aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/data/single_threaded_executor_test.cc
blob: f8b57691975ea895b123659caf3a8aea9c7007f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/kernels/data/single_threaded_executor.h"

#include <algorithm>

#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/common_runtime/device_factory.h"
#include "tensorflow/core/common_runtime/executor.h"
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h"
#include "tensorflow/core/common_runtime/process_util.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/rendezvous.h"
#include "tensorflow/core/framework/versions.pb.h"
#include "tensorflow/core/graph/algorithm.h"
#include "tensorflow/core/graph/graph_constructor.h"
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/lib/random/simple_philox.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/platform/test_benchmark.h"
#include "tensorflow/core/platform/tracing.h"
#include "tensorflow/core/public/session_options.h"

namespace tensorflow {
namespace {

class ExecutorTest : public ::testing::Test {
 protected:
  ExecutorTest()
      : device_(DeviceFactory::NewDevice("CPU", {},
                                         "/job:localhost/replica:0/task:0")) {}

  ~ExecutorTest() override {
    // There should always be exactly one Ref left on the Rendezvous
    // when the test completes.
    CHECK(rendez_->Unref());
    delete exec_;
    delete device_;
  }

  // Resets executor_ with a new executor based on a graph 'gdef'.
  void Create(std::unique_ptr<const Graph> graph) {
    const int version = graph->versions().producer();
    LocalExecutorParams params;
    params.device = device_;
    params.create_kernel = [this, version](const NodeDef& ndef,
                                           OpKernel** kernel) {
      return CreateNonCachedKernel(device_, nullptr, ndef, version, kernel);
    };
    params.delete_kernel = [](OpKernel* kernel) {
      DeleteNonCachedKernel(kernel);
    };
    delete exec_;
    TF_CHECK_OK(NewSingleThreadedExecutor(params, std::move(graph), &exec_));
    runner_ = [](std::function<void()> fn) { fn(); };
    rendez_ = NewLocalRendezvous();
  }

  Status Run(Rendezvous* rendez) {
    Executor::Args args;
    args.rendezvous = rendez;
    args.runner = runner_;
    return exec_->Run(args);
  }

  Status Run(CallFrameInterface* call_frame) {
    Executor::Args args;
    args.call_frame = call_frame;
    args.runner = runner_;
    return exec_->Run(args);
  }

  Device* device_ = nullptr;
  Executor* exec_ = nullptr;
  Executor::Args::Runner runner_;
  Rendezvous* rendez_ = nullptr;
};

// A float val -> Tensor<float>
Tensor V(const float val) {
  Tensor tensor(DT_FLOAT, TensorShape({}));
  tensor.scalar<float>()() = val;
  return tensor;
}

// A int32 val -> Tensor<int32>
Tensor VI(const int32 val) {
  Tensor tensor(DT_INT32, TensorShape({}));
  tensor.scalar<int32>()() = val;
  return tensor;
}

// A bool val -> Tensor<bool>
Tensor VB(const bool val) {
  Tensor tensor(DT_BOOL, TensorShape({}));
  tensor.scalar<bool>()() = val;
  return tensor;
}

// A double val -> Tensor<double>
Tensor VD(const double val) {
  Tensor tensor(DT_DOUBLE, TensorShape({}));
  tensor.scalar<double>()() = val;
  return tensor;
}

// Tensor<float> -> a float val.
float V(const Tensor& tensor) {
  CHECK_EQ(tensor.dtype(), DT_FLOAT);
  CHECK(TensorShapeUtils::IsScalar(tensor.shape()));
  return tensor.scalar<float>()();
}

Rendezvous::ParsedKey Key(const string& sender, const uint64 incarnation,
                          const string& receiver, const string& name) {
  Rendezvous::ParsedKey result;
  TF_CHECK_OK(
      Rendezvous::ParseKey(Rendezvous::CreateKey(sender, incarnation, receiver,
                                                 name, FrameAndIter(0, 0)),
                           &result));
  return result;
}

TEST_F(ExecutorTest, SimpleAdd) {
  // c = a + b
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  auto in0 = test::graph::Arg(g.get(), 0, DT_FLOAT);
  auto in1 = test::graph::Arg(g.get(), 0, DT_FLOAT);
  auto tmp = test::graph::Add(g.get(), in0, in1);
  test::graph::Retval(g.get(), 0, tmp);
  FixupSourceAndSinkEdges(g.get());
  Create(std::move(g));
  FunctionCallFrame call_frame({DT_FLOAT, DT_FLOAT}, {DT_FLOAT});
  TF_ASSERT_OK(call_frame.SetArgs({V(1.0), V(1.0)}));
  TF_ASSERT_OK(Run(&call_frame));
  std::vector<Tensor> retvals;
  TF_ASSERT_OK(call_frame.ConsumeRetvals(&retvals, false));
  EXPECT_EQ(2.0, V(retvals[0]));  // out = 1.0 + 1.0 = 2.0
}

TEST_F(ExecutorTest, SelfAdd) {
  // v0 <- a
  // v1 = v0 + v0
  // v2 = v1 + v1
  // ... ...
  // v10 = v9 + v9
  //
  // b <- v10
  // All nodes are executed by one thread.
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  auto v = test::graph::Arg(g.get(), 0, DT_FLOAT);
  const int N = 10;
  for (int i = 1; i <= N; ++i) {
    v = test::graph::Add(g.get(), v, v);
  }
  // out <- v10
  test::graph::Retval(g.get(), 0, v);
  FixupSourceAndSinkEdges(g.get());
  Create(std::move(g));
  FunctionCallFrame call_frame({DT_FLOAT}, {DT_FLOAT});
  // a = 1.0
  TF_ASSERT_OK(call_frame.SetArgs({V(1.0)}));
  TF_ASSERT_OK(Run(&call_frame));
  std::vector<Tensor> retvals;
  TF_ASSERT_OK(call_frame.ConsumeRetvals(&retvals, false));
  EXPECT_EQ(1024.0, V(retvals[0]));  // b=v10=2*v9=4*v8=...=1024*a=1024.0
}

// Builds a graph which adds N copies of one variable "in". I.e.,
//     a + a + a + ... + a
// The returned graph is parenthesized ramdonly. I.e.,
//     a + ((a + a) + a)
//     (a + a) + (a + a)
//     ((a + a) + a) + a
// are all possibly generated.
void BuildTree(int N, Graph* g) {
  CHECK_GT(N, 1);
  // A single input node "in".
  auto in = test::graph::Arg(g, 0, DT_FLOAT);
  std::vector<Node*> nodes;
  int i = 0;
  // Duplicate "in" N times. Each copies is named as l0, l1, l2, ....
  for (; i < N; ++i) {
    nodes.push_back(test::graph::Identity(g, in, 0));
  }
  random::PhiloxRandom philox(0, 17);
  random::SimplePhilox rnd(&philox);
  while (nodes.size() > 1) {
    // Randomly pick two from nodes and add them. The resulting node
    // is named lik n10, n11, .... and is put back into "nodes".
    int x = rnd.Uniform(nodes.size());
    auto in0 = nodes[x];
    nodes[x] = nodes.back();
    nodes.resize(nodes.size() - 1);
    x = rnd.Uniform(nodes.size());
    auto in1 = nodes[x];
    // node = in0 + in1.
    nodes[x] = test::graph::Add(g, in0, in1);
  }
  // The final output node "out".
  test::graph::Retval(g, 0, nodes.back());
  FixupSourceAndSinkEdges(g);
}

TEST_F(ExecutorTest, RandomTree) {
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  BuildTree(4096, g.get());
  Create(std::move(g));
  FunctionCallFrame call_frame({DT_FLOAT}, {DT_FLOAT});
  TF_ASSERT_OK(call_frame.SetArgs({V(1.0)}));
  TF_ASSERT_OK(Run(&call_frame));
  std::vector<Tensor> retvals;
  TF_ASSERT_OK(call_frame.ConsumeRetvals(&retvals, false));
  EXPECT_EQ(4096.0, V(retvals[0]));
}

TEST_F(ExecutorTest, OpError) {
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  auto zero = test::graph::Constant(g.get(), V(0.0));
  auto inf = test::graph::Unary(g.get(), "Reciprocal", zero);
  auto check = test::graph::CheckNumerics(g.get(), inf, "message");
  auto two = test::graph::Constant(g.get(), V(2.0));
  test::graph::Binary(g.get(), "Mul", check, two);
  FixupSourceAndSinkEdges(g.get());
  Create(std::move(g));
  FunctionCallFrame call_frame({}, {});
  // Fails due to invalid dtype.
  EXPECT_TRUE(errors::IsInvalidArgument(Run(&call_frame)));
}

static void BM_executor(int iters, int width, int depth) {
#ifdef PLATFORM_GOOGLE
  BenchmarkUseRealTime();
#endif  // PLATFORM_GOOGLE
  Graph* g = new Graph(OpRegistry::Global());
  random::PhiloxRandom philox(1729, 17);
  random::SimplePhilox rand(&philox);
  uint64 cur = 0;
  uint32 r = 1 + rand.Rand32() % width;
  std::vector<Node*> ready_nodes;
  for (int i = 0; i < r; ++i) {
    ready_nodes.push_back(test::graph::NoOp(g, {}));
    ++cur;
  }
  for (int i = 0; i < depth; ++i) {
    std::random_shuffle(ready_nodes.begin(), ready_nodes.end());
    r = 1 + rand.Rand32() % (ready_nodes.size());
    std::vector<Node*> control_inputs;
    for (int j = 0; j < r; ++j) {
      control_inputs.push_back(ready_nodes.back());
      ready_nodes.pop_back();
    }
    Node* n = test::graph::NoOp(g, control_inputs);
    ++cur;
    r = 1 + rand.Rand32() % width;
    for (int j = 0; j < r; ++j) {
      ready_nodes.push_back(test::graph::NoOp(g, {n}));
      ++cur;
    }
  }
  FixupSourceAndSinkEdges(g);
#ifdef PLATFORM_GOOGLE
  SetBenchmarkLabel(strings::StrCat("Nodes = ", cur));
  SetBenchmarkItemsProcessed(cur * static_cast<int64>(iters));
#endif  // PLATFORM_GOOGLE
  test::Benchmark("cpu", g, nullptr, nullptr, nullptr,
                  "SINGLE_THREADED_EXECUTOR")
      .Run(iters);
}

// Tall skinny graphs
BENCHMARK(BM_executor)->ArgPair(16, 1024);
BENCHMARK(BM_executor)->ArgPair(32, 8192);

// Short fat graphs
BENCHMARK(BM_executor)->ArgPair(1024, 16);
BENCHMARK(BM_executor)->ArgPair(8192, 32);

// Tall fat graph
BENCHMARK(BM_executor)->ArgPair(1024, 1024);

// TODO(mrry): This benchmark currently crashes with a use-after free, because
// test::Benchmark::RunWithArgs() assumes that the executor will take ownership
// of the given graph, *and* keep its nodes (`x`, `y` and `z`) alive for the
// duration of the benchmark. Since the single threaded executor does not retain
// a copy of the graph, this fails.
//
// TODO(mrry): Add support for Arg/Retval "function call convention" in
// `test::Benchmark::RunWithArgs()`.
#if 0
#define ALICE "/job:j/replica:0/task:0/cpu:0"
#define BOB "/job:j/replica:0/task:0/gpu:0"

static void BM_FeedInputFetchOutput(int iters) {
  Graph* g = new Graph(OpRegistry::Global());
  // z = x + y: x and y are provided as benchmark inputs.  z is the
  // output of the benchmark.  Conceptually, the caller is ALICE, the
  // benchmark is BOB.
  Node* x = test::graph::Recv(g, "x", "float", ALICE, 1, BOB);
  Node* y = test::graph::Recv(g, "y", "float", ALICE, 1, BOB);
  Node* sum = test::graph::Add(g, x, y);
  Node* z = test::graph::Send(g, sum, "z", BOB, 1, ALICE);
  FixupSourceAndSinkEdges(g);
  Tensor val(DT_FLOAT, TensorShape({}));
  val.scalar<float>()() = 3.14;
  SetBenchmarkItemsProcessed(static_cast<int64>(iters));
  test::Benchmark("cpu", g, nullptr, nullptr, nullptr,
                  "SINGLE_THREADED_EXECUTOR")
      .RunWithArgs({{x, val}, {y, val}}, {z}, iters);
}
BENCHMARK(BM_FeedInputFetchOutput);
#endif

}  // namespace
}  // namespace tensorflow