aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/cudnn_pooling_gpu.cc
blob: 66f924923427779fe308e0c8e902178cd262690e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#define USE_EIGEN_TENSOR
#define EIGEN_USE_THREADS

#include <array>

#include "tensorflow/core/kernels/conv_2d.h"
#include "tensorflow/core/kernels/conv_3d.h"
#include "tensorflow/core/kernels/conv_ops_gpu.h"
#include "tensorflow/core/kernels/cudnn_pooling_gpu.h"

typedef Eigen::GpuDevice GPUDevice;

namespace tensorflow {

#if GOOGLE_CUDA

template <typename T>
void DnnPooling3dOp<T>::Compute(
    OpKernelContext* context,
    perftools::gputools::dnn::PoolingMode pooling_mode,
    const std::array<int64, 3>& window, const std::array<int64, 3>& stride,
    const std::array<int64, 3>& padding, TensorFormat data_format,
    const Tensor& tensor_in, Tensor* output) {
  const auto in_shape = tensor_in.shape();
  const auto out_shape = output->shape();

  const int64 in_batch = GetTensorDim(tensor_in, data_format, 'N');
  const int64 in_features = GetTensorDim(tensor_in, data_format, 'C');

  Tensor transformed_input;
  if (data_format == FORMAT_NHWC) {
    OP_REQUIRES_OK(context, context->allocate_temp(
                                DataTypeToEnum<T>::value,
                                ShapeFromFormat(FORMAT_NCHW, tensor_in.shape(),
                                                data_format),
                                &transformed_input));
    functor::NHWCToNCHW<GPUDevice, T, 5>()(context->eigen_device<GPUDevice>(),
                                           tensor_in.tensor<T, 5>(),
                                           transformed_input.tensor<T, 5>());
  } else {
    transformed_input = tensor_in;
  }
  Tensor transformed_output;
  if (data_format == FORMAT_NHWC) {
    OP_REQUIRES_OK(context,
                   context->allocate_temp(
                       DataTypeToEnum<T>::value,
                       ShapeFromFormat(FORMAT_NCHW, out_shape, data_format),
                       &transformed_output));
  } else {
    transformed_output = *output;
  }

  perftools::gputools::dnn::PoolingDescriptor pooling_desc(3);
  pooling_desc.set_pooling_mode(pooling_mode);
  perftools::gputools::dnn::BatchDescriptor input_desc(3);
  input_desc.set_count(in_batch)
      .set_feature_map_count(in_features)
      .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);
  perftools::gputools::dnn::BatchDescriptor output_desc(3);
  output_desc.set_count(in_batch)
      .set_feature_map_count(in_features)
      .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);
  for (size_t i = 0; i < window.size(); ++i) {
    const auto dim_i = static_cast<perftools::gputools::dnn::DimIndex>(i);
    pooling_desc.set_window(dim_i, window[i]);
    pooling_desc.set_stride(dim_i, stride[i]);
    pooling_desc.set_padding(dim_i, padding[i]);
    input_desc.set_spatial_dim(dim_i,
                               GetTensorDim(tensor_in, data_format, '2' - i));
    output_desc.set_spatial_dim(dim_i,
                                GetTensorDim(out_shape, data_format, '2' - i));
  }

  auto input_data = AsDeviceMemory(transformed_input.template flat<T>().data(),
                                   transformed_input.template flat<T>().size());
  auto output_data =
      AsDeviceMemory(transformed_output.template flat<T>().data(),
                     transformed_output.template flat<T>().size());

  auto* stream = context->op_device_context()->stream();
  OP_REQUIRES(context, stream, errors::Internal("No GPU stream available."));

  bool status = stream
                    ->ThenPoolForward(pooling_desc, input_desc, input_data,
                                      output_desc, &output_data)
                    .ok();
  OP_REQUIRES(context, status,
              errors::Internal("cudnn PoolForward launch failed"));

  if (data_format == FORMAT_NHWC) {
    auto toConstTensor = [](const Tensor& x) -> const Tensor { return x; };
    functor::NCHWToNHWC<GPUDevice, T, 5>()(
        context->eigen_device<GPUDevice>(),
        toConstTensor(transformed_output).template tensor<T, 5>(),
        output->tensor<T, 5>());
  }
}

template <typename T>
void DnnPooling3dGradOp<T>::Compute(
    OpKernelContext* context,
    perftools::gputools::dnn::PoolingMode pooling_mode,
    const std::array<int64, 3>& window, const std::array<int64, 3>& stride,
    const std::array<int64, 3>& padding,
    const std::array<int64, 3>& output_size, TensorFormat data_format,
    const Tensor& out_backprop, const TensorShape& tensor_in_shape,
    const Tensor* tensor_in, const Tensor* tensor_out, Tensor* input_backprop) {
  CHECK((pooling_mode != perftools::gputools::dnn::PoolingMode::kMaximum) ||
        (tensor_in && tensor_out))
      << "For MaxPoolGrad, both tensor_in and tensor_out needs to be "
         "specified";

  const int64 in_batch = GetTensorDim(tensor_in_shape, data_format, 'N');
  const int64 in_features = GetTensorDim(tensor_in_shape, data_format, 'C');

  Tensor transformed_input;
  TensorShape transformed_input_shape;
  if (data_format == FORMAT_NHWC || tensor_in == nullptr) {
    transformed_input_shape =
        ShapeFromFormat(FORMAT_NCHW, tensor_in_shape, data_format);
    OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::value,
                                                   transformed_input_shape,
                                                   &transformed_input));
  } else {
    transformed_input = *tensor_in;
  }
  Tensor transformed_output;
  TensorShape transformed_output_shape;
  if (data_format == FORMAT_NHWC || tensor_out == nullptr) {
    transformed_output_shape =
        ShapeFromFormat(FORMAT_NCHW, out_backprop.shape(), data_format);
    OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::value,
                                                   transformed_output_shape,
                                                   &transformed_output));
  } else {
    transformed_output = *tensor_out;
  }
  Tensor transformed_input_backprop;
  if (data_format == FORMAT_NHWC) {
    OP_REQUIRES_OK(context,
                   context->allocate_temp(DataTypeToEnum<T>::value,
                                          transformed_input_shape,
                                          &transformed_input_backprop));
  } else {
    transformed_input_backprop = *input_backprop;
  }
  Tensor transformed_output_backprop;
  if (data_format == FORMAT_NHWC) {
    OP_REQUIRES_OK(context,
                   context->allocate_temp(DataTypeToEnum<T>::value,
                                          transformed_output_shape,
                                          &transformed_output_backprop));
  } else {
    transformed_output_backprop = out_backprop;
  }
  if (data_format == FORMAT_NHWC) {
    if (tensor_in != nullptr) {
      functor::NHWCToNCHW<GPUDevice, T, 5>()(context->eigen_device<GPUDevice>(),
                                             tensor_in->tensor<T, 5>(),
                                             transformed_input.tensor<T, 5>());
    }
    if (tensor_out != nullptr) {
      functor::NHWCToNCHW<GPUDevice, T, 5>()(context->eigen_device<GPUDevice>(),
                                             tensor_out->tensor<T, 5>(),
                                             transformed_output.tensor<T, 5>());
    }
    functor::NHWCToNCHW<GPUDevice, T, 5>()(
        context->eigen_device<GPUDevice>(), out_backprop.tensor<T, 5>(),
        transformed_output_backprop.tensor<T, 5>());
  }

  perftools::gputools::dnn::PoolingDescriptor pooling_desc(3);
  pooling_desc.set_pooling_mode(pooling_mode);

  perftools::gputools::dnn::BatchDescriptor orig_output_desc(3);
  orig_output_desc.set_count(in_batch)
      .set_feature_map_count(in_features)
      .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);

  perftools::gputools::dnn::BatchDescriptor orig_input_desc(3);
  orig_input_desc.set_count(in_batch)
      .set_feature_map_count(in_features)
      .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);

  for (size_t i = 0; i < window.size(); ++i) {
    const auto dim_i = static_cast<perftools::gputools::dnn::DimIndex>(i);
    pooling_desc.set_window(dim_i, window[i]);
    pooling_desc.set_stride(dim_i, stride[i]);
    pooling_desc.set_padding(dim_i, padding[i]);
    orig_input_desc.set_spatial_dim(
        dim_i, GetTensorDim(tensor_in_shape, data_format, '2' - i));
    orig_output_desc.set_spatial_dim(dim_i, output_size[i]);
  }

  auto orig_output_data =
      AsDeviceMemory(transformed_output.template flat<T>().data(),
                     transformed_output.template flat<T>().size());
  auto orig_input_data =
      AsDeviceMemory(transformed_input.template flat<T>().data(),
                     transformed_input.template flat<T>().size());
  auto output_backprop_data =
      AsDeviceMemory(transformed_output_backprop.template flat<T>().data(),
                     transformed_output_backprop.template flat<T>().size());
  auto input_backprop_data =
      AsDeviceMemory(transformed_input_backprop.template flat<T>().data(),
                     transformed_input_backprop.template flat<T>().size());

  auto* stream = context->op_device_context()->stream();
  OP_REQUIRES(context, stream, errors::Internal("No GPU stream available."));

  bool status =
      stream
          ->ThenPoolBackward(pooling_desc, orig_input_desc, orig_input_data,
                             orig_output_desc, orig_output_data,
                             output_backprop_data, &input_backprop_data)
          .ok();
  OP_REQUIRES(context, status,
              errors::Internal("cudnn PoolBackward launch failed"));

  if (data_format == FORMAT_NHWC) {
    auto toConstTensor = [](const Tensor& x) -> const Tensor { return x; };
    functor::NCHWToNHWC<GPUDevice, T, 5>()(
        context->eigen_device<GPUDevice>(),
        toConstTensor(transformed_input_backprop).template tensor<T, 5>(),
        input_backprop->tensor<T, 5>());
  }
}

template class DnnPooling3dOp<float>;
template class DnnPooling3dGradOp<float>;

#endif  // GOOGLE_CUDA

}  // namespace tensorflow