aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/data/multi_device_iterator_ops.cc
blob: 5f143967d98b767097e7e369bb64d43b5576178f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <deque>

#include "tensorflow/core/common_runtime/process_function_library_runtime.h"
#include "tensorflow/core/framework/dataset.h"
#include "tensorflow/core/framework/function.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/resource_op_kernel.h"
#include "tensorflow/core/kernels/data/dataset_utils.h"
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/random/random.h"
#include "tensorflow/core/util/device_name_utils.h"

namespace tensorflow {
namespace data {
namespace {

struct HostBufferElement {
  Status status;
  bool end_of_sequence;
  std::vector<Tensor> value;
};

using MultiDeviceIteratorCallback =
    std::function<void(const HostBufferElement&)>;

class MultiDeviceIterator : public ResourceBase {
 public:
  MultiDeviceIterator(const DataTypeVector& output_types,
                      const std::vector<PartialTensorShape>& output_shapes,
                      const std::vector<string>& devices,
                      std::unique_ptr<FunctionLibraryDefinition> flib_def,
                      std::unique_ptr<ProcessFunctionLibraryRuntime> pflr,
                      FunctionLibraryRuntime* lib)
      : output_types_(output_types),
        output_shapes_(output_shapes),
        devices_(devices),
        flib_def_(std::move(flib_def)),
        pflr_(std::move(pflr)),
        lib_(lib) {
    DCHECK(lib_ != nullptr);
  }

  string DebugString() override {
    return strings::StrCat("MultiDeviceIterator for ", devices_.size(),
                           " devices");
  }

  Status Init(std::unique_ptr<IteratorBase> iterator, int64 max_buffer_size,
              int64* incarnation_id) {
    if (iterator) {
      TF_RETURN_IF_ERROR(
          VerifyTypesMatch(output_types_, iterator->output_dtypes()));
      TF_RETURN_IF_ERROR(
          VerifyShapesCompatible(output_shapes_, iterator->output_shapes()));
    }

    mutex_lock l(mu_);
    if (multi_device_buffer_) {
      multi_device_buffer_->Reset();
    }

    ++incarnation_id_;
    *incarnation_id = incarnation_id_;

    multi_device_buffer_.reset(
        new MultiDeviceBuffer(devices_.size(), max_buffer_size, incarnation_id_,
                              std::move(iterator)));
    return Status::OK();
  }

  void GetNextFromShard(IteratorContext* ctx, int shard_num,
                        int64 incarnation_id,
                        MultiDeviceIteratorCallback callback) {
    if (lib_ != nullptr) {
      ctx->set_lib(lib_);
    }
    tf_shared_lock l(mu_);
    multi_device_buffer_->GetNextFromShard(ctx, shard_num, incarnation_id,
                                           std::move(callback));
  }

  const DataTypeVector& output_types() const { return output_types_; }

  const std::vector<PartialTensorShape>& output_shapes() const {
    return output_shapes_;
  }

  std::shared_ptr<const FunctionLibraryDefinition> function_library() {
    tf_shared_lock l(mu_);
    return lib_def_;
  }

  FunctionLibraryRuntime* const lib() {
    tf_shared_lock l(mu_);
    return lib_;
  }

 private:
  // A private class that uses a background thread to keep a per device buffer
  // full.
  class MultiDeviceBuffer {
   public:
    MultiDeviceBuffer(size_t size, int64 max_buffer_size, int64 incarnation_id,
                      std::unique_ptr<IteratorBase> host_iterator)
        : buffer_(size),
          size_(size),
          max_buffer_size_(max_buffer_size),
          incarnation_id_(incarnation_id),
          host_iterator_(std::move(host_iterator)) {}

    ~MultiDeviceBuffer() {
      {
        mutex_lock l(mu_);
        if (!background_thread_started_) return;
      }
      Reset();
    }

    void Reset() LOCKS_EXCLUDED(mu_) {
      {
        mutex_lock l(mu_);
        if (background_thread_finished_) {
          return;
        }

        cancelled_ = true;
        // Wake up the background thread.
        for (int i = 0; i < size_; ++i) {
          buffer_[i].cond_var.notify_all();
        }

        // Make sure background thread has finished first.
        while (!background_thread_finished_) {
          shutdown_cond_var_.wait(l);
        }
      }
      RunPendingCallbacks();
    }

    void GetNextFromShard(IteratorContext* ctx, int shard_num,
                          int64 incarnation_id,
                          MultiDeviceIteratorCallback callback) {
      HostBufferElement elem;
      if (incarnation_id_ != incarnation_id) {
        elem.status = errors::InvalidArgument("Invalid incarnation id");
        callback(elem);
        return;
      }

      bool produced_output = false;
      {
        mutex_lock l(mu_);
        if (cancelled_) {
          elem.status = errors::Cancelled("Cancelled Multidevice iterator");
          callback(elem);
          return;
        }

        EnsureBackgroundThreadStarted(ctx);

        if (!buffer_[shard_num].data.empty()) {
          produced_output = true;
          std::swap(elem, buffer_[shard_num].data.front());
          buffer_[shard_num].data.pop_front();
          // Wake up background thread if it is blocked on this element.
          if (buffer_[shard_num].data.size() == max_buffer_size_ - 1) {
            buffer_[shard_num].cond_var.notify_all();
          }
        } else {
          if (background_thread_finished_) {
            produced_output = true;
            elem.end_of_sequence = true;
          } else {
            buffer_[shard_num].callbacks.push_back(std::move(callback));
            callback = nullptr;
          }
        }
      }

      if (produced_output) {
        callback(elem);
      }
    }

   private:
    void EnsureBackgroundThreadStarted(IteratorContext* ctx)
        EXCLUSIVE_LOCKS_REQUIRED(mu_) {
      if (!background_thread_) {
        background_thread_.reset(ctx->env()->StartThread(
            {}, "multi_device_iterator_background_thread",
            std::bind(&MultiDeviceIterator::MultiDeviceBuffer::BackgroundThread,
                      this, new IteratorContext(*ctx))));
      }
    }

    void RunPendingCallbacks() LOCKS_EXCLUDED(mu_) {
      // Run all remaining callbacks.
      std::vector<MultiDeviceIteratorCallback> cancellation_callbacks;
      std::vector<HostBufferElement> cancellation_elements;
      {
        mutex_lock l(mu_);

        for (int i = 0; i < size_; ++i) {
          while (!buffer_[i].callbacks.empty()) {
            if (buffer_[i].data.empty()) {
              HostBufferElement elem;
              elem.status =
                  errors::Cancelled("Cancelled and buffer not filled.");
              cancellation_elements.push_back(std::move(elem));
            } else {
              cancellation_elements.push_back(
                  std::move(buffer_[i].data.front()));
              buffer_[i].data.pop_front();
            }
            cancellation_callbacks.push_back(
                std::move(buffer_[i].callbacks.front()));
            buffer_[i].callbacks.pop_front();
          }
        }
      }
      for (int i = 0; i < cancellation_callbacks.size(); ++i) {
        cancellation_callbacks[i](cancellation_elements[i]);
      }
    }

    void BackgroundThread(IteratorContext* ctx) {
      {
        mutex_lock l(mu_);
        background_thread_started_ = true;
      }
      std::unique_ptr<IteratorContext> cleanup(ctx);
      int shard_to_fetch = 0;
      while (true) {
        HostBufferElement elem;
        MultiDeviceIteratorCallback callback = nullptr;
        bool end_of_iterator = false;

        {
          mutex_lock l(mu_);
          while (!cancelled_ &&
                 buffer_[shard_to_fetch].data.size() >= max_buffer_size_) {
            buffer_[shard_to_fetch].cond_var.wait(l);
          }

          if (cancelled_) {
            background_thread_finished_ = true;
            shutdown_cond_var_.notify_all();
            return;
          }
        }

        elem.status =
            host_iterator_->GetNext(ctx, &elem.value, &elem.end_of_sequence);

        if (elem.status.ok() && elem.end_of_sequence) {
          end_of_iterator = true;
        }

        {
          mutex_lock l(mu_);
          // Try to find a callback, else just push stuff into buffer.
          if (!buffer_[shard_to_fetch].callbacks.empty()) {
            callback = buffer_[shard_to_fetch].callbacks.front();
            buffer_[shard_to_fetch].callbacks.pop_front();
          } else {
            buffer_[shard_to_fetch].data.push_back(std::move(elem));
            elem = HostBufferElement();
          }
        }

        if (callback) {
          (*ctx->runner())(std::bind(std::move(callback), std::move(elem)));
        }

        // Finish off the thread if we reach the end of the iterator. Runs
        // pending callbacks.
        if (end_of_iterator) {
          {
            mutex_lock l(mu_);
            background_thread_finished_ = true;
            shutdown_cond_var_.notify_all();
          }
          RunPendingCallbacks();
          return;
        }
        shard_to_fetch = (shard_to_fetch + 1) % size_;
      }
    }

    struct HostBuffer {
      condition_variable cond_var;
      std::deque<HostBufferElement> data;
      std::deque<MultiDeviceIteratorCallback> callbacks;
    };

    mutex mu_;
    std::unique_ptr<Thread> background_thread_ GUARDED_BY(mu_);
    bool background_thread_finished_ GUARDED_BY(mu_) = false;
    bool background_thread_started_ GUARDED_BY(mu_) = false;
    bool cancelled_ GUARDED_BY(mu_) = false;
    condition_variable shutdown_cond_var_ GUARDED_BY(mu_);

    std::vector<HostBuffer> buffer_;

    const size_t size_;
    const int64 max_buffer_size_;
    const int64 incarnation_id_;
    const std::unique_ptr<IteratorBase> host_iterator_;
  };

  mutex mu_;
  const DataTypeVector output_types_;
  const std::vector<PartialTensorShape> output_shapes_;
  const std::vector<string> devices_;
  const std::unique_ptr<FunctionLibraryDefinition> flib_def_;
  const std::unique_ptr<ProcessFunctionLibraryRuntime> pflr_;
  FunctionLibraryRuntime* const lib_ = nullptr;  // not owned.
  std::shared_ptr<const FunctionLibraryDefinition> lib_def_ GUARDED_BY(mu_);

  int64 incarnation_id_ GUARDED_BY(mu_) = 0;
  std::unique_ptr<MultiDeviceBuffer> multi_device_buffer_ GUARDED_BY(mu_);
};

// Just creates a MultiDeviceIterator and returns it.
class MultiDeviceIteratorHandleOp : public OpKernel {
 public:
  explicit MultiDeviceIteratorHandleOp(OpKernelConstruction* ctx)
      : OpKernel(ctx), graph_def_version_(ctx->graph_def_version()) {
    OP_REQUIRES_OK(ctx, ctx->GetAttr("output_types", &output_types_));
    OP_REQUIRES_OK(ctx, ctx->GetAttr("output_shapes", &output_shapes_));
    OP_REQUIRES_OK(ctx, ctx->GetAttr("shared_name", &name_));
    OP_REQUIRES_OK(ctx, ctx->GetAttr("container", &container_));
    OP_REQUIRES_OK(ctx, ctx->GetAttr("devices", &devices_));
  }

  // The resource is deleted from the resource manager only when it is private
  // to kernel.
  ~MultiDeviceIteratorHandleOp() override {
    if (resource_ != nullptr) {
      resource_->Unref();
      if (cinfo_.resource_is_private_to_kernel()) {
        if (!cinfo_.resource_manager()
                 ->template Delete<MultiDeviceIterator>(cinfo_.container(),
                                                        cinfo_.name())
                 .ok()) {
          // Do nothing; the resource can have been deleted by session resets.
        }
      }
    }
  }

  void Compute(OpKernelContext* context) override LOCKS_EXCLUDED(mu_) {
    {
      mutex_lock l(mu_);
      if (resource_ == nullptr) {
        FunctionLibraryRuntime* lib;
        std::unique_ptr<FunctionLibraryDefinition> flib_def(nullptr);
        std::unique_ptr<ProcessFunctionLibraryRuntime> pflr(nullptr);
        OP_REQUIRES_OK(context, context->function_library()->Clone(
                                    &flib_def, &pflr, &lib));
        ResourceMgr* mgr = context->resource_manager();
        OP_REQUIRES_OK(context, cinfo_.Init(mgr, def()));

        MultiDeviceIterator* resource;
        OP_REQUIRES_OK(
            context,
            mgr->LookupOrCreate<MultiDeviceIterator>(
                cinfo_.container(), cinfo_.name(), &resource,
                [this, lib, &flib_def, &pflr](MultiDeviceIterator** ret)
                    EXCLUSIVE_LOCKS_REQUIRED(mu_) {
                      *ret = new MultiDeviceIterator(
                          output_types_, output_shapes_, devices_,
                          std::move(flib_def), std::move(pflr), lib);
                      return Status::OK();
                    }));

        Status s = VerifyResource(resource);
        if (TF_PREDICT_FALSE(!s.ok())) {
          resource->Unref();
          context->SetStatus(s);
          return;
        }

        resource_ = resource;
      }
    }
    OP_REQUIRES_OK(context, MakeResourceHandleToOutput(
                                context, 0, cinfo_.container(), cinfo_.name(),
                                MakeTypeIndex<MultiDeviceIterator>()));
  }

 private:
  // During the first Compute(), resource is either created or looked up using
  // shared_name. In the latter case, the resource found should be verified if
  // it is compatible with this op's configuration. The verification may fail in
  // cases such as two graphs asking queues of the same shared name to have
  // inconsistent capacities.
  Status VerifyResource(MultiDeviceIterator* resource) {
    TF_RETURN_IF_ERROR(
        VerifyTypesMatch(output_types_, resource->output_types()));
    TF_RETURN_IF_ERROR(
        VerifyShapesCompatible(output_shapes_, resource->output_shapes()));
    return Status::OK();
  }

  mutex mu_;
  ContainerInfo cinfo_;  // Written once under mu_ then constant afterwards.
  MultiDeviceIterator* resource_ GUARDED_BY(mu_) = nullptr;
  DataTypeVector output_types_;
  std::vector<PartialTensorShape> output_shapes_;
  const int graph_def_version_;
  string name_;
  string container_;
  std::vector<string> devices_;
};

REGISTER_KERNEL_BUILDER(Name("MultiDeviceIterator").Device(DEVICE_CPU),
                        MultiDeviceIteratorHandleOp);

// Calls init on the MultiDeviceIterator.
class MultiDeviceIteratorInitOp : public OpKernel {
 public:
  explicit MultiDeviceIteratorInitOp(OpKernelConstruction* ctx)
      : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    const Tensor* tensor_max_buffer_size;
    OP_REQUIRES_OK(ctx, ctx->input("max_buffer_size", &tensor_max_buffer_size));
    int64 max_buffer_size = tensor_max_buffer_size->scalar<int64>()();

    DatasetBase* dataset;
    OP_REQUIRES_OK(ctx, GetDatasetFromVariantTensor(ctx->input(0), &dataset));
    MultiDeviceIterator* resource;
    OP_REQUIRES_OK(ctx,
                   LookupResource(ctx, HandleFromInput(ctx, 1), &resource));
    core::ScopedUnref unref(resource);

    std::unique_ptr<IteratorBase> iterator;
    IteratorContext iter_ctx(ctx);
    iter_ctx.set_lib(resource->lib());
    OP_REQUIRES_OK(
        ctx, dataset->MakeIterator(std::move(iter_ctx), "Iterator", &iterator));
    int64 incarnation_id;
    OP_REQUIRES_OK(ctx, resource->Init(std::move(iterator), max_buffer_size,
                                       &incarnation_id));
    Tensor tensor_incarnation_id(DT_INT64, TensorShape({}));
    tensor_incarnation_id.scalar<int64>()() = incarnation_id;
    OP_REQUIRES_OK(ctx,
                   ctx->set_output("incarnation_id", tensor_incarnation_id));
  }
};

REGISTER_KERNEL_BUILDER(Name("MultiDeviceIteratorInit").Device(DEVICE_CPU),
                        MultiDeviceIteratorInitOp);

// Calls GetNextFromShard(shard) and returns a vector of Tensors as output.
// TODO(rohanj): Implement using BackgroundWorker that Derek built?
class MultiDeviceIteratorGetNextFromShardOp : public AsyncOpKernel {
 public:
  explicit MultiDeviceIteratorGetNextFromShardOp(OpKernelConstruction* ctx)
      : AsyncOpKernel(ctx),
        thread_pool_(new thread::ThreadPool(
            ctx->env(), ThreadOptions(),
            strings::StrCat("multi_device_iterator_get_next_thread_",
                            SanitizeThreadSuffix(name())),
            1 /* num_threads */, false /* low_latency_hint */)) {}

  void ComputeAsync(OpKernelContext* ctx, DoneCallback done) override {
    const Tensor* tensor_shard_num;
    OP_REQUIRES_OK_ASYNC(ctx, ctx->input("shard_num", &tensor_shard_num), done);
    int32 shard_num = tensor_shard_num->scalar<int32>()();

    const Tensor* tensor_incarnation_id;
    OP_REQUIRES_OK_ASYNC(
        ctx, ctx->input("incarnation_id", &tensor_incarnation_id), done);
    int64 incarnation_id = tensor_incarnation_id->scalar<int64>()();

    MultiDeviceIterator* iterator;
    OP_REQUIRES_OK_ASYNC(
        ctx, LookupResource(ctx, HandleFromInput(ctx, 0), &iterator), done);
    thread_pool_->Schedule(std::bind(
        [ctx, iterator, shard_num, incarnation_id](DoneCallback done) {
          IteratorContext::Params params;
          params.env = ctx->env();
          params.runner = *(ctx->runner());
          params.function_library = iterator->function_library();
          DeviceBase* device = ctx->function_library()->device();
          params.allocator_getter = [device](AllocatorAttributes attrs) {
            return device->GetAllocator(attrs);
          };
          IteratorContext iter_ctx(std::move(params));

          MultiDeviceIteratorCallback callback = std::bind(
              [ctx](const HostBufferElement& elem, DoneCallback done) {
                // iterator->Unref();
                Status s = elem.status;
                if (!s.ok()) {
                  ctx->SetStatus(s);
                } else if (elem.end_of_sequence) {
                  ctx->SetStatus(errors::OutOfRange("End of sequence"));
                } else {
                  for (int i = 0; i < elem.value.size(); ++i) {
                    ctx->set_output(i, elem.value[i]);
                  }
                }
                done();
              },
              std::placeholders::_1, std::move(done));

          iterator->GetNextFromShard(&iter_ctx, shard_num, incarnation_id,
                                     callback);
          iterator->Unref();
        },
        std::move(done)));
  }

 private:
  std::unique_ptr<thread::ThreadPool> thread_pool_;
};

REGISTER_KERNEL_BUILDER(
    Name("MultiDeviceIteratorGetNextFromShard").Device(DEVICE_CPU),
    MultiDeviceIteratorGetNextFromShardOp);

class MultiDeviceIteratorToStringHandleOp : public OpKernel {
 public:
  explicit MultiDeviceIteratorToStringHandleOp(OpKernelConstruction* ctx)
      : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    const Tensor& resource_handle_t = ctx->input(0);
    OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(resource_handle_t.shape()),
                errors::InvalidArgument("resource_handle must be a scalar"));

    // Validate that the handle corresponds to a real resource, and
    // that it is an MultiDeviceIterator.
    MultiDeviceIterator* resource;
    OP_REQUIRES_OK(ctx,
                   LookupResource(ctx, HandleFromInput(ctx, 0), &resource));
    resource->Unref();

    Tensor* string_handle_t;
    OP_REQUIRES_OK(ctx,
                   ctx->allocate_output(0, TensorShape({}), &string_handle_t));
    string_handle_t->scalar<string>()() =
        resource_handle_t.scalar<ResourceHandle>()().SerializeAsString();
  }
};

REGISTER_KERNEL_BUILDER(
    Name("MultiDeviceIteratorToStringHandle").Device(DEVICE_CPU),
    MultiDeviceIteratorToStringHandleOp);

class MultiDeviceIteratorFromStringHandleOp : public OpKernel {
 public:
  explicit MultiDeviceIteratorFromStringHandleOp(OpKernelConstruction* ctx)
      : OpKernel(ctx) {
    OP_REQUIRES_OK(ctx, ctx->GetAttr("output_types", &output_types_));
    OP_REQUIRES_OK(ctx, ctx->GetAttr("output_shapes", &output_shapes_));
    OP_REQUIRES(
        ctx,
        output_types_.empty() || output_shapes_.empty() ||
            output_types_.size() == output_shapes_.size(),
        errors::InvalidArgument("If both 'output_types' and 'output_shapes' "
                                "are set, they must have the same length."));
  }

  void Compute(OpKernelContext* ctx) override {
    const Tensor& string_handle_t = ctx->input(0);
    OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(string_handle_t.shape()),
                errors::InvalidArgument("string_handle must be a scalar"));

    ResourceHandle resource_handle;
    OP_REQUIRES(
        ctx,
        resource_handle.ParseFromString(string_handle_t.scalar<string>()()),
        errors::InvalidArgument(
            "Could not parse string_handle as a valid ResourceHandle"));

    OP_REQUIRES(
        ctx, resource_handle.device() == ctx->device()->attributes().name(),
        errors::InvalidArgument("Attempted create an iterator on device \"",
                                ctx->device()->attributes().name(),
                                "\" from handle defined on device \"",
                                resource_handle.device(), "\""));

    // Validate that the handle corresponds to a real resource, and
    // that it is an MultiDeviceIterator.
    MultiDeviceIterator* resource;
    OP_REQUIRES_OK(ctx, LookupResource(ctx, resource_handle, &resource));
    core::ScopedUnref unref_iterator(resource);
    if (!output_types_.empty()) {
      OP_REQUIRES_OK(ctx,
                     VerifyTypesMatch(output_types_, resource->output_types()));
    }
    if (!output_shapes_.empty()) {
      OP_REQUIRES_OK(ctx, VerifyShapesCompatible(output_shapes_,
                                                 resource->output_shapes()));
    }

    Tensor* resource_handle_t;
    OP_REQUIRES_OK(
        ctx, ctx->allocate_output(0, TensorShape({}), &resource_handle_t));
    resource_handle_t->scalar<ResourceHandle>()() = resource_handle;
  }

 private:
  DataTypeVector output_types_;
  std::vector<PartialTensorShape> output_shapes_;
};

REGISTER_KERNEL_BUILDER(
    Name("MultiDeviceIteratorFromStringHandle").Device(DEVICE_CPU),
    MultiDeviceIteratorFromStringHandleOp);

}  // namespace
}  // namespace data
}  // namespace tensorflow