aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/cwise_ops_common.h
blob: 0b572078329318328fcab2e2a8e5fed97d911abd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/* Copyright 2015 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_KERNELS_CWISE_OPS_COMMON_H_
#define TENSORFLOW_KERNELS_CWISE_OPS_COMMON_H_

// See docs in ../ops/math_ops.cc.

#define EIGEN_USE_THREADS

#include "tensorflow/core/kernels/cwise_ops.h"

#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor_types.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/util/bcast.h"

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;
typedef Eigen::GpuDevice GPUDevice;

class BinaryOpShared : public OpKernel {
 public:
  explicit BinaryOpShared(OpKernelConstruction* ctx, DataType out, DataType in);

 protected:
  struct BinaryOpState {
    // Sets up bcast with the shape of in0 and in1, ensures that the bcast
    // is valid, and if so, allocates out using ctx->output(...).
    // Caller must check ctx->status() upon return for non-ok status.
    // If ctx->status().ok() is true, then out is guaranteed to be allocated.
    BinaryOpState(OpKernelContext* ctx);

    BCast bcast;
    Tensor* out = nullptr;
  };

  template <int NDIMS>
  static Eigen::array<Eigen::DenseIndex, NDIMS> ToIndexArray(
      const BCast::Vec& vec) {
    CHECK_EQ(vec.size(), NDIMS);
    Eigen::array<Eigen::DenseIndex, NDIMS> ret;
    for (int i = 0; i < NDIMS; ++i) ret[i] = vec[i];
    return ret;
  }
  void SetUnimplementedError(OpKernelContext* ctx);
};

// Coefficient-wise binary operations:
//   Device: E.g., CPUDevice, GPUDevice.
//   Functor: defined in cwise_functors.h. E.g., functor::add2.
template <typename Device, typename Functor>
class BinaryOp : public BinaryOpShared {
 public:
  typedef typename Functor::in_type Tin;    // Input scalar data type.
  typedef typename Functor::out_type Tout;  // Output scalar data type.

  explicit BinaryOp(OpKernelConstruction* ctx)
      : BinaryOpShared(ctx, DataTypeToEnum<Tout>::v(),
                       DataTypeToEnum<Tin>::v()) {}

  void Compute(OpKernelContext* ctx) override {
    const Tensor& in0 = ctx->input(0);
    const Tensor& in1 = ctx->input(1);
    // 'state': Shared helper not dependent on T to reduce code size
    BinaryOpState state(ctx);
    if (!ctx->status().ok()) return;
    Tensor* out = state.out;
    BCast* bcast = &state.bcast;
    if (out->NumElements() == 0) {
      return;
    }
    const int ndims = bcast->x_reshape().size();
    if (ndims <= 1) {
      if (in1.NumElements() == 1) {
        // tensor op scalar
        functor::BinaryFunctor<Device, Functor, 1>().Right(
            ctx->eigen_device<Device>(), out->flat<Tout>(), in0.flat<Tin>(),
            in1.scalar<Tin>());
        return;
      }
      if (in0.NumElements() == 1) {
        // scalar op tensor
        functor::BinaryFunctor<Device, Functor, 1>().Left(
            ctx->eigen_device<Device>(), out->flat<Tout>(), in0.scalar<Tin>(),
            in1.flat<Tin>());
        return;
      }
      functor::BinaryFunctor<Device, Functor, 1>()(
          ctx->eigen_device<Device>(), out->flat<Tout>(), in0.flat<Tin>(),
          in1.flat<Tin>());
      return;
    }

    if (ndims == 2) {
      functor::BinaryFunctor<Device, Functor, 2>().BCast(
          ctx->eigen_device<Device>(),
          out->shaped<Tout, 2>(bcast->result_shape()),
          in0.shaped<Tin, 2>(bcast->x_reshape()),
          ToIndexArray<2>(bcast->x_bcast()),
          in1.shaped<Tin, 2>(bcast->y_reshape()),
          ToIndexArray<2>(bcast->y_bcast()));
      return;
    }

    if (ndims == 3) {
      functor::BinaryFunctor<Device, Functor, 3>().BCast(
          ctx->eigen_device<Device>(),
          out->shaped<Tout, 3>(bcast->result_shape()),
          in0.shaped<Tin, 3>(bcast->x_reshape()),
          ToIndexArray<3>(bcast->x_bcast()),
          in1.shaped<Tin, 3>(bcast->y_reshape()),
          ToIndexArray<3>(bcast->y_bcast()));
      return;
    }

    SetUnimplementedError(ctx);
  }

 private:
};

// Coefficient-wise unary operations:
//   Device: E.g., CPUDevice, GPUDevice.
//   Functor: defined in cwise_functors.h. E.g., functor::sqrt.
template <typename Device, typename Functor>
class UnaryOp : public OpKernel {
 public:
  typedef typename Functor::in_type Tin;    // Input scalar data type.
  typedef typename Functor::out_type Tout;  // Output scalar data type.
  // Tin may be different from Tout. E.g., abs: complex64 -> float

  explicit UnaryOp(OpKernelConstruction* ctx) : OpKernel(ctx) {
    auto in = DataTypeToEnum<Tin>::v();
    auto out = DataTypeToEnum<Tout>::v();
    OP_REQUIRES_OK(ctx, ctx->MatchSignature({in}, {out}));
  }

  void Compute(OpKernelContext* ctx) override {
    const Tensor& inp = ctx->input(0);
    Tensor* out = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, inp.shape(), &out));
    functor::UnaryFunctor<Device, Functor>()(
        ctx->eigen_device<Device>(), out->flat<Tout>(), inp.flat<Tin>());
  }
};

// Coefficient-wise select operation.
//   Device: E.g., CPUDevice, GPUDevice.
template <typename Device, typename T>
class SelectOp : public OpKernel {
 public:
  explicit SelectOp(OpKernelConstruction* ctx) : OpKernel(ctx) {
    auto dt = DataTypeToEnum<T>::v();
    OP_REQUIRES_OK(ctx, ctx->MatchSignature({DT_BOOL, dt, dt}, {dt}));
  }

  void Compute(OpKernelContext* ctx) override {
    const Tensor& in0 = ctx->input(0);
    const Tensor& in1 = ctx->input(1);
    const Tensor& in2 = ctx->input(2);
    if (!ctx->ValidateInputsAreSameShape(this)) return;
    Tensor* out = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, in0.shape(), &out));
    functor::SelectFunctor<Device, T> func;
    func(ctx->eigen_device<Device>(), out->flat<T>(), in0.flat<bool>(),
         in1.flat<T>(), in2.flat<T>());
  }
};

namespace functor {

// For CPUDevice, we do operations inline if the resulting tensor is
// modestly sized.
static bool DoInline(size_t size) { return size <= 32768; }

template <typename D, typename OUT, typename RHS>
void Assign(const D& d, OUT out, RHS rhs) {
  if (DoInline(out.size())) {
    out = rhs;
  } else {
    out.device(d) = rhs;
  }
}

// Partial specialization of BinaryFunctor<Device=CPUDevice, Functor>.
template <typename Functor, int NDIMS>
struct BinaryFunctor<CPUDevice, Functor, NDIMS> {
  void operator()(const CPUDevice& d, typename Functor::tout_type out,
                  typename Functor::tin_type in0,
                  typename Functor::tin_type in1) {
    Assign(d, out, in0.binaryExpr(in1, typename Functor::func()));
  }

  void Left(const CPUDevice& d, typename Functor::tout_type out,
            typename Functor::tscalar_type scalar,
            typename Functor::tin_type in) {
    typedef typename Functor::out_type Tout;
    typedef typename Functor::in_type Tin;
    typedef typename Functor::func Binary;
    typedef typename Eigen::internal::scalar_left<Tout, Tin, Binary> Unary;
    Assign(d, out, in.unaryExpr(Unary(scalar.data())));
  }

  void Right(const CPUDevice& d, typename Functor::tout_type out,
             typename Functor::tin_type in,
             typename Functor::tscalar_type scalar) {
    typedef typename Functor::out_type Tout;
    typedef typename Functor::in_type Tin;
    typedef typename Functor::func Binary;
    typedef typename Eigen::internal::scalar_right<Tout, Tin, Binary> Unary;
    Assign(d, out, in.unaryExpr(Unary(scalar.data())));
  }

#if !defined(EIGEN_HAS_INDEX_LIST)
  inline Eigen::DSizes<int, 2> NByOne(int n) {
    return Eigen::DSizes<int, 2>(n, 1);
  }
  inline Eigen::DSizes<int, 2> OneByM(int m) {
    return Eigen::DSizes<int, 2>(1, m);
  }
#else
  inline Eigen::IndexList<int, Eigen::type2index<1>> NByOne(int n) {
    Eigen::IndexList<int, Eigen::type2index<1>> ret;
    ret.set(0, n);
    return ret;
  }
  inline Eigen::IndexList<Eigen::type2index<1>, int> OneByM(int m) {
    Eigen::IndexList<Eigen::type2index<1>, int> ret;
    ret.set(1, m);
    return ret;
  }
#endif

  void BCast(const CPUDevice& dev,
             typename TTypes<typename Functor::out_type, NDIMS>::Tensor out,
             typename TTypes<typename Functor::in_type, NDIMS>::ConstTensor in0,
             typename Eigen::array<Eigen::DenseIndex, NDIMS> bcast0,
             typename TTypes<typename Functor::in_type, NDIMS>::ConstTensor in1,
             typename Eigen::array<Eigen::DenseIndex, NDIMS> bcast1) {
    typedef typename Functor::in_type T;
    typename Functor::func func;
    if ((NDIMS == 2) && Functor::use_bcast_optimization &&
        use_bcast_optimization<T>::value) {
      // Optimize for speed by using Eigen::type2index and avoid
      // .broadcast() when we know its a no-op.
      //
      // Here, we need to handle 6 cases depending on how many "1"
      // exist in in0 and in1's shapes (4 numbers in total). It's not
      // possible that two shapes have more than 2 1s because those
      // are simplified to NDIMS==1 case.
      //
      // Because this optimization increases the binary size for each
      // Functor (+, -, *, /, <, <=, etc.), type and ndim combination.
      // we only apply such optimization for selected ops/types/ndims.
      //
      // Because NDIMS, Functor::use_broadcast_optimization and
      // use_broadcast_optimization<T> are compile-time constant, gcc
      // does a decent job avoiding generating code when conditions
      // are not met.
      const int a = in0.dimension(0);  // in0 is shape [a, b]
      const int b = in0.dimension(1);
      const int c = in1.dimension(0);  // in1 is shape [c, d]
      const int d = in1.dimension(1);
      if ((a == 1) && (d == 1)) {
        auto lhs = in0.reshape(OneByM(b)).broadcast(NByOne(c));
        auto rhs = in1.reshape(NByOne(c)).broadcast(OneByM(b));
        Assign(dev, out, lhs.binaryExpr(rhs, func));
        return;
      }
      if ((b == 1) && (c == 1)) {
        auto lhs = in0.reshape(NByOne(a)).broadcast(OneByM(d));
        auto rhs = in1.reshape(OneByM(d)).broadcast(NByOne(a));
        Assign(dev, out, lhs.binaryExpr(rhs, func));
        return;
      }
      if (a == 1) {
        auto lhs = in0.reshape(OneByM(b)).broadcast(NByOne(c));
        auto rhs = in1;
        Assign(dev, out, lhs.binaryExpr(rhs, func));
        return;
      }
      if (b == 1) {
        auto lhs = in0.reshape(NByOne(a)).broadcast(OneByM(d));
        auto rhs = in1;
        Assign(dev, out, lhs.binaryExpr(rhs, func));
        return;
      }
      if (c == 1) {
        auto lhs = in0;
        auto rhs = in1.reshape(OneByM(d)).broadcast(NByOne(a));
        Assign(dev, out, lhs.binaryExpr(rhs, func));
        return;
      }
      if (d == 1) {
        auto lhs = in0;
        auto rhs = in1.reshape(NByOne(c)).broadcast(OneByM(b));
        Assign(dev, out, lhs.binaryExpr(rhs, func));
        return;
      }

      const bool bcast0_all_one = AllOne<NDIMS>(bcast0);
      const bool bcast1_all_one = AllOne<NDIMS>(bcast1);
      if (bcast0_all_one && !bcast1_all_one) {
        auto lhs = in0;  // No need to do broadcast for in0
        auto rhs = in1.broadcast(bcast1);
        Assign(dev, out, lhs.binaryExpr(rhs, func));
        return;
      }

      if (!bcast0_all_one && bcast1_all_one) {
        auto lhs = in0.broadcast(bcast0);
        auto rhs = in1;  // No need to do broadcast for in1
        Assign(dev, out, lhs.binaryExpr(rhs, func));
        return;
      }
    }

    // Fallback path. Always work and probably slower.
    auto lhs = in0.broadcast(bcast0);
    auto rhs = in1.broadcast(bcast1);
    Assign(dev, out, lhs.binaryExpr(rhs, func));
  }
};

// Partial specialization of UnaryFunctor<Device=CPUDevice, Functor>.
template <typename Functor>
struct UnaryFunctor<CPUDevice, Functor> {
  void operator()(const CPUDevice& d, typename Functor::tout_type out,
                  typename Functor::tin_type in) {
    Assign(d, out, in.unaryExpr(typename Functor::func()));
  }
};

template <typename T>
struct SelectFunctor<CPUDevice, T> {
  void operator()(const CPUDevice& d, typename TTypes<T>::Flat out,
                  typename TTypes<bool>::ConstFlat cond_flat,
                  typename TTypes<T>::ConstFlat then_flat,
                  typename TTypes<T>::ConstFlat else_flat) {
    Assign(d, out, cond_flat.select(then_flat, else_flat));
  }
};

}  // end namespace functor

#define REGISTER_SELECT(D, N, F, T)                                          \
  REGISTER_KERNEL_BUILDER(Name(N).Device(DEVICE_##D).TypeConstraint<T>("T"), \
                          SelectOp<D##Device, T>)

#define REGISTER(OP, D, N, F, T)                                             \
  REGISTER_KERNEL_BUILDER(Name(N).Device(DEVICE_##D).TypeConstraint<T>("T"), \
                          OP<D##Device, F<T>>);

// Macros to register kernels for multiple types (T0, T1, etc.)  on
// device type "D" (CPU or GPU) for operation "N" (e.g., sqrt) using
// the functor "F" (e.g., functor:sqrt).

#if defined(__ANDROID_TYPES_SLIM__)
// Normally Android TensorFlow is built with a reduced number of types (float).
// Override on the command-line "--define ANDROID_TYPES=__ANDROID_TYPES_FULL__"
// to generate a library with full type support with a consequent increase in
// code size.
#define REGISTER2(OP, D, N, F, T0, T1) REGISTER(OP, D, N, F, T0)
#define REGISTER3(OP, D, N, F, T0, T1, T2) REGISTER(OP, D, N, F, T0)
#define REGISTER4(OP, D, N, F, T0, T1, T2, T3) REGISTER(OP, D, N, F, T0)
#define REGISTER5(OP, D, N, F, T0, T1, T2, T3, T4) REGISTER(OP, D, N, F, T0)
#define REGISTER6(OP, D, N, F, T0, T1, T2, T3, T4, T5) REGISTER(OP, D, N, F, T0)
#define REGISTER7(OP, D, N, F, T0, T1, T2, T3, T4, T5, T6) \
  REGISTER(OP, D, N, F, T0)
#define REGISTER8(OP, D, N, F, T0, T1, T2, T3, T4, T5, T6, T7) \
  REGISTER(OP, D, N, F, T0)
#else  // !defined(__ANDROID_TYPES_SLIM__)
#define REGISTER2(OP, D, N, F, T0, T1) \
  REGISTER(OP, D, N, F, T0)            \
  REGISTER(OP, D, N, F, T1)
#define REGISTER3(OP, D, N, F, T0, T1, T2) \
  REGISTER2(OP, D, N, F, T0, T1)           \
  REGISTER(OP, D, N, F, T2)
#define REGISTER4(OP, D, N, F, T0, T1, T2, T3) \
  REGISTER2(OP, D, N, F, T0, T1)               \
  REGISTER2(OP, D, N, F, T2, T3)
#define REGISTER5(OP, D, N, F, T0, T1, T2, T3, T4) \
  REGISTER3(OP, D, N, F, T0, T1, T2)               \
  REGISTER2(OP, D, N, F, T3, T4)
#define REGISTER6(OP, D, N, F, T0, T1, T2, T3, T4, T5) \
  REGISTER3(OP, D, N, F, T0, T1, T2)                   \
  REGISTER3(OP, D, N, F, T3, T4, T5)
#define REGISTER7(OP, D, N, F, T0, T1, T2, T3, T4, T5, T6) \
  REGISTER4(OP, D, N, F, T0, T1, T2, T3)                   \
  REGISTER3(OP, D, N, F, T4, T5, T6)
#define REGISTER8(OP, D, N, F, T0, T1, T2, T3, T4, T5, T6, T7) \
  REGISTER4(OP, D, N, F, T0, T1, T2, T3)                       \
  REGISTER4(OP, D, N, F, T4, T5, T6, T7)
#endif  // defined(__ANDROID_TYPES_SLIM__)

}  // end namespace tensorflow

#endif  // TENSORFLOW_KERNELS_CWISE_OPS_COMMON_H_