aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/conv_ops_fused.cc
blob: 1b40ad81f413a726d14c5496f669923ab9254dce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// Implements convolution operations with other kernels baked into the
// processing, to optimize latency and memory usage.

#define EIGEN_USE_THREADS

#include <string.h>
#include <map>
#include <vector>
#include "tensorflow/core/framework/common_shape_fns.h"
#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/resource_mgr.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_slice.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/kernels/conv_ops.h"
#include "tensorflow/core/kernels/gemm_functors.h"
#include "tensorflow/core/kernels/image_resizer_state.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/util/mirror_pad_mode.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"

namespace tensorflow {

namespace {

// We don't want to allocate a buffer to hold all the patches if the size is
// going to be extremely large, so break it into chunks if it's bigger than
// a limit. Each chunk will be processed serially, so we can refill the
// buffer for the next chunk and reuse it, keeping maximum memory size down.
// In this case, we've picked 16 megabytes as a reasonable limit for Android and
// other platforms using Eigen, and 1MB for iOS devices, from experimentation.
#if defined(__APPLE__) && defined(IS_MOBILE_PLATFORM)
const size_t kMaxChunkSize = (1 * 1024 * 1024);
#else
const size_t kMaxChunkSize = (16 * 1024 * 1024);
#endif
const size_t kResizeCacheSize = (8 * 1024 * 1024);

// Lookup method used when resizing.
enum SamplingMode {
  BILINEAR = 0,
  NEAREST = 1,
};

// Simple utility function used by FusedConv to multithread basic workloads. To
// use it, pass begin and end values for the full workload and a std::function
// that receives a subset of that through the begin and end values for each
// worker's task. The division of the full workload into worker tasks is handled
// by the multithreading logic. Here's an example of how to use it:
// std::vector<float> my_vector(100);
// ...
// FusedConvParallelFor(context, 0, 100,
//   [&my_vector](int64 task_begin, int64 task_end) {
//     for (int64 current = task_begin; current != task_end; ++current) {
//       my_vector[current] *= 10.0f;
//     }
// });
void FusedConvParallelFor(
    OpKernelContext* context, int64 begin, int64 end,
    const std::function<void(int64, int64)>& task_function) {
// On iOS, the thread management imposes a very big performance penalty, so
// just call the function directly with no multithreading.
#if defined(__APPLE__) && defined(IS_MOBILE_PLATFORM)
  task_function(begin, end);
#else
  auto& worker_threads = *(context->device()->tensorflow_cpu_worker_threads());
  thread::ThreadPool* thread_pool = worker_threads.workers;
  const int64 total_elements = end - begin;
  // This is a bit of an arbitrary number, but was found to work well for
  // typical models we've been profiling on various devices.
  const int64 element_cost = 10000000;
  thread_pool->ParallelFor(
      total_elements, element_cost,
      [begin, task_function](int64 begin_offset, int64 end_offset) {
        const int64 task_begin = begin + begin_offset;
        const int64 task_end = begin + end_offset;
        task_function(task_begin, task_end);
      });
#endif
}

// Holds the state needed for the resizing subtasks.
template <class T1>
struct ResizeTaskParameters {
  ResizeTaskParameters() : st(false) {}

  int cache_height;
  T1* resize_cache;
  int cache_line_width;
  int input_width;
  int input_depth;
  int top_padding;
  int pad_offset;
  int64 resized_height;
  ImageResizerState st;
  const T1* input_batch_start;
  int64 cache_start_x;
  int64 cache_end_x;
  int left_padding;
  int64 resized_width;
  int64 padded_width;
  int64 padded_height;
};

template <class T1>
struct PerCacheLineParameters {
  PerCacheLineParameters() {}
  PerCacheLineParameters(const PerCacheLineParameters<T1>& other)
      : cache_line_start(other.cache_line_start),
        input_top_row_start(other.input_top_row_start),
        input_bottom_row_start(other.input_bottom_row_start),
        y_lerp(other.y_lerp) {}

  T1* cache_line_start;
  const T1* input_top_row_start;
  const T1* input_bottom_row_start;
  T1 y_lerp;
};

// Helper class to simplify bilinear filtering
template <class T1>
struct SampleRect {
  EIGEN_ALWAYS_INLINE SampleRect(const T1* in_top_left, const T1* in_top_right,
                                 const T1* in_bottom_left,
                                 const T1* in_bottom_right)
      : top_left(in_top_left),
        top_right(in_top_right),
        bottom_left(in_bottom_left),
        bottom_right(in_bottom_right) {}

  EIGEN_ALWAYS_INLINE T1 BilinearSample(int channel, T1 x_lerp,
                                        T1 y_lerp) const {
    const T1 top =
        top_left[channel] + (top_right[channel] - top_left[channel]) * x_lerp;
    const T1 bottom = bottom_left[channel] +
                      (bottom_right[channel] - bottom_left[channel]) * x_lerp;
    return top + (bottom - top) * y_lerp;
  }

  const T1* top_left;
  const T1* top_right;
  const T1* bottom_left;
  const T1* bottom_right;
};

// Calculates parameters which remain constant through a resize cache row.
template <class T1>
EIGEN_ALWAYS_INLINE PerCacheLineParameters<T1> CalculatePerCacheLineParameters(
    int64 cache_height, int64 cache_y, T1* resize_cache, int64 cache_line_width,
    int64 input_width, int64 input_depth, int64 top_padding, int64 pad_offset,
    int64 resized_height, const ImageResizerState& st,
    const T1* input_batch_start) {
  PerCacheLineParameters<T1> result;
  // The cache is organized so that the real y values of the resized image map
  // onto the actual cache values through a modulo scheme. This means that as we
  // progress downwards through the image, we keep reusing a small cache and so
  // keep memory usage down.
  int64 cache_index_y;
  if (cache_y < 0) {
    cache_index_y = cache_height + (cache_y % cache_height);
  } else {
    cache_index_y = cache_y % cache_height;
  }
  result.cache_line_start =
      resize_cache + (cache_index_y * cache_line_width * input_depth);
  // This part is implementing the mirror padding that happens before resizing.
  float in_y = (cache_y - top_padding);
  if (in_y < 0) {
    in_y = -(in_y + 1.0f - pad_offset);
  } else if (in_y >= resized_height) {
    in_y = (resized_height * 2.0f) - (in_y + 1.0f + pad_offset);
  }
  // Here's where do do the actual resize.
  in_y *= st.height_scale;
  const int64 top_y_index = static_cast<int64>(std::floor(in_y));
  const int64 bottom_y_index =
      std::min(static_cast<int64>(std::ceil(in_y)), (st.in_height - 1));
  // Lerp is used for bilinear filtering when that's needed.
  result.y_lerp = in_y - top_y_index;
  // Which rows of the original input image to pull the values from.
  result.input_top_row_start =
      input_batch_start + (top_y_index * input_width * input_depth);
  result.input_bottom_row_start =
      input_batch_start + (bottom_y_index * input_width * input_depth);
  return result;
}

template <class T1>
struct PerCachePixelParameters {
  PerCachePixelParameters() {}
  PerCachePixelParameters(const PerCachePixelParameters<T1>& other)
      : cache_line_pixel(other.cache_line_pixel),
        left_x_index(other.left_x_index),
        right_x_index(other.right_x_index),
        x_lerp(other.x_lerp) {}

  T1* cache_line_pixel;
  int64 left_x_index;
  int64 right_x_index;
  T1 x_lerp;
};

// Pulls out common parameters used for every resized pixel.
template <class T1>
EIGEN_ALWAYS_INLINE PerCachePixelParameters<T1>
CalculatePerCachePixelParameters(int64 cache_x, int64 cache_start_x,
                                 T1* cache_line_start, int64 input_depth,
                                 int64 left_padding, int64 pad_offset,
                                 int64 resized_width,
                                 const ImageResizerState& st) {
  PerCachePixelParameters<T1> result;
  // Figure out where we're going to store the results of our transform.
  const int cache_index_x = cache_x - cache_start_x;
  result.cache_line_pixel = cache_line_start + (cache_index_x * input_depth);
  // Implement mirror padding by flipping in_x if it's off the edge.
  float in_x = (cache_x - left_padding);
  if (in_x < 0) {
    in_x = -(in_x + 1.0f - pad_offset);
  } else if (in_x >= resized_width) {
    in_x = (resized_width * 2.0f) - (in_x + 1.0f + pad_offset);
  }
  // Resize the x parameters.
  in_x *= st.width_scale;
  // Get the x coordinates for the left and right pixels to pull from.
  result.left_x_index = static_cast<int64>(std::floor(in_x));
  result.right_x_index =
      std::min(static_cast<int64>(std::ceil(in_x)), (st.in_width - 1));
  // This x_lerp is used to blend pixels in bilinear filtering.
  result.x_lerp = in_x - result.left_x_index;
  return result;
}

// Combines bilinear resizing and mirror padding into the im2col transformation
// stage of convolution.
template <class T1, class T2, class T3, class TGemmFunctor,
          SamplingMode SampleMode>
class FusedResizeAndPadConvFunctor {
 public:
  void operator()(OpKernelContext* context, const Tensor& input,
                  int input_batches, int resized_height, int resized_width,
                  int padded_height, int padded_width, int input_depth,
                  const T2* filter_data, int filter_height, int filter_width,
                  int filter_count, int stride_rows, int stride_cols,
                  Padding padding, T3* output_data, int output_height,
                  int output_width, const ImageResizerState& st,
                  int top_padding, int bottom_padding, int left_padding,
                  int right_padding, int pad_offset) {
    if ((input_batches <= 0) || (padded_width <= 0) || (padded_height <= 0) ||
        (input_depth <= 0)) {
      LOG(WARNING) << "Conv2D was called with bad input dimensions: "
                   << input_batches << ", " << padded_height << ", "
                   << padded_width << ", " << input_depth;
      return;
    }
    if ((filter_width <= 0) || (filter_height <= 0) || (filter_count <= 0)) {
      LOG(WARNING) << "Conv2D was called with bad filter dimensions: "
                   << filter_width << ", " << filter_height << ", "
                   << filter_count;
      return;
    }
    if ((output_width <= 0) || (output_height <= 0)) {
      LOG(WARNING) << "Conv2D was called with bad output width or height: "
                   << output_width << ", " << output_height;
      return;
    }
    OP_REQUIRES(
        context, ((SampleMode == NEAREST) || (SampleMode == BILINEAR)),
        errors::InvalidArgument("Bad sample mode passed in", SampleMode));

    // These calculations define how the patches will be positioned within the
    // input image. The actual definitions are quite complex, and rely on the
    // previously-calculated output size.
    int filter_left_offset;
    int filter_top_offset;
    if (padding == VALID) {
      filter_left_offset =
          ((output_width - 1) * stride_cols + filter_width - padded_width + 1) /
          2;
      filter_top_offset = ((output_height - 1) * stride_rows + filter_height -
                           padded_height + 1) /
                          2;
    } else {
      filter_left_offset =
          ((output_width - 1) * stride_cols + filter_width - padded_width) / 2;
      filter_top_offset =
          ((output_height - 1) * stride_rows + filter_height - padded_height) /
          2;
    }

    ResizeTaskParameters<T1> task_params;
    task_params.input_depth = input_depth;
    task_params.top_padding = top_padding;
    task_params.pad_offset = pad_offset;
    task_params.resized_height = resized_height;
    task_params.st = st;
    task_params.left_padding = left_padding;
    task_params.resized_width = resized_width;
    task_params.padded_width = padded_width;
    task_params.padded_height = padded_height;

    // The im2col buffer has # of patches rows, and # of filters cols.
    // It's laid out like this, in row major order in memory:
    //        < filter value count >
    //   ^   +---------------------+
    // patch |                     |
    // count |                     |
    //   v   +---------------------+
    // Each patch row contains a filter_width x filter_height patch of the
    // input, with the depth channel as the most contiguous in memory, followed
    // by the width, then the height. This is the standard memory order in the
    // image world if it helps to visualize it.
    const int filter_value_count = filter_width * filter_height * input_depth;

    OP_REQUIRES(context, (filter_value_count * sizeof(T1)) <= kMaxChunkSize,
                errors::InvalidArgument("Im2Col patch too large for buffer"));
    const size_t patches_per_chunk =
        kMaxChunkSize / (filter_value_count * sizeof(T1));
    // Because memory allocation is very expensive on mobile platforms, try to
    // allocate a persistent buffer that will be kept around between calls. We
    // use TensorFlow's resource management to ensure that the memory will be
    // released when the session is over.
    Im2ColBufferResource<T1, kMaxChunkSize>* im2col_buffer_resource;
    std::function<Status(Im2ColBufferResource<T1, kMaxChunkSize>**)> creator =
        [](Im2ColBufferResource<T1, kMaxChunkSize>** resource) {
          *resource = new Im2ColBufferResource<T1, kMaxChunkSize>();
          return Status::OK();
        };
    OP_REQUIRES_OK(context, context->resource_manager()->LookupOrCreate(
                                "Conv2d", "im2col_buffer",
                                &im2col_buffer_resource, creator));

    // Create a resize cache memory buffer that will hold the rows of
    // transformed and mirror padded input pixels, ready to be copied
    // into filter patches by im2col.
    // It's laid out like this, in row major order in memory:
    //         < cache line width >
    //   ^    +--------------------+
    // cache  |                    |
    // height |                    |
    //   v    +--------------------+
    // Each cache row contains a cache_line_width number of resized pixels,
    // each with input_depth channels. The cache height is typically less than
    // the full height the resized image would be, so it's filled up
    // incrementally as we progress downwards through the input creating im2col
    // patches.
    task_params.cache_start_x = -filter_left_offset;
    task_params.cache_end_x =
        (((output_width - 1) * stride_cols) - filter_left_offset) +
        filter_width;
    task_params.cache_line_width =
        task_params.cache_end_x - task_params.cache_start_x;
    task_params.cache_height =
        kResizeCacheSize / (task_params.cache_line_width * input_depth);
    const int needed_resize_cache_count =
        filter_height * task_params.cache_line_width * input_depth;
    OP_REQUIRES(context,
                (needed_resize_cache_count * sizeof(T1)) <= kResizeCacheSize,
                errors::InvalidArgument("Input too large for resize cache"));
    Im2ColBufferResource<T1, kResizeCacheSize>* resize_cache_resource;
    std::function<Status(Im2ColBufferResource<T1, kResizeCacheSize>**)>
        resize_creator =
            [](Im2ColBufferResource<T1, kResizeCacheSize>** resource) {
              *resource = new Im2ColBufferResource<T1, kResizeCacheSize>();
              return Status::OK();
            };
    OP_REQUIRES_OK(context, context->resource_manager()->LookupOrCreate(
                                "Conv2d", "resize_cache",
                                &resize_cache_resource, resize_creator));

    // This means that multiple ops can't be run simultaneously on different
    // threads, because we have a single shared resource. The platforms this is
    // aimed at have intra-op parallelism as their focus though, so it shouldn't
    // be an issue.
    mutex_lock lock_buffer(im2col_buffer_resource->mu);
    core::ScopedUnref unref_buffer(im2col_buffer_resource);
    T1* im2col_buffer = im2col_buffer_resource->data;

    // This buffer is used as a fairly heavy-weight cache for the resized and
    // mirrored inputs to the im2col operation. The problem is that we want to
    // keep the memory usage down by not rendering the fully resized and padded
    // input tensor to the convolution into an entire buffer. The first approach
    // to avoid this was to fold the bilinear filtering and padding spatial
    // transformations into the im2col lookup itself. This successfully reduced
    // memory usage, but because im2col can access an individual pixel for many
    // different patches, the extra overhead of doing the same bilinear lookups
    // repeatedly became too expensive.
    // The resize cache is designed to avoid this problem by keeping a
    // horizontal slice of the resized and padded input to the im2col
    // precalculated, so that repeated accesses to the same pixel from different
    // filter patches can just be copied from this cache. It's organized as a
    // horizontal slice stretching across the whole virtual image, and as high
    // as the filter window, so that as the patch processing moves across all
    // the pixels are present, and before a new row of patches is started any
    // previously calculated rows that are needed are maintained, with new rows
    // calculated as required.
    mutex_lock resize_lock_buffer(resize_cache_resource->mu);
    core::ScopedUnref unref_resized_cache(resize_cache_resource);
    task_params.resize_cache = resize_cache_resource->data;

    const T1* input_data = input.flat<T1>().data();
    const int64 input_height = input.shape().dim_sizes()[1];
    task_params.input_width = input.shape().dim_sizes()[2];

    int end_cached_lines = std::numeric_limits<int>::min();

    for (int batch = 0; batch < input_batches; ++batch) {
      task_params.input_batch_start =
          input_data +
          (batch * input_height * task_params.input_width * input_depth);
      const int in_y_end =
          ((output_height * stride_rows) - filter_top_offset) + filter_height;
      for (int out_y = 0; out_y < output_height; ++out_y) {
        const int in_y_origin = (out_y * stride_rows) - filter_top_offset;
        const int cache_start_y = std::max(in_y_origin, end_cached_lines);
        const int cache_end_y = std::min(
            in_y_end, std::max((in_y_origin + task_params.cache_height),
                               end_cached_lines));
        if (end_cached_lines < (in_y_origin + filter_height)) {
          // This call breaks up the work required for calculating the mirror
          // padding and resizing across multiple threads.
          FusedConvParallelFor(
              context, cache_start_y, cache_end_y,
              [task_params](int64 task_cache_start_y, int64 task_cache_end_y) {
                // This is a long and confusing function, but it's been laid out
                // this way to help with performance on some intensive models.
                // What it's doing is populating a cache of the original input
                // image, after it's been bilinear resized and had its edges
                // mirrored. This allows the following im2col code to access the
                // transformed pixels from this cache, without having to
                // repeatedly apply the expensive bilinear calculations as the
                // same pixels are accessed by different patches.
                // This is most effective when the stride is small and the
                // filter size is large, since that's when pixels are reused
                // most frequently as patches overlap.
                for (int cache_y = task_cache_start_y;
                     cache_y < task_cache_end_y; ++cache_y) {
                  // We organize the cache as a series of rows, each containing
                  // all the transformed pixels for a given line in the image.
                  // This cache is big enough to hold at least a filter's height
                  // worth of rows, but typically more, limited by the size of
                  // the cache buffer.
                  // We don't allocate an entire image's worth of rows though,
                  // because we're trying to keep memory usage down, so as we
                  // progress downwards through the im2col we periodically
                  // refresh the cache so that the next lines that are needed
                  // for that operation are always present.
                  // Work out the parameters that remain constant across the
                  // row we're calculating.
                  PerCacheLineParameters<float> line_params(
                      CalculatePerCacheLineParameters<float>(
                          task_params.cache_height, cache_y,
                          task_params.resize_cache,
                          task_params.cache_line_width, task_params.input_width,
                          task_params.input_depth, task_params.top_padding,
                          task_params.pad_offset, task_params.resized_height,
                          task_params.st, task_params.input_batch_start));
                  // Iterate through the resize cache row we're filling in.
                  for (int cache_x = task_params.cache_start_x;
                       cache_x < task_params.cache_end_x; ++cache_x) {
                    // Figure out what we need for the cache pixel we're
                    // populating.
                    PerCachePixelParameters<T1> pixel_params(
                        CalculatePerCachePixelParameters<T1>(
                            cache_x, task_params.cache_start_x,
                            line_params.cache_line_start,
                            task_params.input_depth, task_params.left_padding,
                            task_params.pad_offset, task_params.resized_width,
                            task_params.st));
                    // If the access is off the left, right, top, or bottom of
                    // the resized image, the conv padding means we should set
                    // it to zero.
                    if ((cache_x < 0) ||
                        (cache_x >= task_params.padded_width) ||
                        (cache_y < 0) ||
                        (cache_y >= task_params.padded_height)) {
                      std::fill_n(pixel_params.cache_line_pixel,
                                  task_params.input_depth, T1(0));
                    } else {
                      // There are two different sampling strategies for
                      // resizing. When using nearest, we can just do a
                      // straight copy of the pixel closest to our sample point,
                      // but bilinear requires a more complex calculation.
                      if (SampleMode == NEAREST) {
                        const T1* input_top_left_pixel =
                            line_params.input_top_row_start +
                            (pixel_params.left_x_index *
                             task_params.input_depth);

                        std::copy_n(input_top_left_pixel,
                                    task_params.input_depth,
                                    pixel_params.cache_line_pixel);
                      } else {
                        const SampleRect<T1> rect(
                            line_params.input_top_row_start +
                                (pixel_params.left_x_index *
                                 task_params.input_depth),
                            line_params.input_top_row_start +
                                (pixel_params.right_x_index *
                                 task_params.input_depth),
                            line_params.input_bottom_row_start +
                                (pixel_params.left_x_index *
                                 task_params.input_depth),
                            line_params.input_bottom_row_start +
                                (pixel_params.right_x_index *
                                 task_params.input_depth));
                        for (int in_channel = 0;
                             in_channel < task_params.input_depth;
                             ++in_channel) {
                          pixel_params.cache_line_pixel[in_channel] =
                              rect.BilinearSample(in_channel,
                                                  pixel_params.x_lerp,
                                                  line_params.y_lerp);
                        }
                      }
                    }
                  }
                }
              });
          end_cached_lines = cache_end_y;
        }
        for (int out_x = 0; out_x < output_width; ++out_x) {
          const int in_x_origin = (out_x * stride_cols) - filter_left_offset;
          const int patch_index = (batch * output_width * output_height) +
                                  (out_y * output_width) + out_x;
          const int patch_index_within_chunk = patch_index % patches_per_chunk;
          T1* im2col_patch_start =
              im2col_buffer + (patch_index_within_chunk * filter_value_count);
          for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
            T1* im2col_row_start =
                im2col_patch_start +
                (filter_y * filter_width * task_params.input_depth);
            const int conv_in_y = in_y_origin + filter_y;
            int cache_index_y;
            if (conv_in_y < 0) {
              cache_index_y = task_params.cache_height +
                              (conv_in_y % task_params.cache_height);
            } else {
              cache_index_y = conv_in_y % task_params.cache_height;
            }
            T1* cache_line_start =
                task_params.resize_cache +
                (cache_index_y * task_params.cache_line_width *
                 task_params.input_depth);
            T1* cache_filter_row_start =
                cache_line_start + ((in_x_origin - task_params.cache_start_x) *
                                    task_params.input_depth);
            std::copy_n(cache_filter_row_start,
                        (filter_width * task_params.input_depth),
                        im2col_row_start);
          }
          const bool is_last_in_chunk =
              (patch_index_within_chunk == (patches_per_chunk - 1));
          const bool is_last_overall =
              ((batch == (input_batches - 1)) &&
               (out_y == (output_height - 1)) && (out_x == (output_width - 1)));
          if (is_last_in_chunk || is_last_overall) {
            // Now we've assembled a set of image patches into a matrix, apply
            // a GEMM matrix multiply of the patches as rows, times the filter
            // weights in columns, to get partial results in the output
            // matrix.
            const int how_many_patches = patch_index_within_chunk + 1;
            const int m = how_many_patches;
            const int n = filter_count;
            const int k = filter_value_count;
            const int lda = filter_value_count;
            const int ldb = filter_count;
            const int ldc = filter_count;
            const size_t start_patch_index =
                patch_index - (how_many_patches - 1);
            T3* chunk_output_data =
                output_data + (start_patch_index * filter_count);
            TGemmFunctor gemm_functor;
            gemm_functor(context, m, n, k, im2col_buffer, lda, filter_data, ldb,
                         chunk_output_data, ldc);
          }
        }
      }
    }
  }
};

}  // namespace

// Implements a version of convolution with bilinear resizing and mirror padding
// included.
template <class T, class TConvFunctor, bool DoResize>
class FusedResizeConv2DUsingGemmOp : public OpKernel {
 public:
  explicit FusedResizeConv2DUsingGemmOp(OpKernelConstruction* context)
      : OpKernel(context) {
    if (DoResize) {
      OP_REQUIRES_OK(context,
                     context->GetAttr("resize_align_corners", &align_corners_));
    }
    MirrorPadMode mode;
    OP_REQUIRES_OK(context, context->GetAttr("mode", &mode));

    switch (mode) {
      case MirrorPadMode::SYMMETRIC: {
        offset_ = 0;
        break;
      }
      case MirrorPadMode::REFLECT: {
        offset_ = 1;
        break;
      }
      default:
        OP_REQUIRES(context, false,
                    errors::InvalidArgument(
                        "mode must be either REFLECT or SYMMETRIC."));
    }
    OP_REQUIRES_OK(context, context->GetAttr("strides", &strides_));
    OP_REQUIRES(context, strides_.size() == 4,
                errors::InvalidArgument("Sliding window strides field must "
                                        "specify 4 dimensions"));
    const int64 stride_n = GetTensorDim(strides_, FORMAT_NHWC, 'N');
    const int64 stride_c = GetTensorDim(strides_, FORMAT_NHWC, 'C');
    OP_REQUIRES(
        context, stride_n == 1 && stride_c == 1,
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));
    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
  }

  void Compute(OpKernelContext* context) override {
    // Input tensor is of the following dimensions:
    // [ batch, in_rows, in_cols, in_depth ]
    const Tensor& input = context->input(0);
    OP_REQUIRES(context, (input.shape().num_elements() > 0),
                errors::InvalidArgument("Input tensor can't be empty"));

    ImageResizerState st(false);
    if (DoResize) {
      st = ImageResizerState(align_corners_);
      st.ValidateAndCalculateOutputSize(context, input);
      if (!context->status().ok()) return;
    } else {
      // Set up the resize parameters to do no scaling at all.
      st.batch_size = input.dim_size(0);
      st.out_height = input.dim_size(1);
      st.out_width = input.dim_size(2);
      st.in_height = input.dim_size(1);
      st.in_width = input.dim_size(2);
      st.channels = input.dim_size(3);
      st.height_scale = 1.0f;
      st.width_scale = 1.0f;
    }
    TensorShape resized_shape(
        {input.dim_size(0), st.out_height, st.out_width, input.dim_size(3)});
    int paddings_index;
    int filter_index;
    if (DoResize) {
      paddings_index = 2;
      filter_index = 3;
    } else {
      paddings_index = 1;
      filter_index = 2;
    }
    const Tensor& paddings = context->input(paddings_index);

    const int dims = resized_shape.dims();
    OP_REQUIRES(
        context,
        TensorShapeUtils::IsMatrix(paddings.shape()) &&
            paddings.dim_size(1) == 2,
        errors::InvalidArgument("paddings must be a matrix with 2 columns: ",
                                paddings.shape().DebugString()));
    const int fixed_dims =
        (allow_legacy_scalars() && dims == 0 && paddings.dim_size(0) == 1)
            ? 1
            : dims;
    OP_REQUIRES(
        context, fixed_dims == paddings.dim_size(0),
        errors::InvalidArgument(
            "The first dimension of paddings must be the rank of inputs: ",
            fixed_dims, " ", paddings.shape().DebugString(), " ",
            resized_shape.DebugString()));
    OP_REQUIRES(
        context, dims == paddings.dim_size(0),
        errors::InvalidArgument(
            "The first dimension of paddings must be the rank of inputs: ",
            dims, " ", paddings.shape().DebugString(), " ",
            resized_shape.DebugString()));

    OP_REQUIRES(
        context, dims == 4,
        errors::InvalidArgument(
            "Fused mirror padding only supports four-dimensional inputs, but ",
            dims, " requested"));

    // Compute the shape of the output tensor, and allocate it.
    TensorShape padded_shape;
    TTypes<int32>::ConstMatrix paddings_matrix = paddings.matrix<int32>();
    for (int d = 0; d < dims; ++d) {
      const int32 before =
          paddings_matrix(d, 0);  // Pad before existing elements.
      const int32 after =
          paddings_matrix(d, 1);  // Pad after existing elements.
      OP_REQUIRES(context, before >= 0 && after >= 0,
                  errors::InvalidArgument(
                      "paddings must be non-negative: ", before, " ", after));
      if (offset_ == 0) {  // SYMMETRIC mode.
        OP_REQUIRES(
            context,
            before <= resized_shape.dim_size(d) &&
                after <= resized_shape.dim_size(d),
            errors::InvalidArgument("paddings must be no greater "
                                    "than the dimension size: ",
                                    before, ", ", after, " greater than ",
                                    resized_shape.dim_size(d)));
      } else if (offset_ == 1) {  // REFLECT mode.
        OP_REQUIRES(
            context,
            before < resized_shape.dim_size(d) &&
                after < resized_shape.dim_size(d),
            errors::InvalidArgument("paddings must be less than"
                                    " the dimension size: ",
                                    before, ", ", after, " not less than ",
                                    resized_shape.dim_size(d)));
      }
      padded_shape.AddDim(before + resized_shape.dim_size(d) + after);
    }

    OP_REQUIRES(
        context, ((paddings_matrix(0, 0) == 0) && (paddings_matrix(0, 1) == 0)),
        errors::InvalidArgument(
            "Fused mirror padding only support spatial padding, not batches: ",
            paddings.DebugString()));
    OP_REQUIRES(
        context, ((paddings_matrix(3, 0) == 0) && (paddings_matrix(3, 1) == 0)),
        errors::InvalidArgument(
            "Fused mirror padding only support spatial padding, not channels: ",
            paddings.DebugString()));
    const int32 top_padding = paddings_matrix(1, 0);
    const int32 bottom_padding = paddings_matrix(1, 1);
    const int32 left_padding = paddings_matrix(2, 0);
    const int32 right_padding = paddings_matrix(2, 1);

    // Input filter is of the following dimensions:
    // [ filter_rows, filter_cols, in_depth, out_depth]
    const Tensor& filter = context->input(filter_index);

    // For 2D convolution, there should be 4 dimensions.
    OP_REQUIRES(context, padded_shape.dims() == 4,
                errors::InvalidArgument("input must be 4-dimensional",
                                        padded_shape.DebugString()));
    OP_REQUIRES(context, filter.dims() == 4,
                errors::InvalidArgument("filter must be 4-dimensional: ",
                                        filter.shape().DebugString()));

    // We only check the first three dims, since the depth is accessed as an
    // int64 below.
    for (int i = 0; i < 3; i++) {
      OP_REQUIRES(
          context,
          FastBoundsCheck(filter.dim_size(i), std::numeric_limits<int>::max()),
          errors::InvalidArgument("filter too large"));
    }

    // The last dimension for input is in_depth. It must be the same as the
    // filter's in_depth.
    const int64 in_depth = padded_shape.dim_size(3);
    OP_REQUIRES(context, in_depth == filter.dim_size(2),
                errors::InvalidArgument(
                    "input and filter must have the same depth: ", in_depth,
                    " vs ", filter.dim_size(2)));

    // The last dimension for filter is out_depth.
    const int out_depth = static_cast<int>(filter.dim_size(3));

    // The second dimension for input is rows/height.
    // The first dimension for filter is rows/height.
    const int64 padded_rows_raw = padded_shape.dim_size(1);
    OP_REQUIRES(
        context,
        FastBoundsCheck(padded_rows_raw, std::numeric_limits<int>::max()),
        errors::InvalidArgument("Input rows too large"));
    const int padded_rows = static_cast<int>(padded_rows_raw);
    const int filter_rows = static_cast<int>(filter.dim_size(0));
    const int resized_rows = static_cast<int>(resized_shape.dim_size(1));

    // The third dimension for input is columns/width.
    // The second dimension for filter is columns/width.
    const int64 padded_cols_raw = padded_shape.dim_size(2);
    OP_REQUIRES(
        context,
        FastBoundsCheck(padded_cols_raw, std::numeric_limits<int>::max()),
        errors::InvalidArgument("Input cols too large"));
    const int padded_cols = static_cast<int>(padded_cols_raw);
    const int filter_cols = static_cast<int>(filter.dim_size(1));
    const int resized_cols = static_cast<int>(resized_shape.dim_size(2));

    // The first dimension for input is batch.
    const int64 batch_raw = padded_shape.dim_size(0);
    OP_REQUIRES(context,
                FastBoundsCheck(batch_raw, std::numeric_limits<int>::max()),
                errors::InvalidArgument("batch is too large"));
    const int batch = static_cast<int>(batch_raw);

    // For now we take the stride from the second and third dimensions only (we
    // do not support striding on the batch or depth dimension).
    const int stride_rows = GetTensorDim(strides_, FORMAT_NHWC, 'H');
    const int stride_cols = GetTensorDim(strides_, FORMAT_NHWC, 'W');

    int64 out_rows = 0, out_cols = 0, pad_rows = 0, pad_cols = 0;
    OP_REQUIRES_OK(context,
                   GetWindowedOutputSize(padded_rows, filter_rows, stride_rows,
                                         padding_, &out_rows, &pad_rows));
    OP_REQUIRES_OK(context,
                   GetWindowedOutputSize(padded_cols, filter_cols, stride_cols,
                                         padding_, &out_cols, &pad_cols));
    TensorShape out_shape =
        ShapeFromFormat(FORMAT_NHWC, batch, out_rows, out_cols, out_depth);
    OP_REQUIRES(context, (out_shape.num_elements() > 0),
                errors::InvalidArgument("Output tensor can't be empty"));

    // Output tensor is of the following dimensions:
    // [ in_batch, out_rows, out_cols, out_depth ]
    Tensor* output = nullptr;
    OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &output));

    VLOG(2) << "FusedConv2D: " << name() << ", in_depth = " << in_depth
            << ", padded_cols = " << padded_cols
            << ", resized_cols = " << resized_cols
            << ", filter_cols = " << filter_cols
            << ", padded_rows = " << padded_rows
            << ", resized_rows = " << resized_rows
            << ", filter_rows = " << filter_rows
            << ", stride_rows = " << stride_rows
            << ", stride_cols = " << stride_cols
            << ", out_depth = " << out_depth << ", DoResize=" << DoResize;

    // If there is nothing to compute, return.
    if (out_shape.num_elements() == 0) {
      return;
    }
    TConvFunctor conv_functor;
    conv_functor(context, input, batch, resized_rows, resized_cols, padded_rows,
                 padded_cols, in_depth, filter.flat<T>().data(), filter_rows,
                 filter_cols, out_depth, stride_rows, stride_cols, padding_,
                 output->flat<T>().data(), out_rows, out_cols, st, top_padding,
                 bottom_padding, left_padding, right_padding, offset_);
  }

 private:
  std::vector<int32> strides_;
  Padding padding_;
  bool align_corners_;
  int offset_;

  TF_DISALLOW_COPY_AND_ASSIGN(FusedResizeConv2DUsingGemmOp);
};

#define REGISTER_FUSED(T)                                                 \
  REGISTER_KERNEL_BUILDER(                                                \
      Name("FusedResizeAndPadConv2D")                                     \
          .Device(DEVICE_CPU)                                             \
          .TypeConstraint<T>("T"),                                        \
      FusedResizeConv2DUsingGemmOp<                                       \
          T,                                                              \
          FusedResizeAndPadConvFunctor<T, T, T, FastGemmFunctor<T, T, T>, \
                                       BILINEAR>,                         \
          true>);

TF_CALL_float(REGISTER_FUSED);

#define REGISTER_PAD_ONLY_FUSED(T)                                        \
  REGISTER_KERNEL_BUILDER(                                                \
      Name("FusedPadConv2D").Device(DEVICE_CPU).TypeConstraint<T>("T"),   \
      FusedResizeConv2DUsingGemmOp<                                       \
          T,                                                              \
          FusedResizeAndPadConvFunctor<T, T, T, FastGemmFunctor<T, T, T>, \
                                       NEAREST>,                          \
          false>);

TF_CALL_float(REGISTER_PAD_ONLY_FUSED);

}  // namespace tensorflow