ArgType> XprType;
  typedef typename XprType::Index Index;
  static const int NumInputDims = internal::array_size<
      typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
  static const int NumDims = NumInputDims + 1;
  typedef DSizes<Index, NumDims> Dimensions;
  typedef
      typename internal::remove_const<typename XprType::Scalar>::type Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const Index PacketSize =
      internal::unpacket_traits<PacketReturnType>::size;

  enum {
    IsAligned = false,
    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
    BlockAccess = false,
    PreferBlockAccess = false,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = NumDims == 6,
    RawAccess = false
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  CustomTensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device) {
    EIGEN_STATIC_ASSERT(NumDims >= 5, YOU_MADE_A_PROGRAMMING_MISTAKE);

    m_paddingValue = op.padding_value();

    const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims =
        m_impl.dimensions();

    // Cache a few variables.
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_inputDepth = input_dims[0];
      m_inputPlanes = input_dims[1];
      m_inputRows = input_dims[2];
      m_inputCols = input_dims[3];
    } else {
      m_inputDepth = input_dims[NumInputDims - 1];
      m_inputPlanes = input_dims[NumInputDims - 2];
      m_inputRows = input_dims[NumInputDims - 3];
      m_inputCols = input_dims[NumInputDims - 4];
    }

    m_plane_strides = op.plane_strides();
    m_row_strides = op.row_strides();
    m_col_strides = op.col_strides();

    // Input strides and effective input/patch size
    m_in_plane_strides = op.in_plane_strides();
    m_in_row_strides = op.in_row_strides();
    m_in_col_strides = op.in_col_strides();
    m_plane_inflate_strides = op.plane_inflate_strides();
    m_row_inflate_strides = op.row_inflate_strides();
    m_col_inflate_strides = op.col_inflate_strides();

    // The "effective" spatial size after inflating data with zeros.
    m_input_planes_eff = (m_inputPlanes - 1) * m_plane_inflate_strides + 1;
    m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
    m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
    m_patch_planes_eff =
        op.patch_planes() + (op.patch_planes() - 1) * (m_in_plane_strides - 1);
    m_patch_rows_eff =
        op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
    m_patch_cols_eff =
        op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);

    if (op.padding_explicit()) {
      m_outputPlanes = Eigen::divup(
          m_input_planes_eff +
              static_cast<Index>(op.padding_top_z() + op.padding_bottom_z()) -
              m_patch_planes_eff + 1,
          m_plane_strides);
      m_outputRows = Eigen::divup(
          m_input_rows_eff +
              static_cast<Index>(op.padding_top() + op.padding_bottom()) -
              m_patch_rows_eff + 1,
          m_row_strides);
      m_outputCols = Eigen::divup(
          m_input_cols_eff +
              static_cast<Index>(op.padding_left() + op.padding_right()) -
              m_patch_cols_eff + 1,
          m_col_strides);
      m_planePaddingTop = op.padding_top_z();
      m_rowPaddingTop = op.padding_top();
      m_colPaddingLeft = op.padding_left();
    } else {
      // Computing padding from the type
      switch (op.padding_type()) {
        case PADDING_VALID:
          m_outputPlanes = Eigen::divup(
              m_input_planes_eff - m_patch_planes_eff + 1, m_plane_strides);
          m_outputRows = Eigen::divup(m_input_rows_eff - m_patch_rows_eff + 1,
                                      m_row_strides);
          m_outputCols = Eigen::divup(m_input_cols_eff - m_patch_cols_eff + 1,
                                      m_col_strides);
          m_planePaddingTop = 0;
          m_rowPaddingTop = 0;
          m_colPaddingLeft = 0;
          break;
        case PADDING_SAME: {
          m_outputPlanes = Eigen::divup(m_input_planes_eff, m_plane_strides);
          m_outputRows = Eigen::divup(m_input_rows_eff, m_row_strides);
          m_outputCols = Eigen::divup(m_input_cols_eff, m_col_strides);
          const Index dz = numext::maxi<DenseIndex>(
              0, (m_outputPlanes - 1) * m_plane_strides + m_patch_planes_eff -
                     m_input_planes_eff);
          const Index dy = numext::maxi<DenseIndex>(
              0, (m_outputRows - 1) * m_row_strides + m_patch_rows_eff -
                     m_input_rows_eff);
          const Index dx = numext::maxi<DenseIndex>(
              0, (m_outputCols - 1) * m_col_strides + m_patch_cols_eff -
                     m_input_cols_eff);
          m_planePaddingTop = dz / 2;
          m_rowPaddingTop = dy / 2;
          m_colPaddingLeft = dx / 2;
          break;
        }
        default:
          eigen_assert(false && "unexpected padding");
      }
    }
    eigen_assert(m_outputRows > 0);
    eigen_assert(m_outputCols > 0);
    eigen_assert(m_outputPlanes > 0);

    // Dimensions for result of extraction.
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      // ColMajor
      // 0: depth
      // 1: patch_planes
      // 2: patch_rows
      // 3: patch_cols
      // 4: number of patches
      // 5 and beyond: anything else (such as batch).
      m_dimensions[0] = input_dims[0];
      m_dimensions[1] = op.patch_planes();
      m_dimensions[2] = op.patch_rows();
      m_dimensions[3] = op.patch_cols();
      m_dimensions[4] = m_outputPlanes * m_outputRows * m_outputCols;
      for (int i = 5; i < NumDims; ++i) {
        m_dimensions[i] = input_dims[i - 1];
      }
    } else {
      // RowMajor
      // NumDims-1: depth
      // NumDims-2: patch_planes
      // NumDims-3: patch_rows
      // NumDims-4: patch_cols
      // NumDims-5: number of patches
      // NumDims-6 and beyond: anything else (such as batch).
      m_dimensions[NumDims - 1] = input_dims[NumInputDims - 1];
      m_dimensions[NumDims - 2] = op.patch_planes();
      m_dimensions[NumDims - 3] = op.patch_rows();
      m_dimensions[NumDims - 4] = op.patch_cols();
      m_dimensions[NumDims - 5] = m_outputPlanes * m_outputRows * m_outputCols;
      for (int i = NumDims - 6; i >= 0; --i) {
        m_dimensions[i] = input_dims[i];
      }
    }

    // Strides for the output tensor.
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_rowStride = m_dimensions[1];
      m_colStride = m_dimensions[2] * m_rowStride;
      m_patchStride = m_colStride * m_dimensions[3] * m_dimensions[0];
      m_otherStride = m_patchStride * m_dimensions[4];
    } else {
      m_rowStride = m_dimensions[NumDims - 2];
      m_colStride = m_dimensions[NumDims - 3] * m_rowStride;
      m_patchStride =
          m_colStride * m_dimensions[NumDims - 4] * m_dimensions[NumDims - 1];
      m_otherStride = m_patchStride * m_dimensions[NumDims - 5];
    }

    // Strides for navigating through the input tensor.
    m_planeInputStride = m_inputDepth;
    m_rowInputStride = m_inputDepth * m_inputPlanes;
    m_colInputStride = m_inputDepth * m_inputRows * m_inputPlanes;
    m_otherInputStride =
        m_inputDepth * m_inputRows * m_inputCols * m_inputPlanes;

    m_outputPlanesRows = m_outputPlanes * m_outputRows;

    // Fast representations of different variables.
    m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
    m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
    m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
    m_fastRowStride = internal::TensorIntDivisor<Index>(m_rowStride);
    m_fastInputRowStride =
        internal::TensorIntDivisor<Index>(m_row_inflate_strides);
    m_fastInputColStride =
        internal::TensorIntDivisor<Index>(m_col_inflate_strides);
    m_fastInputPlaneStride =
        internal::TensorIntDivisor<Index>(m_plane_inflate_strides);
    m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
    m_fastOutputPlanes = internal::TensorIntDivisor<Index>(m_outputPlanes);
    m_fastOutputPlanesRows =
        internal::TensorIntDivisor<Index>(m_outputPlanesRows);

    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
    } else {
      m_fastOutputDepth =
          internal::TensorIntDivisor<Index>(m_dimensions[NumDims - 1]);
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
    return m_dimensions;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(
      Scalar* /*data*/) {
    m_impl.evalSubExprsIfNeeded(NULL);
    return true;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType
  coeff(Index index) const {
    // Patch index corresponding to the passed in index.
    const Index patchIndex = index / m_fastPatchStride;

    // Spatial offset within the patch. This has to be translated into 3D
    // coordinates within the patch.
    const Index patchOffset =
        (index - patchIndex * m_patchStride) / m_fastOutputDepth;

    // Batch, etc.
    const Index otherIndex = (NumDims == 5) ? 0 : index / m_fastOtherStride;
    const Index patch3DIndex =
        (NumDims == 5)
            ? patchIndex
            : (index - otherIndex * m_otherStride) / m_fastPatchStride;

    // Calculate column index in the input original tensor.
    const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
    const Index colOffset = patchOffset / m_fastColStride;
    const Index inputCol = colIndex * m_col_strides +
                           colOffset * m_in_col_strides - m_colPaddingLeft;
    const Index origInputCol =
        (m_col_inflate_strides == 1)
            ? inputCol
            : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
    if (inputCol < 0 || inputCol >= m_input_cols_eff ||
        ((m_col_inflate_strides != 1) &&
         (inputCol != origInputCol * m_col_inflate_strides))) {
      return Scalar(m_paddingValue);
    }

    // Calculate row index in the original input tensor.
    const Index rowIndex =
        (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
    const Index rowOffset =
        (patchOffset - colOffset * m_colStride) / m_fastRowStride;
    const Index inputRow = rowIndex * m_row_strides +
                           rowOffset * m_in_row_strides - m_rowPaddingTop;
    const Index origInputRow =
        (m_row_inflate_strides == 1)
            ? inputRow
            : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
    if (inputRow < 0 || inputRow >= m_input_rows_eff ||
        ((m_row_inflate_strides != 1) &&
         (inputRow != origInputRow * m_row_inflate_strides))) {
      return Scalar(m_paddingValue);
    }

    // Calculate plane index in the original input tensor.
    const Index planeIndex =
        (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
    const Index planeOffset =
        patchOffset - colOffset * m_colStride - rowOffset * m_rowStride;
    const Index inputPlane = planeIndex * m_plane_strides +
                             planeOffset * m_in_plane_strides -
                             m_planePaddingTop;
    const Index origInputPlane =
        (m_plane_inflate_strides == 1)
            ? inputPlane
            : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0);
    if (inputPlane < 0 || inputPlane >= m_input_planes_eff ||
        ((m_plane_inflate_strides != 1) &&
         (inputPlane != origInputPlane * m_plane_inflate_strides))) {
      return Scalar(m_paddingValue);
    }

    const int depth_index =
        static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0
                                                               : NumDims - 1;
    const Index depth =
        index - (index / m_fastOutputDepth) * m_dimensions[depth_index];

    const Index inputIndex = depth + origInputRow * m_rowInputStride +
                             origInputCol * m_colInputStride +
                             origInputPlane * m_planeInputStride +
                             otherIndex * m_otherInputStride;

    return m_impl.coeff(inputIndex);
  }

  template <int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType
  packet(Index index) const {
    EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
    eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());

    if (m_in_row_strides != 1 || m_in_col_strides != 1 ||
        m_row_inflate_strides != 1 || m_col_inflate_strides != 1 ||
        m_in_plane_strides != 1 || m_plane_inflate_strides != 1) {
      return packetWithPossibleZero(index);
    }

    const Index indices[2] = {index, index + PacketSize - 1};
    const Index patchIndex = indices[0] / m_fastPatchStride;
    if (patchIndex != indices[1] / m_fastPatchStride) {
      return packetWithPossibleZero(index);
    }
    const Index otherIndex =
        (NumDims == 5) ? 0 : indices[0] / m_fastOtherStride;
    eigen_assert(otherIndex == indices[1] / m_fastOtherStride);

    // Find the offset of the element wrt the location of the first element.
    const Index patchOffsets[2] = {
        (indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
        (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};

    const Index patch3DIndex =
        (NumDims == 5)
            ? patchIndex
            : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
    eigen_assert(patch3DIndex ==
                 (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);

    const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
    const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride,
                                 patchOffsets[1] / m_fastColStride};

    // Calculate col indices in the original input tensor.
    const Index inputCols[2] = {
        colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft,
        colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
    if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
      return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
    }

    if (inputCols[0] != inputCols[1]) {
      return packetWithPossibleZero(index);
    }

    const Index rowIndex =
        (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
    const Index rowOffsets[2] = {
        (patchOffsets[0] - colOffsets[0] * m_colStride) / m_fastRowStride,
        (patchOffsets[1] - colOffsets[1] * m_colStride) / m_fastRowStride};
    eigen_assert(rowOffsets[0] <= rowOffsets[1]);
    // Calculate col indices in the original input tensor.
    const Index inputRows[2] = {
        rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop,
        rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};

    if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
      return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
    }

    if (inputRows[0] != inputRows[1]) {
      return packetWithPossibleZero(index);
    }

    const Index planeIndex =
        (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
    const Index planeOffsets[2] = {
        patchOffsets[0] - colOffsets[0] * m_colStride -
            rowOffsets[0] * m_rowStride,
        patchOffsets[1] - colOffsets[1] * m_colStride -
            rowOffsets[1] * m_rowStride};
    eigen_assert(planeOffsets[0] <= planeOffsets[1]);
    const Index inputPlanes[2] = {
        planeIndex * m_plane_strides + planeOffsets[0] - m_planePaddingTop,
        planeIndex * m_plane_strides + planeOffsets[1] - m_planePaddingTop};

    if (inputPlanes[1] < 0 || inputPlanes[0] >= m_inputPlanes) {
      return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
    }

    if (inputPlanes[0] >= 0 && inputPlanes[1] < m_inputPlanes) {
      // no padding
      const int depth_index =
          static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0
                                                                 : NumDims - 1;
      const Index depth =
          index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
      const Index inputIndex = depth + inputRows[0] * m_rowInputStride +
                               inputCols[0] * m_colInputStride +
                               m_planeInputStride * inputPlanes[0] +
                               otherIndex * m_otherInputStride;
      return m_impl.template packet<Unaligned>(inputIndex);
    }

    return packetWithPossibleZero(index);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
  costPerCoeff(bool vectorized) const {
    const double compute_cost = 10 * TensorOpCost::DivCost<Index>() +
                                21 * TensorOpCost::MulCost<Index>() +
                                8 * TensorOpCost::AddCost<Index>();
    return TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
  }

  EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }

  const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }

  Index planePaddingTop() const { return m_planePaddingTop; }
  Index rowPaddingTop() const { return m_rowPaddingTop; }
  Index colPaddingLeft() const { return m_colPaddingLeft; }
  Index outputPlanes() const { return m_outputPlanes; }
  Index outputRows() const { return m_outputRows; }
  Index outputCols() const { return m_outputCols; }
  Index userPlaneStride() const { return m_plane_strides; }
  Index userRowStride() const { return m_row_strides; }
  Index userColStride() const { return m_col_strides; }
  Index userInPlaneStride() const { return m_in_plane_strides; }
  Index userInRowStride() const { return m_in_row_strides; }
  Index userInColStride() const { return m_in_col_strides; }
  Index planeInflateStride() const { return m_plane_inflate_strides; }
  Index rowInflateStride() const { return m_row_inflate_strides; }
  Index colInflateStride() const { return m_col_inflate_strides; }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType
  coeff(const array<Index, NumDims>& coords) const {
    // ColMajor
    //   0: depth, 1: patch_planes, 2: patch_rows, 3: patch_cols, 4: number of
    //   patches, 5: batches
    // RowMajor
    //   0: batches, 1: number of patches, 2: patch_cols , 3: patch_rows, 4:
    //   patch_planes, 5: depth
    const Index patch3DIndex =
        coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 4 : 1];
    const Index colOffset =
        coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 3 : 2];
    const Index rowOffset =
        coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 3];
    const Index planeOffset =
        coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 4];

    array<Index, NumDims - 1> inputCoords;

    const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
    const Index inputCol = colIndex * m_col_strides +
                           colOffset * m_in_col_strides - m_colPaddingLeft;
    const Index origInputCol =
        (m_col_inflate_strides == 1)
            ? inputCol
            : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
    if (inputCol < 0 || inputCol >= m_input_cols_eff ||
        ((m_col_inflate_strides != 1) &&
         (inputCol != origInputCol * m_col_inflate_strides))) {
      return Scalar(m_paddingValue);
    }

    const Index rowIndex =
        (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
    const Index inputRow = rowIndex * m_row_strides +
                           rowOffset * m_in_row_strides - m_rowPaddingTop;
    const Index origInputRow =
        (m_row_inflate_strides == 1)
            ? inputRow
            : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
    if (inputRow < 0 || inputRow >= m_input_rows_eff ||
        ((m_row_inflate_strides != 1) &&
         (inputRow != origInputRow * m_row_inflate_strides))) {
      return Scalar(m_paddingValue);
    }

    const Index planeIndex =
        patch3DIndex - colIndex * m_outputPlanesRows - rowIndex * m_outputRows;
    const Index inputPlane = planeIndex * m_plane_strides +
                             planeOffset * m_in_plane_strides -
                             m_planePaddingTop;
    const Index origInputPlane =
        (m_plane_inflate_strides == 1)
            ? inputPlane
            : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0);
    if (inputPlane < 0 || inputPlane >= m_input_planes_eff ||
        ((m_plane_inflate_strides != 1) &&
         (inputPlane != origInputPlane * m_plane_inflate_strides))) {
      return Scalar(m_paddingValue);
    }

    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      inputCoords[0] = coords[0];  // depth
      inputCoords[1] = origInputPlane;
      inputCoords[2] = origInputRow;
      inputCoords[3] = origInputCol;
      inputCoords[4] = coords[5];  // batch
    } else {
      inputCoords[4] = coords[5];  // depth
      inputCoords[3] = origInputPlane;
      inputCoords[2] = origInputRow;
      inputCoords[1] = origInputCol;
      inputCoords[0] = coords[0];  // batch
    }
    if (TensorEvaluator<ArgType, Device>::CoordAccess) {
      return m_impl.coeff(inputCoords);
    } else {
      Index inputIndex;
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        inputIndex = inputCoords[4] * m_otherInputStride +
                     inputCoords[3] * m_colInputStride +
                     inputCoords[2] * m_rowInputStride +
                     inputCoords[1] * m_planeInputStride + inputCoords[0];
      } else {
        inputIndex = inputCoords[0] * m_otherInputStride +
                     inputCoords[1] * m_colInputStride +
                     inputCoords[2] * m_rowInputStride +
                     inputCoords[3] * m_planeInputStride + inputCoords[4];
      }
      return m_impl.coeff(inputIndex);
    }
  }

 protected:
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType
  packetWithPossibleZero(Index index) const {
    EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type
        values[PacketSize];
    for (int i = 0; i < PacketSize; ++i) {
      values[i] = coeff(index + i);
    }
    PacketReturnType rslt = internal::pload<PacketReturnType>(values);
    return rslt;
  }

  Dimensions m_dimensions;

  // Parameters passed to the costructor.
  Index m_plane_strides;
  Index m_row_strides;
  Index m_col_strides;

  Index m_outputPlanes;
  Index m_outputRows;
  Index m_outputCols;

  Index m_planePaddingTop;
  Index m_rowPaddingTop;
  Index m_colPaddingLeft;

  Index m_in_plane_strides;
  Index m_in_row_strides;
  Index m_in_col_strides;

  Index m_plane_inflate_strides;
  Index m_row_inflate_strides;
  Index m_col_inflate_strides;

  // Cached input size.
  Index m_inputDepth;
  Index m_inputPlanes;
  Index m_inputRows;
  Index m_inputCols;

  // Other cached variables.
  Index m_outputPlanesRows;

  // Effective input/patch post-inflation size.
  Index m_input_planes_eff;
  Index m_input_rows_eff;
  Index m_input_cols_eff;
  Index m_patch_planes_eff;
  Index m_patch_rows_eff;
  Index m_patch_cols_eff;

  // Strides for the output tensor.
  Index m_otherStride;
  Index m_patchStride;
  Index m_rowStride;
  Index m_colStride;

  // Strides for the input tensor.
  Index m_planeInputStride;
  Index m_rowInputStride;
  Index m_colInputStride;
  Index m_otherInputStride;

  internal::TensorIntDivisor<Index> m_fastOtherStride;
  internal::TensorIntDivisor<Index> m_fastPatchStride;
  internal::TensorIntDivisor<Index> m_fastColStride;
  internal::TensorIntDivisor<Index> m_fastRowStride;
  internal::TensorIntDivisor<Index> m_fastInputPlaneStride;
  internal::TensorIntDivisor<Index> m_fastInputRowStride;
  internal::TensorIntDivisor<Index> m_fastInputColStride;
  internal::TensorIntDivisor<Index> m_fastInputColsEff;
  internal::TensorIntDivisor<Index> m_fastOutputPlanesRows;
  internal::TensorIntDivisor<Index> m_fastOutputPlanes;
  internal::TensorIntDivisor<Index> m_fastOutputDepth;

  Scalar m_paddingValue;

  TensorEvaluator<ArgType, Device> m_impl;
};

// Override the default TensorEvaluator for TensorVolumePatchOp for CPU.
#define OVERRIDE_EVALUATOR(Device)                                          \
  template <DenseIndex Planes, DenseIndex Rows, DenseIndex Cols,            \
            typename ArgType>                                               \
  struct TensorEvaluator<                                                   \
      const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, Device>       \
      : public CustomTensorEvaluator<Planes, Rows, Cols, ArgType, Device> { \
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(                  \
        const typename CustomTensorEvaluator<Planes, Rows, Cols, ArgType,   \
                                             Device>::XprType& op,          \
        const Device& device)                                               \
        : CustomTensorEvaluator<Planes, Rows, Cols, ArgType, Device>(       \
              op, device) {}                                                \
  };

OVERRIDE_EVALUATOR(Eigen::ThreadPoolDevice);
OVERRIDE_EVALUATOR(Eigen::DefaultDevice);

#undef OVERRIDE_EVALUATOR

};  // namespace Eigen

#endif  // TENSORFLOW_CORE_KERNELS_EIGEN_VOLUME_PATCH_H_