aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/conv_ops.cc
blob: facfe4467d1dde2e0c2f6a91291a3e349cba8632 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/nn_ops.cc.

#define USE_EIGEN_TENSOR
#define EIGEN_USE_THREADS

#include "tensorflow/core/kernels/conv_ops.h"
#include <string.h>
#include <map>
#include <vector>
#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_slice.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/kernels/conv_2d.h"
#include "tensorflow/core/kernels/deep_conv2d.h"
#include "tensorflow/core/kernels/ops_util.h"
#ifdef TENSORFLOW_USE_LIBXSMM
#include "tensorflow/core/kernels/xsmm_conv2d.h"
#endif
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/lib/strings/numbers.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"
#include "tensorflow/core/util/use_cudnn.h"

#if GOOGLE_CUDA
#include "tensorflow/core/kernels/conv_ops_gpu.h"
#include "tensorflow/core/platform/stream_executor.h"
#endif  // GOOGLE_CUDA

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;
typedef Eigen::GpuDevice GPUDevice;

namespace {
template <typename Device, typename T>
struct LaunchGeneric {
  static void launch(OpKernelContext* ctx, const Tensor& input,
                     const Tensor& filter, int row_stride, int col_stride,
                     const Eigen::PaddingType& padding, Tensor* output,
                     TensorFormat data_format) {
    CHECK(data_format == FORMAT_NHWC) << "Generic conv implementation only "
                                         "supports NHWC tensor format for now.";
    if (filter.dim_size(0) == 1 && filter.dim_size(1) == 1 && row_stride == 1 &&
        col_stride == 1) {
      // For 1x1 kernel, the 2D convolution is reduced to matrix
      // multiplication.
      //
      // TODO(vrv): We should be able to call SpatialConvolution
      // and it will produce the same result, but doing so
      // led to NaNs during training.  Using matmul instead for now.
      int conv_width = 1;  // Width for the convolution step.
      for (int i = 0; i < 3; ++i) {
        conv_width *= output->dim_size(i);
      }

      Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1> dim_pair;
      dim_pair[0] = Eigen::IndexPair<Eigen::DenseIndex>(1, 0);
      functor::MatMulConvFunctor<Device, T>()(
          ctx->eigen_device<Device>(),
          output->shaped<T, 2>({conv_width, filter.dim_size(3)}),
          input.shaped<T, 2>({conv_width, filter.dim_size(2)}),
          filter.shaped<T, 2>({filter.dim_size(2), filter.dim_size(3)}),
          dim_pair);
    } else if (filter.dim_size(0) == input.dim_size(1) &&
               filter.dim_size(1) == input.dim_size(2) &&
               padding == Eigen::PADDING_VALID) {
      // If the input data and filter have the same height/width,
      // the 2D convolution is reduced to matrix multiplication.
      const int k =  // Length of reduction dimension.
          filter.dim_size(0) * filter.dim_size(1) * filter.dim_size(2);

      Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1> dim_pair;
      dim_pair[0] = Eigen::IndexPair<Eigen::DenseIndex>(1, 0);
      functor::MatMulConvFunctor<Device, T>()(
          ctx->eigen_device<Device>(),
          output->shaped<T, 2>({input.dim_size(0), filter.dim_size(3)}),
          input.shaped<T, 2>({input.dim_size(0), k}),
          filter.shaped<T, 2>({k, filter.dim_size(3)}), dim_pair);
    } else {
      functor::SpatialConvolution<Device, T>()(
          ctx->eigen_device<Device>(), output->tensor<T, 4>(),
          input.tensor<T, 4>(), filter.tensor<T, 4>(), row_stride, col_stride,
          padding);
    }
  }
};
}  // namespace

template <typename T>
class LaunchConv2DOp<CPUDevice, T> {
 public:
  void launch(OpKernelContext* ctx, bool use_cudnn, bool cudnn_use_autotune,
              const Tensor& input, const Tensor& filter, int row_stride,
              int col_stride, const Eigen::PaddingType& padding, Tensor* output,
              TensorFormat data_format) {
    LaunchGeneric<CPUDevice, T>::launch(ctx, input, filter, row_stride,
                                        col_stride, padding, output,
                                        data_format);
  }
};

template <typename Device, typename T>
class LaunchDeepConvOp {
 public:
  static bool Run(OpKernelContext* ctx, const Tensor& input,
                  const Tensor& filter, int batch, int input_rows,
                  int input_cols, int in_depth, int filter_rows,
                  int filter_cols, int pad_rows, int pad_cols, int out_rows,
                  int out_cols, int out_depth, int stride_rows, int stride_cols,
                  Tensor* output, TensorFormat data_format) {
    return false;
  }
};

// Conditionally launches DeepConv operation based on convolution parameters.
template <>
class LaunchDeepConvOp<CPUDevice, float> {
 public:
  static bool Run(OpKernelContext* ctx, const Tensor& input,
                  const Tensor& filter, int batch, int input_rows,
                  int input_cols, int in_depth, int filter_rows,
                  int filter_cols, int pad_rows, int pad_cols, int out_rows,
                  int out_cols, int out_depth, int stride_rows, int stride_cols,
                  Tensor* output, TensorFormat data_format) {
    if (data_format != FORMAT_NHWC ||
        !CanUseDeepConv2D(stride_rows, stride_cols, filter_rows, filter_cols,
                          in_depth, out_depth, out_rows, out_cols)) {
      return false;
    }

    Conv2DArgs args;
    args.batch = batch;
    args.in_rows = input_rows;
    args.in_cols = input_cols;
    args.in_depth = in_depth;
    args.filter_rows = filter_rows;
    args.filter_cols = filter_cols;
    args.pad_rows = pad_rows;
    args.pad_cols = pad_cols;
    args.out_rows = out_rows;
    args.out_cols = out_cols;
    args.out_depth = out_depth;

    auto input_ptr = input.template flat<float>().data();
    auto filter_ptr = filter.template flat<float>().data();
    auto output_ptr = output->template flat<float>().data();

    functor::DeepConv2D<CPUDevice, float>()(ctx, args, input_ptr, filter_ptr,
                                            output_ptr);
    return true;
  }
};

#ifdef TENSORFLOW_USE_LIBXSMM
template <typename Device, typename T>
class LaunchXsmmConvOp {
 public:
  static bool Run(OpKernelContext* ctx, const Tensor& input,
                  const Tensor& filter, int batch, int input_rows,
                  int input_cols, int in_depth, int filter_rows,
                  int filter_cols, int pad_rows, int pad_cols, int out_rows,
                  int out_cols, int out_depth, int stride_rows, int stride_cols,
                  Tensor* output, TensorFormat data_format) {
    return false;
  }
};

template <>
class LaunchXsmmConvOp<CPUDevice, float> {
 public:
  static bool Run(OpKernelContext* ctx, const Tensor& input,
                  const Tensor& filter, int batch, int input_rows,
                  int input_cols, int in_depth, int filter_rows,
                  int filter_cols, int pad_rows, int pad_cols, int out_rows,
                  int out_cols, int out_depth, int stride_rows, int stride_cols,
                  Tensor* output, TensorFormat data_format) {
    auto num_threads =
        ctx->device()->tensorflow_cpu_worker_threads()->num_threads;
    // See libxsmm_dnn.h for this struct definition.
    libxsmm_dnn_conv_desc desc;
    desc.N = batch;
    desc.C = in_depth;
    desc.H = input_rows;
    desc.W = input_cols;
    desc.K = out_depth;
    desc.R = filter_rows;
    desc.S = filter_cols;
    desc.u = stride_rows;
    desc.v = stride_cols;
    desc.pad_h = pad_rows;
    desc.pad_w = pad_cols;
    desc.pad_h_in = pad_rows;  // libxsmm supports only physical padding for now
    desc.pad_w_in = pad_cols;  // libxsmm supports only physical padding for now
    desc.pad_h_out = 0;
    desc.pad_w_out = 0;
    desc.threads = num_threads;
    desc.algo = LIBXSMM_DNN_CONV_ALGO_DIRECT;
    desc.buffer_format = LIBXSMM_DNN_TENSOR_FORMAT_NHWC;
    desc.filter_format = LIBXSMM_DNN_TENSOR_FORMAT_LIBXSMM;
    desc.fuse_ops = LIBXSMM_DNN_CONV_FUSE_NONE;
    desc.options = LIBXSMM_DNN_CONV_OPTION_NONE;
    desc.datatype = LIBXSMM_DNN_DATATYPE_F32;

    if (!CanUseXsmmConv2D(desc, data_format)) {
      return false;
    }

    auto input_ptr = input.template flat<float>().data();
    auto filter_ptr = filter.template flat<float>().data();
    auto output_ptr = output->template flat<float>().data();

    bool success = functor::XsmmFwdConv2D<CPUDevice, float>()(
        ctx, desc, input_ptr, filter_ptr, output_ptr);
    return success;
  }
};
#endif

template <typename Device, typename T>
class Conv2DOp : public BinaryOp<T> {
 public:
  explicit Conv2DOp(OpKernelConstruction* context) : BinaryOp<T>(context) {
    OP_REQUIRES_OK(context, context->GetAttr("strides", &strides_));
    string data_format;
    OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
    OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                errors::InvalidArgument("Invalid data format"));
    OP_REQUIRES_OK(context, context->GetAttr("use_cudnn_on_gpu", &use_cudnn_));
    use_cudnn_ &= CanUseCudnn();
    cudnn_use_autotune_ = CudnnUseAutotune();
    OP_REQUIRES(context, strides_.size() == 4,
                errors::InvalidArgument("Sliding window strides field must "
                                        "specify 4 dimensions"));
    const int64 stride_n = GetTensorDim(strides_, data_format_, 'N');
    const int64 stride_c = GetTensorDim(strides_, data_format_, 'C');
    OP_REQUIRES(
        context, stride_n == 1 && stride_c == 1,
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));
    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
  }

  void Compute(OpKernelContext* context) override {
    // Input tensor is of the following dimensions:
    // [ batch, in_rows, in_cols, in_depth ]

    const Tensor& input = context->input(0);

    // Input filter is of the following dimensions:
    // [ filter_rows, filter_cols, in_depth, out_depth]
    const Tensor& filter = context->input(1);

    // For 2D convolution, there should be 4 dimensions.
    OP_REQUIRES(context, input.dims() == 4,
                errors::InvalidArgument("input must be 4-dimensional",
                                        input.shape().DebugString()));
    OP_REQUIRES(context, filter.dims() == 4,
                errors::InvalidArgument("filter must be 4-dimensional: ",
                                        filter.shape().DebugString()));

    for (int i = 0; i < 3; i++) {
      OP_REQUIRES(
          context,
          FastBoundsCheck(filter.dim_size(i), std::numeric_limits<int>::max()),
          errors::InvalidArgument("filter too large"));
    }

    // The last dimension for input is in_depth. It must be the same as the
    // filter's in_depth.
    const int64 in_depth = GetTensorDim(input, data_format_, 'C');
    OP_REQUIRES(context, in_depth == filter.dim_size(2),
                errors::InvalidArgument(
                    "input and filter must have the same depth: ", in_depth,
                    " vs ", filter.dim_size(2)));

    // The last dimension for filter is out_depth.
    const int out_depth = static_cast<int>(filter.dim_size(3));

    // The second dimension for input is rows/height.
    // The first dimension for filter is rows/height.
    const int64 input_rows_raw = GetTensorDim(input, data_format_, 'H');
    OP_REQUIRES(
        context,
        FastBoundsCheck(input_rows_raw, std::numeric_limits<int>::max()),
        errors::InvalidArgument("Input rows too large"));
    const int input_rows = static_cast<int>(input_rows_raw);
    const int filter_rows = static_cast<int>(filter.dim_size(0));

    // The third dimension for input is columns/width.
    // The second dimension for filter is columns/width.
    const int64 input_cols_raw = GetTensorDim(input, data_format_, 'W');
    OP_REQUIRES(
        context,
        FastBoundsCheck(input_cols_raw, std::numeric_limits<int>::max()),
        errors::InvalidArgument("Input cols too large"));
    const int input_cols = static_cast<int>(input_cols_raw);
    const int filter_cols = static_cast<int>(filter.dim_size(1));

    // The first dimension for input is batch.
    const int64 batch_raw = GetTensorDim(input, data_format_, 'N');
    OP_REQUIRES(context,
                FastBoundsCheck(batch_raw, std::numeric_limits<int>::max()),
                errors::InvalidArgument("batch is too large"));
    const int batch = static_cast<int>(batch_raw);

    // For now we take the stride from the second and third dimensions only (we
    // do not support striding on the batch or depth dimension).
    const int stride_rows = GetTensorDim(strides_, data_format_, 'H');
    const int stride_cols = GetTensorDim(strides_, data_format_, 'W');

    int64 out_rows = 0, out_cols = 0, pad_rows = 0, pad_cols = 0;
    OP_REQUIRES_OK(context,
                   GetWindowedOutputSize(input_rows, filter_rows, stride_rows,
                                         padding_, &out_rows, &pad_rows));
    OP_REQUIRES_OK(context,
                   GetWindowedOutputSize(input_cols, filter_cols, stride_cols,
                                         padding_, &out_cols, &pad_cols));
    TensorShape out_shape =
        ShapeFromFormat(data_format_, batch, out_rows, out_cols, out_depth);

    // Output tensor is of the following dimensions:
    // [ in_batch, out_rows, out_cols, out_depth ]
    Tensor* output = nullptr;
    OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &output));

    VLOG(2) << "Conv2D: in_depth = " << in_depth
            << ", input_cols = " << input_cols
            << ", filter_cols = " << filter_cols
            << ", input_rows = " << input_rows
            << ", filter_rows = " << filter_rows
            << ", stride_rows = " << stride_rows
            << ", stride_cols = " << stride_cols
            << ", out_depth = " << out_depth;

    // If there is nothing to compute, return.
    if (out_shape.num_elements() == 0) {
      return;
    }

#ifdef TENSORFLOW_USE_LIBXSMM
    if (LaunchXsmmConvOp<Device, T>::Run(
            context, input, filter, batch, input_rows, input_cols, in_depth,
            filter_rows, filter_cols, pad_rows, pad_cols, out_rows, out_cols,
            out_depth, stride_rows, stride_cols, output, data_format_)) {
      return;
    }
#endif

    if (LaunchDeepConvOp<Device, T>::Run(
            context, input, filter, batch, input_rows, input_cols, in_depth,
            filter_rows, filter_cols, pad_rows, pad_cols, out_rows, out_cols,
            out_depth, stride_rows, stride_cols, output, data_format_)) {
      return;
    }

    launcher_.launch(context, use_cudnn_, cudnn_use_autotune_, input, filter,
                     stride_rows, stride_cols,
                     BrainPadding2EigenPadding(padding_), output, data_format_);
  }

 private:
  std::vector<int32> strides_;
  bool use_cudnn_;
  Padding padding_;
  TensorFormat data_format_;
  LaunchConv2DOp<Device, T> launcher_;
  bool cudnn_use_autotune_;

  TF_DISALLOW_COPY_AND_ASSIGN(Conv2DOp);
};

#define REGISTER_CPU(T)                                         \
  REGISTER_KERNEL_BUILDER(                                      \
      Name("Conv2D").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
      Conv2DOp<CPUDevice, T>);

// If we're using the alternative GEMM-based implementation of Conv2D for the
// CPU implementation, don't register this EigenTensor-based version.
#if !defined(USE_GEMM_FOR_CONV)
TF_CALL_half(REGISTER_CPU);
TF_CALL_float(REGISTER_CPU);
#endif  // USE_GEMM_FOR_CONV

// To be used inside depthwise_conv_op.cc.
template class LaunchConv2DOp<CPUDevice, float>;

#if GOOGLE_CUDA
int64 GetCudnnWorkspaceLimit(const string& envvar_in_mb,
                             int64 default_value_in_bytes) {
  const char* workspace_limit_in_mb_str = getenv(envvar_in_mb.c_str());
  if (workspace_limit_in_mb_str != nullptr &&
      strcmp(workspace_limit_in_mb_str, "") != 0) {
    int64 scratch_limit_in_mb = -1;
    if (strings::safe_strto64(workspace_limit_in_mb_str,
                              &scratch_limit_in_mb)) {
      return scratch_limit_in_mb * (1 << 20);
    } else {
      LOG(WARNING) << "Invalid value for env-var " << envvar_in_mb << ": "
                   << workspace_limit_in_mb_str;
    }
  }
  return default_value_in_bytes;
}

// A dummy type to group forward convolution autotune results together.
struct ConvAutoTuneGroup {
  static string name() { return "Conv"; }
};
typedef AutoTuneSingleton<ConvAutoTuneGroup, ConvParameters,
                          perftools::gputools::dnn::AlgorithmConfig>
    AutoTuneConv;

template <typename T>
void LaunchConv2DOp<GPUDevice, T>::launch(
    OpKernelContext* ctx, bool use_cudnn, bool cudnn_use_autotune,
    const Tensor& input_param, const Tensor& filter, int row_stride,
    int col_stride, const Eigen::PaddingType& padding, Tensor* output,
    TensorFormat data_format) {
  using perftools::gputools::dnn::AlgorithmConfig;
  using perftools::gputools::dnn::AlgorithmType;
  using perftools::gputools::dnn::ProfileResult;
  using perftools::gputools::dnn::kDefaultAlgorithm;
  auto* stream = ctx->op_device_context()->stream();
  OP_REQUIRES(ctx, stream, errors::Internal("No GPU stream available."));

  if (!use_cudnn) {
    ctx->SetStatus(
        errors::Unimplemented("Conv2D for GPU is not currently supported "
                              "without cudnn"));
    return;
  }

  Tensor input = input_param;

  if (filter.dim_size(0) == 1 && filter.dim_size(1) == 1 && row_stride == 1 &&
      col_stride == 1 && data_format == FORMAT_NHWC) {
    // 1x1 filter, so call cublas directly.
    const uint64 m = input.dim_size(0) * input.dim_size(1) * input.dim_size(2);
    const uint64 k = filter.dim_size(2);
    const uint64 n = filter.dim_size(3);

    auto a_ptr = AsDeviceMemory(input.template flat<T>().data(),
                                input.template flat<T>().size());
    auto b_ptr = AsDeviceMemory(filter.template flat<T>().data(),
                                filter.template flat<T>().size());
    auto c_ptr = AsDeviceMemory(output->template flat<T>().data(),
                                output->template flat<T>().size());

    auto no_transpose = perftools::gputools::blas::Transpose::kNoTranspose;
    bool blas_launch_status =
        stream
            ->ThenBlasGemm(no_transpose, no_transpose, n, m, k, 1.0f, b_ptr, n,
                           a_ptr, k, 0.0f, &c_ptr, n)
            .ok();
    if (!blas_launch_status) {
      ctx->SetStatus(errors::Internal("Blas SGEMM launch failed : m=", m,
                                      ", n=", n, ", k=", k));
    }
    return;
  } else if (filter.dim_size(0) == input.dim_size(1) &&
             filter.dim_size(1) == input.dim_size(2) &&
             padding == Eigen::PADDING_VALID && data_format == FORMAT_NHWC) {
    // The input data and filter have the same height/width, so call cublas
    // directly.
    const uint64 m = input.dim_size(0);
    const uint64 k =
        filter.dim_size(0) * filter.dim_size(1) * filter.dim_size(2);
    const uint64 n = filter.dim_size(3);

    auto a_ptr = AsDeviceMemory(input.template flat<T>().data(),
                                input.template flat<T>().size());
    auto b_ptr = AsDeviceMemory(filter.template flat<T>().data(),
                                filter.template flat<T>().size());
    auto c_ptr = AsDeviceMemory(output->template flat<T>().data(),
                                output->template flat<T>().size());

    auto no_transpose = perftools::gputools::blas::Transpose::kNoTranspose;
    bool blas_launch_status =
        stream
            ->ThenBlasGemm(no_transpose, no_transpose, n, m, k, 1.0f, b_ptr, n,
                           a_ptr, k, 0.0f, &c_ptr, n)
            .ok();
    if (!blas_launch_status) {
      ctx->SetStatus(errors::Internal("Blas SGEMM launch failed : m=", m,
                                      ", n=", n, ", k=", k));
    }
    return;
  }

  int padding_rows = 0;
  int padding_cols = 0;
  const int64 in_batch = GetTensorDim(input, data_format, 'N');
  int64 in_rows = GetTensorDim(input, data_format, 'H');
  int64 in_cols = GetTensorDim(input, data_format, 'W');
  const int64 in_depths = GetTensorDim(input, data_format, 'C');
  const int64 out_batch = GetTensorDim(*output, data_format, 'N');
  const int64 out_rows = GetTensorDim(*output, data_format, 'H');
  const int64 out_cols = GetTensorDim(*output, data_format, 'W');
  const int64 out_depths = GetTensorDim(*output, data_format, 'C');
  const int64 patch_rows = filter.dim_size(0);
  const int64 patch_cols = filter.dim_size(1);
  if (padding == Eigen::PADDING_SAME) {
    // Total padding on rows and cols is
    // Pr = (R' - 1) * S + Kr - R
    // Pc = (C' - 1) * S + Kc - C
    // where (R', C') are output dimensions, (R, C) are input dimensions, S
    // is stride, (Kr, Kc) are filter dimensions.
    // We pad Pr/2 on the left and Pr - Pr/2 on the right, Pc/2 on the top
    // and Pc - Pc/2 on the bottom.  When Pr or Pc is odd, this means
    // we pad more on the right and bottom than on the top and left.
    padding_rows =
        std::max<int>(0, (out_rows - 1) * row_stride + patch_rows - in_rows);
    padding_cols =
        std::max<int>(0, (out_cols - 1) * col_stride + patch_cols - in_cols);
    const bool rows_odd = (padding_rows % 2 != 0);
    const bool cols_odd = (padding_cols % 2 != 0);
    if (rows_odd || cols_odd) {
      Tensor transformed_input;
      int64 new_in_rows = in_rows + rows_odd;
      int64 new_in_cols = in_cols + cols_odd;
      OP_REQUIRES_OK(
          ctx,
          ctx->allocate_temp(DataTypeToEnum<T>::value,
                             ShapeFromFormat(data_format, in_batch, new_in_rows,
                                             new_in_cols, in_depths),
                             &transformed_input));

      functor::PadInput<GPUDevice, T, int, 4>()(
          ctx->eigen_device<GPUDevice>(), To32Bit(input_param.tensor<T, 4>()),
          {{0, 0}}, {{rows_odd, cols_odd}},
          To32Bit(transformed_input.tensor<T, 4>()), data_format);

      input = transformed_input;
      in_rows = new_in_rows;
      in_cols = new_in_cols;
    }
  }

  if (data_format == FORMAT_NHWC) {
    // Convert the input tensor from NHWC to NCHW.
    TensorShape nchw_shape =
        ShapeFromFormat(FORMAT_NCHW, in_batch, in_rows, in_cols, in_depths);
    if (in_depths > 1) {
      Tensor transformed_input;
      OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum<T>::value,
                                             nchw_shape, &transformed_input));
      functor::NHWCToNCHW<GPUDevice, T, 4>()(
          ctx->eigen_device<GPUDevice>(),
          const_cast<const Tensor&>(input).tensor<T, 4>(),
          transformed_input.tensor<T, 4>());
      input = transformed_input;
    } else {
      // If depth <= 1, then just reshape.
      CHECK(input.CopyFrom(input, nchw_shape));
    }
  }

  CHECK(padding_rows >= 0 && padding_cols >= 0)
      << "Negative row or col paddings: (" << padding_rows << ", "
      << padding_cols << ")";
  perftools::gputools::dnn::BatchDescriptor input_desc;
  input_desc.set_count(in_batch)
      .set_feature_map_count(in_depths)
      .set_height(in_rows)
      .set_width(in_cols)
      .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);
  perftools::gputools::dnn::BatchDescriptor output_desc;
  output_desc.set_count(out_batch)
      .set_height(out_rows)
      .set_width(out_cols)
      .set_feature_map_count(out_depths)
      .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);
  perftools::gputools::dnn::FilterDescriptor filter_desc;
  filter_desc.set_input_filter_height(filter.dim_size(0))
      .set_input_filter_width(filter.dim_size(1))
      .set_input_feature_map_count(filter.dim_size(2))
      .set_output_feature_map_count(filter.dim_size(3));
  perftools::gputools::dnn::ConvolutionDescriptor conv_desc;
  conv_desc.set_vertical_filter_stride(row_stride)
      .set_horizontal_filter_stride(col_stride)
      .set_zero_padding_height(padding_rows / 2)
      .set_zero_padding_width(padding_cols / 2);

  Tensor transformed_filter;
  OP_REQUIRES_OK(ctx, ctx->allocate_temp(
                          DataTypeToEnum<T>::value,
                          TensorShape({filter.dim_size(3), filter.dim_size(2),
                                       filter.dim_size(0), filter.dim_size(1)}),
                          &transformed_filter));

  functor::TransformFilter<GPUDevice, T, int, 4>()(
      ctx->eigen_device<GPUDevice>(), To32Bit(filter.tensor<T, 4>()),
      To32Bit(transformed_filter.tensor<T, 4>()));

  Tensor transformed_output;
  OP_REQUIRES_OK(
      ctx, ctx->allocate_temp(DataTypeToEnum<T>::value,
                              ShapeFromFormat(FORMAT_NCHW, out_batch, out_rows,
                                              out_cols, out_depths),
                              &transformed_output));

  auto input_ptr = AsDeviceMemory(input.template flat<T>().data(),
                                  input.template flat<T>().size());
  auto filter_ptr =
      AsDeviceMemory(transformed_filter.template flat<T>().data(),
                     transformed_filter.template flat<T>().size());
  auto output_ptr =
      AsDeviceMemory(transformed_output.template flat<T>().data(),
                     transformed_output.template flat<T>().size());

  static int64 ConvolveScratchSize = GetCudnnWorkspaceLimit(
      // default value is in bytes despite the name of the environment variable
      "TF_CUDNN_WORKSPACE_LIMIT_IN_MB", 1LL << 32  // 4GB
      );

  int device_id = stream->parent()->device_ordinal();
  DataType dtype = input.dtype();
  ConvParameters conv_parameters = {
      in_batch,          // batch
      in_depths,         // in_depths
      {{in_rows,         // in_rows
        in_cols}},       // in_cols
      out_depths,        // out_depths
      {{patch_rows,      // filter_rows
        patch_cols}},    // filter_cols
      {{row_stride,      // stride_rows
        col_stride}},    // stride_cols
      {{padding_rows,    // padding_rows
        padding_cols}},  // padding_cols
      dtype,             // tensor datatype
      device_id,         // device_id
  };
  AlgorithmConfig algorithm_config;
  if (cudnn_use_autotune &&
      !AutoTuneConv::GetInstance()->Find(conv_parameters, &algorithm_config)) {
    std::vector<AlgorithmType> algorithms;
    CHECK(stream->parent()->GetConvolveAlgorithms(&algorithms));
    ProfileResult best_result;
    ProfileResult best_result_no_scratch;
    for (auto profile_algorithm : algorithms) {
      // TODO(zhengxq): profile each algorithm multiple times to better
      // accuracy.
      CudnnScratchAllocator scratch_allocator(ConvolveScratchSize, ctx);
      ProfileResult profile_result;
      bool cudnn_launch_status =
          stream
              ->ThenConvolveWithAlgorithm(
                  input_desc, input_ptr, filter_desc, filter_ptr, conv_desc,
                  output_desc, &output_ptr, &scratch_allocator,
                  AlgorithmConfig(profile_algorithm), &profile_result)
              .ok();
      if (cudnn_launch_status) {
        if (profile_result.is_valid()) {
          if (profile_result.elapsed_time_in_ms() <
              best_result.elapsed_time_in_ms()) {
            best_result = profile_result;
          }
          if (scratch_allocator.TotalByteSize() == 0 &&
              profile_result.elapsed_time_in_ms() <
                  best_result_no_scratch.elapsed_time_in_ms()) {
            best_result_no_scratch = profile_result;
          }
        }
      }
    }
    OP_REQUIRES(
        ctx,
        best_result.is_valid() && best_result.algorithm() != kDefaultAlgorithm,
        errors::NotFound("No algorithm worked!"));
    OP_REQUIRES(ctx,
                best_result_no_scratch.is_valid() &&
                    best_result_no_scratch.algorithm() != kDefaultAlgorithm,
                errors::NotFound("No algorithm without scratch worked!"));
    algorithm_config.set_algorithm(best_result.algorithm());
    algorithm_config.set_algorithm_no_scratch(
        best_result_no_scratch.algorithm());
    AutoTuneConv::GetInstance()->Insert(conv_parameters, algorithm_config);
  }

  CudnnScratchAllocator scratch_allocator(ConvolveScratchSize, ctx);
  bool cudnn_launch_status =
      stream
          ->ThenConvolveWithAlgorithm(input_desc, input_ptr, filter_desc,
                                      filter_ptr, conv_desc, output_desc,
                                      &output_ptr, &scratch_allocator,
                                      algorithm_config, nullptr)
          .ok();

  if (!cudnn_launch_status) {
    ctx->SetStatus(errors::Internal(
        "cuDNN launch failure : input shape(", input.shape().DebugString(),
        ") filter shape(", filter.shape().DebugString(), ")"));
  }

  // Convert the output tensor back from NHWC to NCHW.
  if (data_format == FORMAT_NHWC) {
    functor::NCHWToNHWC<GPUDevice, T, 4>()(
        ctx->eigen_device<GPUDevice>(),
        const_cast<const Tensor&>(transformed_output).tensor<T, 4>(),
        output->tensor<T, 4>());
  } else {
    *output = transformed_output;
  }
}

// Forward declarations of the functor specializations for GPU.
namespace functor {
#define DECLARE_GPU_SPEC(T)                                                  \
  template <>                                                                \
  void SpatialConvolution<GPUDevice, T>::operator()(                         \
      const GPUDevice& d, typename TTypes<T, 4>::Tensor output,              \
      typename TTypes<T, 4>::ConstTensor input,                              \
      typename TTypes<T, 4>::ConstTensor filter, int row_stride,             \
      int col_stride, const Eigen::PaddingType& padding);                    \
  extern template struct SpatialConvolution<GPUDevice, T>;                   \
  template <>                                                                \
  void MatMulConvFunctor<GPUDevice, T>::operator()(                          \
      const GPUDevice& d, typename TTypes<T, 2>::Tensor out,                 \
      typename TTypes<T, 2>::ConstTensor in0,                                \
      typename TTypes<T, 2>::ConstTensor in1,                                \
      const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair); \
  extern template struct MatMulConvFunctor<GPUDevice, T>;                    \
  template <>                                                                \
  void TransformFilter<GPUDevice, T, int, 4>::operator()(                    \
      const GPUDevice& d, typename TTypes<T, 4, int>::ConstTensor in,        \
      typename TTypes<T, 4, int>::Tensor out);                               \
  extern template struct TransformFilter<GPUDevice, T, int, 4>;              \
  template <>                                                                \
  void PadInput<GPUDevice, T, int, 4>::operator()(                           \
      const GPUDevice& d, typename TTypes<T, 4, int>::ConstTensor in,        \
      const std::array<int, 2>& padding_left,                                \
      const std::array<int, 2>& padding_right,                               \
      typename TTypes<T, 4, int>::Tensor out, TensorFormat data_format);     \
  extern template struct PadInput<GPUDevice, T, int, 4>

DECLARE_GPU_SPEC(float);
DECLARE_GPU_SPEC(Eigen::half);
#undef DECLARE_GPU_SPEC
}  // namespace functor

// Registration of the GPU implementations.
REGISTER_KERNEL_BUILDER(
    Name("Conv2D").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"),
    Conv2DOp<GPUDevice, Eigen::half>);
REGISTER_KERNEL_BUILDER(
    Name("Conv2D").Device(DEVICE_GPU).TypeConstraint<float>("T"),
    Conv2DOp<GPUDevice, float>);

// To be used inside depthwise_conv_op.cc.
template class LaunchConv2DOp<GPUDevice, float>;

#endif  // GOOGLE_CUDA

}  // namespace tensorflow