aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/conv_ops_3d.cc
blob: 37cb67bc51112d42feaca25c37b3939775b66888 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#define USE_EIGEN_TENSOR
#define EIGEN_USE_THREADS

#include "tensorflow/core/kernels/conv_2d.h"
#include "tensorflow/core/kernels/conv_3d.h"

#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_slice.h"
#include "tensorflow/core/kernels/conv_ops_gpu.h"
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"
#include "tensorflow/core/util/use_cudnn.h"

#if GOOGLE_CUDA
#include "tensorflow/core/platform/stream_executor.h"
using perftools::gputools::dnn::DimIndex;
#endif

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;
typedef Eigen::GpuDevice GPUDevice;

template <typename Device, typename T>
struct LaunchConvOp;

template <typename T>
struct LaunchConvOp<CPUDevice, T> {
  static void launch(OpKernelContext* context, bool cudnn_use_autotune,
                     const Tensor& input, const Tensor& filter,
                     const std::array<int64, 3>& strides, const Padding padding,
                     TensorFormat data_format, Tensor* output) {
    OP_REQUIRES(context, data_format == FORMAT_NHWC,
                errors::InvalidArgument("CPU implementation of Conv3D "
                                        "currently only supports the NHWC "
                                        "tensor format."));
    functor::CuboidConvolution<CPUDevice, T>()(
        context->eigen_device<CPUDevice>(), output->tensor<T, 5>(),
        input.tensor<T, 5>(), filter.tensor<T, 5>(), strides[2], strides[1],
        strides[0], BrainPadding2EigenPadding(padding));
  }
};

template <typename Device, typename T>
class Conv3DOp : public BinaryOp<T> {
 public:
  explicit Conv3DOp(OpKernelConstruction* context) : BinaryOp<T>(context) {
    string data_format;
    OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
    OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                errors::InvalidArgument("Invalid data format"));
    OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
    OP_REQUIRES(context, stride_.size() == 5,
                errors::InvalidArgument("Sliding window strides field must "
                                        "specify 5 dimensions"));
    OP_REQUIRES(
        context,
        (GetTensorDim(stride_, data_format_, 'N') == 1 &&
         GetTensorDim(stride_, data_format_, 'C') == 1),
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));
    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
    cudnn_use_autotune_ = CudnnUseAutotune();
  }

  void Compute(OpKernelContext* context) override {
    // Input tensor is of the following dimensions:
    // [ batch, in_z, in_y, in_x, in_channels ]
    const Tensor& input = context->input(0);

    // Input filter is of the following dimensions:
    // [ filter_z, filter_y, filter_x, in_channels, out_channels]
    const Tensor& filter = context->input(1);

    // NOTE: The ordering of the spatial dimensions is arbitrary, but has to be
    // kept consistent between input/filter/output.
    OP_REQUIRES(context, input.dims() == 5,
                errors::InvalidArgument("input must be 5-dimensional"));
    OP_REQUIRES(context, filter.dims() == 5,
                errors::InvalidArgument("filter must be 5-dimensional"));

    const int64 in_depth = GetTensorDim(input, data_format_, 'C');
    const int64 in_batch = GetTensorDim(input, data_format_, 'N');

    const int64 out_depth = filter.dim_size(4);
    OP_REQUIRES(
        context, in_depth == filter.dim_size(3),
        errors::InvalidArgument("input and filter must have the same depth"));

    // Dimension order for these arrays is: z, y, x.
    std::array<int64, 3> input_size = {
        {GetTensorDim(input, data_format_, '0'),
         GetTensorDim(input, data_format_, '1'),
         GetTensorDim(input, data_format_, '2')}};
    std::array<int64, 3> filter_size = {
        {filter.dim_size(0), filter.dim_size(1), filter.dim_size(2)}};
    std::array<int64, 3> strides = {{GetTensorDim(stride_, data_format_, '0'),
                                     GetTensorDim(stride_, data_format_, '1'),
                                     GetTensorDim(stride_, data_format_, '2')}};
    std::array<int64, 3> out, padding;

    OP_REQUIRES_OK(context, Get3dOutputSize(input_size, filter_size, strides,
                                            padding_, &out, &padding));
    TensorShape out_shape = ShapeFromFormat(
        data_format_, in_batch, {{out[0], out[1], out[2]}}, out_depth);
    Tensor* output;
    OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &output));

    // Return early if nothing to do.
    if (out_shape.num_elements() == 0) return;

    LaunchConvOp<Device, T>::launch(context, cudnn_use_autotune_, input, filter,
                                    strides, padding_, data_format_, output);
  }

 private:
  std::vector<int32> stride_;
  Padding padding_;
  TensorFormat data_format_;
  bool cudnn_use_autotune_;
};

#define REGISTER_CPU_KERNEL(T)                                  \
  REGISTER_KERNEL_BUILDER(                                      \
      Name("Conv3D").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
      Conv3DOp<CPUDevice, T>);
TF_CALL_half(REGISTER_CPU_KERNEL);
TF_CALL_float(REGISTER_CPU_KERNEL);
TF_CALL_double(REGISTER_CPU_KERNEL);
#undef REGISTER_CPU_KERNEL

#if GOOGLE_CUDA

// A dummy type to group forward convolution autotune results together.
struct Conv3dAutoTuneGroup {
  static string name() { return "Conv3d"; }
};
typedef AutoTuneSingleton<Conv3dAutoTuneGroup, ConvParameters,
                          perftools::gputools::dnn::AlgorithmConfig>
    AutoTuneConv3d;

// TODO(mjanusz): Share logic with 2d implementation as much as possible.
template <typename T>
struct LaunchConvOp<GPUDevice, T> {
  static void launch(OpKernelContext* ctx, bool cudnn_use_autotune,
                     const Tensor& input_param, const Tensor& filter,
                     const std::array<int64, 3>& strides, const Padding padding,
                     TensorFormat data_format, Tensor* output) {
    auto* stream = ctx->op_device_context()->stream();
    OP_REQUIRES(ctx, stream, errors::Internal("No GPU stream available."));

    Tensor input = input_param;

    const int64 in_batch = GetTensorDim(input, data_format, 'N');
    int64 in_planes = GetTensorDim(input, data_format, '0');
    int64 in_rows = GetTensorDim(input, data_format, '1');
    int64 in_cols = GetTensorDim(input, data_format, '2');
    const int64 in_depth = GetTensorDim(input, data_format, 'C');

    const int64 filter_planes = filter.dim_size(0);
    const int64 filter_rows = filter.dim_size(1);
    const int64 filter_cols = filter.dim_size(2);
    const int64 out_depth = filter.dim_size(4);

    int64 pad_planes = 0, pad_rows = 0, pad_cols = 0;
    int64 out_planes = GetTensorDim(*output, data_format, '0');
    int64 out_rows = GetTensorDim(*output, data_format, '1');
    int64 out_cols = GetTensorDim(*output, data_format, '2');

    if (padding == Padding::SAME) {
      pad_planes = std::max<int64>(
          0, (out_planes - 1) * strides[0] + filter_planes - in_planes);
      pad_rows = std::max<int64>(
          0, (out_rows - 1) * strides[1] + filter_rows - in_rows);
      pad_cols = std::max<int64>(
          0, (out_cols - 1) * strides[2] + filter_cols - in_cols);
    }

    // NOTE: This only works in NHWC.
    if (filter_planes == 1 && filter_rows == 1 && filter_cols == 1 &&
        strides[0] == 1 && strides[1] == 1 && strides[2] == 1 &&
        data_format == FORMAT_NHWC) {
      // 1x1 filter, so call cublas directly.
      const uint64 m = in_batch * in_planes * in_rows * in_cols;
      const uint64 k = in_depth;
      const uint64 n = out_depth;

      auto a_ptr = AsDeviceMemory(input.template flat<T>().data(),
                                  input.template flat<T>().size());
      auto b_ptr = AsDeviceMemory(filter.template flat<T>().data(),
                                  filter.template flat<T>().size());
      auto c_ptr = AsDeviceMemory(output->template flat<T>().data(),
                                  output->template flat<T>().size());

      auto no_transpose = perftools::gputools::blas::Transpose::kNoTranspose;
      bool blas_launch_status =
          stream
              ->ThenBlasGemm(no_transpose, no_transpose, n, m, k, 1.0f, b_ptr,
                             n, a_ptr, k, 0.0f, &c_ptr, n)
              .ok();
      if (!blas_launch_status) {
        ctx->SetStatus(errors::Internal("Blas SGEMM launch failed : m=", m,
                                        ", n=", n, ", k=", k));
      }
      return;
    } else if (filter_planes == in_planes && filter_rows == in_rows &&
               filter_cols == in_cols && padding == Padding::VALID &&
               data_format == FORMAT_NHWC) {
      // The input data and filter have the same planes/height/width, so call
      // cublas directly.
      const uint64 m = in_batch;
      const uint64 k = in_planes * in_rows * in_cols * in_depth;
      const uint64 n = out_depth;

      auto a_ptr = AsDeviceMemory(input.template flat<T>().data(),
                                  input.template flat<T>().size());
      auto b_ptr = AsDeviceMemory(filter.template flat<T>().data(),
                                  filter.template flat<T>().size());
      auto c_ptr = AsDeviceMemory(output->template flat<T>().data(),
                                  output->template flat<T>().size());

      auto no_transpose = perftools::gputools::blas::Transpose::kNoTranspose;
      bool blas_launch_status =
          stream
              ->ThenBlasGemm(no_transpose, no_transpose, n, m, k, 1.0f, b_ptr,
                             n, a_ptr, k, 0.0f, &c_ptr, n)
              .ok();
      if (!blas_launch_status) {
        ctx->SetStatus(errors::Internal("Blas SGEMM launch failed : m=", m,
                                        ", n=", n, ", k=", k));
      }
      return;
    }

    if (padding == Padding::SAME) {
      const bool rows_odd = (pad_rows % 2 != 0);
      const bool cols_odd = (pad_cols % 2 != 0);
      const bool planes_odd = (pad_planes % 2 != 0);

      // Necessary because cuDNN only supports symmetric padding.
      // TODO(mjanusz): Consider making this optional? This would save some
      // overhead and would work as long as an op trained this way is only
      // used on GPU.
      if (rows_odd || cols_odd || planes_odd) {
        const int64 new_in_rows = in_rows + rows_odd;
        const int64 new_in_cols = in_cols + cols_odd;
        const int64 new_in_planes = in_planes + planes_odd;

        Tensor transformed_input;
        TensorShape transformed_shape = ShapeFromFormat(
            data_format, in_batch, {{new_in_planes, new_in_rows, new_in_cols}},
            in_depth);
        OP_REQUIRES_OK(
            ctx, ctx->allocate_temp(DataTypeToEnum<T>::value, transformed_shape,
                                    &transformed_input));

        functor::PadInput<GPUDevice, T, int, 5>()(
            ctx->eigen_device<GPUDevice>(), To32Bit(input_param.tensor<T, 5>()),
            {{0, 0, 0}}, {{planes_odd, rows_odd, cols_odd}},
            To32Bit(transformed_input.tensor<T, 5>()), data_format);
        input = transformed_input;
        in_rows = new_in_rows;
        in_cols = new_in_cols;
        in_planes = new_in_planes;
      }
    }

    if (data_format == FORMAT_NHWC) {
      const TensorShape nchw_shape = ShapeFromFormat(
          FORMAT_NCHW, in_batch, {{in_planes, in_rows, in_cols}}, in_depth);
      if (in_depth > 1) {
        Tensor transformed_input;
        OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum<T>::value,
                                               nchw_shape, &transformed_input));
        // input: [b, x, y, z, d]
        // t_input: [b, d, x, y, z]
        // NCDHW is the only format universally supported by cuDNN.
        functor::NHWCToNCHW<GPUDevice, T, 5>()(
            ctx->eigen_device<GPUDevice>(),
            const_cast<const Tensor&>(input).tensor<T, 5>(),
            transformed_input.tensor<T, 5>());
        input = transformed_input;
      } else {
        CHECK(input.CopyFrom(input, nchw_shape));
      }
    }

    CHECK(pad_rows >= 0 && pad_cols >= 0 && pad_planes >= 0)
        << "Negative paddings: (" << pad_rows << ", " << pad_cols << ", "
        << pad_planes << ")";
    perftools::gputools::dnn::BatchDescriptor input_desc(3);
    input_desc.set_count(in_batch)
        .set_feature_map_count(in_depth)
        .set_spatial_dim(DimIndex::X, in_cols)
        .set_spatial_dim(DimIndex::Y, in_rows)
        .set_spatial_dim(DimIndex::Z, in_planes)
        .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);
    perftools::gputools::dnn::BatchDescriptor output_desc(3);
    output_desc.set_count(in_batch)
        .set_spatial_dim(DimIndex::X, out_cols)
        .set_spatial_dim(DimIndex::Y, out_rows)
        .set_spatial_dim(DimIndex::Z, out_planes)
        .set_feature_map_count(out_depth)
        .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);
    perftools::gputools::dnn::FilterDescriptor filter_desc(3);
    filter_desc.set_spatial_dim(DimIndex::X, filter_cols)
        .set_spatial_dim(DimIndex::Y, filter_rows)
        .set_spatial_dim(DimIndex::Z, filter_planes)
        .set_input_feature_map_count(in_depth)
        .set_output_feature_map_count(out_depth);
    perftools::gputools::dnn::ConvolutionDescriptor conv_desc(3);
    conv_desc.set_filter_stride(DimIndex::X, strides[2])
        .set_filter_stride(DimIndex::Y, strides[1])
        .set_filter_stride(DimIndex::Z, strides[0])
        .set_zero_padding(DimIndex::X, pad_cols / 2)
        .set_zero_padding(DimIndex::Y, pad_rows / 2)
        .set_zero_padding(DimIndex::Z, pad_planes / 2);

    Tensor transformed_filter;
    OP_REQUIRES_OK(
        ctx, ctx->allocate_temp(DataTypeToEnum<T>::value,
                                TensorShape({out_depth, in_depth, filter_planes,
                                             filter_rows, filter_cols}),
                                &transformed_filter));
    // filter: [x, y, z, in, out]
    // t_filter: [out, in, x, y, z]
    functor::TransformFilter<GPUDevice, T, int, 5>()(
        ctx->eigen_device<GPUDevice>(), To32Bit(filter.tensor<T, 5>()),
        To32Bit(transformed_filter.tensor<T, 5>()));

    Tensor transformed_output;
    OP_REQUIRES_OK(
        ctx, ctx->allocate_temp(
                 DataTypeToEnum<T>::value,
                 ShapeFromFormat(FORMAT_NCHW, in_batch,
                                 {{out_planes, out_rows, out_cols}}, out_depth),
                 &transformed_output));

    auto input_ptr = AsDeviceMemory(input.template flat<T>().data(),
                                    input.template flat<T>().size());
    auto filter_ptr =
        AsDeviceMemory(transformed_filter.template flat<T>().data(),
                       transformed_filter.template flat<T>().size());
    auto output_ptr =
        AsDeviceMemory(transformed_output.template flat<T>().data(),
                       transformed_output.template flat<T>().size());

    static int64 ConvolveScratchSize = GetCudnnWorkspaceLimit(
        "TF_CUDNN_WORKSPACE_LIMIT_IN_MB", 1LL << 32);  // 4GB by default

    int device_id = stream->parent()->device_ordinal();
    DataType dtype = input.dtype();
    ConvParameters conv_parameters = {
        in_batch,
        in_depth,
        {{in_planes, in_rows, in_cols}},
        out_depth,
        {{filter_planes, filter_rows, filter_cols}},
        {{strides[0], strides[1], strides[2]}},
        {{pad_planes, pad_rows, pad_cols}},
        dtype,
        device_id,
    };

    using perftools::gputools::dnn::AlgorithmConfig;
    using perftools::gputools::dnn::AlgorithmDesc;
    using perftools::gputools::dnn::ProfileResult;

    AlgorithmConfig algorithm_config;

    if (cudnn_use_autotune && !AutoTuneConv3d::GetInstance()->Find(
                                  conv_parameters, &algorithm_config)) {
      std::vector<AlgorithmDesc> algorithms;
      CHECK(stream->parent()->GetConvolveAlgorithms(
          conv_parameters.ShouldIncludeWinogradNonfusedAlgo<T>(), &algorithms));
      ProfileResult best_result;
      ProfileResult best_result_no_scratch;
      for (auto profile_algorithm : algorithms) {
        // TODO(zhengxq): profile each algorithm multiple times to better
        // accuracy.
        CudnnScratchAllocator scratch_allocator(ConvolveScratchSize, ctx);
        ProfileResult profile_result;
        bool cudnn_launch_status =
            stream
                ->ThenConvolveWithAlgorithm(
                    input_desc, input_ptr, filter_desc, filter_ptr, conv_desc,
                    output_desc, &output_ptr, &scratch_allocator,
                    AlgorithmConfig(profile_algorithm), &profile_result)
                .ok();
        if (cudnn_launch_status) {
          if (profile_result.is_valid()) {
            if (profile_result.elapsed_time_in_ms() <
                best_result.elapsed_time_in_ms()) {
              best_result = profile_result;
            }
            if (scratch_allocator.TotalByteSize() == 0 &&
                profile_result.elapsed_time_in_ms() <
                    best_result_no_scratch.elapsed_time_in_ms()) {
              best_result_no_scratch = profile_result;
            }
          }
        }
      }
      OP_REQUIRES(ctx,
                  best_result.is_valid() || best_result_no_scratch.is_valid(),
                  errors::NotFound("No algorithm worked!"));
      if (best_result.is_valid()) {
        algorithm_config.set_algorithm(best_result.algorithm());
      }
      if (best_result_no_scratch.is_valid()) {
        algorithm_config.set_algorithm_no_scratch(
            best_result_no_scratch.algorithm());
      }
      AutoTuneConv3d::GetInstance()->Insert(conv_parameters, algorithm_config);
    }

    CudnnScratchAllocator scratch_allocator(ConvolveScratchSize, ctx);
    bool cudnn_launch_status =
        stream
            ->ThenConvolveWithAlgorithm(input_desc, input_ptr, filter_desc,
                                        filter_ptr, conv_desc, output_desc,
                                        &output_ptr, &scratch_allocator,
                                        algorithm_config, nullptr)
            .ok();

    if (!cudnn_launch_status) {
      ctx->SetStatus(errors::Internal(
          "cuDNN launch failure : input shape(", input.shape().DebugString(),
          ") filter shape(", filter.shape().DebugString(), ")"));
    }

    if (data_format == FORMAT_NHWC) {
      // t_output: [b, out, x, y, z]
      // output: [b, x, y, z, out]
      functor::NCHWToNHWC<GPUDevice, T, 5>()(
          ctx->eigen_device<GPUDevice>(),
          const_cast<const Tensor&>(transformed_output).tensor<T, 5>(),
          output->tensor<T, 5>());
    } else {
      *output = transformed_output;
    }
  }
};

// Forward declarations of the functor specializations for GPU.
// This ensures that the custom implementation is used instead of the default
// Eigen one (which is used for CPU).
namespace functor {
#define DECLARE_GPU_SPEC(T)                                           \
  template <>                                                         \
  void TransformFilter<GPUDevice, T, int, 5>::operator()(             \
      const GPUDevice& d, typename TTypes<T, 5, int>::ConstTensor in, \
      typename TTypes<T, 5, int>::Tensor out);                        \
  template <>                                                         \
  void ReverseTransformFilter<GPUDevice, T, 5>::operator()(           \
      const GPUDevice& d, typename TTypes<T, 5>::ConstTensor in,      \
      typename TTypes<T, 5>::Tensor out);                             \
  template <>                                                         \
  void PadInput<GPUDevice, T, int, 5>::operator()(                    \
      const GPUDevice& d, typename TTypes<T, 5, int>::ConstTensor in, \
      const std::array<int, 3>& padding_left,                         \
      const std::array<int, 3>& padding_right,                        \
      typename TTypes<T, 5, int>::Tensor out, TensorFormat format);

DECLARE_GPU_SPEC(Eigen::half);
DECLARE_GPU_SPEC(float);
#undef DECLARE_GPU_SPEC

}  // namespace functor

// Registration of the GPU implementations.
REGISTER_KERNEL_BUILDER(
    Name("Conv3D").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"),
    Conv3DOp<GPUDevice, Eigen::half>);
REGISTER_KERNEL_BUILDER(
    Name("Conv3D").Device(DEVICE_GPU).TypeConstraint<float>("T"),
    Conv3DOp<GPUDevice, float>);
#endif  // GOOGLE_CUDA

}  // namespace tensorflow