aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/conv_grad_filter_ops.cc
blob: f88862bfeb9202b4718e3f0c25f4358ae7340c59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/nn_ops.cc.

#define USE_EIGEN_TENSOR
#define EIGEN_USE_THREADS

#include "tensorflow/core/kernels/conv_grad_ops.h"

#include <algorithm>
#include <vector>

#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_slice.h"
#include "tensorflow/core/kernels/conv_2d.h"
#ifdef TENSORFLOW_USE_LIBXSMM
#include "tensorflow/core/kernels/xsmm_conv2d.h"
#endif
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"
#include "tensorflow/core/util/use_cudnn.h"
#include "tensorflow/core/util/work_sharder.h"

#if GOOGLE_CUDA
#include "tensorflow/core/kernels/conv_ops_gpu.h"
#include "tensorflow/core/platform/stream_executor.h"
#endif  // GOOGLE_CUDA

namespace {

// Returns in 'col_data', image patches in storage order (height, width, depth)
// extracted from image at 'input_data', which is required to be in storage
// order (batch, height, width, depth).
// Implementation written by Yangqing Jia (jiayq).
template <typename T>
void Im2col(const T* input_data, const int depth, const int height,
            const int width, const int filter_h, const int filter_w,
            const int pad_t, const int pad_l, const int pad_b, const int pad_r,
            const int stride_h, const int stride_w, T* col_data) {
  int height_col = (height + pad_t + pad_b - filter_h) / stride_h + 1;
  int width_col = (width + pad_l + pad_r - filter_w) / stride_w + 1;

  int h_pad = -pad_t;
  for (int h = 0; h < height_col; ++h) {
    int w_pad = -pad_l;
    for (int w = 0; w < width_col; ++w) {
      for (int ih = h_pad; ih < h_pad + filter_h; ++ih) {
        for (int iw = w_pad; iw < w_pad + filter_w; ++iw) {
          if (ih >= 0 && ih < height && iw >= 0 && iw < width) {
            memcpy(col_data, input_data + (ih * width + iw) * depth,
                   sizeof(T) * depth);
          } else {
            // This should be simply padded with zero.
            memset(col_data, 0, sizeof(T) * depth);
          }
          col_data += depth;
        }
      }
      w_pad += stride_w;
    }
    h_pad += stride_h;
  }
}

}  // namespace

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;
typedef Eigen::GpuDevice GPUDevice;

#ifdef TENSORFLOW_USE_LIBXSMM
template <typename Device, class T>
struct LaunchXsmmBackwardFilter {
  bool operator()(OpKernelContext* context, const Device& d,
                  typename TTypes<T, 4>::ConstTensor input_backward,
                  typename TTypes<T, 4>::Tensor kernel,
                  typename TTypes<T, 4>::ConstTensor output_backward,
                  int input_rows, int input_cols, int row_stride,
                  int col_stride, int pad_h, int pad_w,
                  TensorFormat data_format) const {
    return false;
  }
};

template <>
struct LaunchXsmmBackwardFilter<CPUDevice, float> {
  bool operator()(OpKernelContext* context, const CPUDevice& d,
                  typename TTypes<float, 4>::ConstTensor input,
                  typename TTypes<float, 4>::Tensor filter,
                  typename TTypes<float, 4>::ConstTensor output, int input_rows,
                  int input_cols, int row_stride, int col_stride, int pad_h,
                  int pad_w, TensorFormat data_format) const {
    auto batch = input.dimension(0);
    auto in_depth = input.dimension(3);
    auto out_depth = output.dimension(3);
    auto filter_rows = filter.dimension(0);
    auto filter_cols = filter.dimension(1);

    auto num_threads =
        context->device()->tensorflow_cpu_worker_threads()->num_threads;
    // See libxsmm_dnn.h for this struct definition.
    libxsmm_dnn_conv_desc desc;
    desc.N = batch;
    desc.C = in_depth;
    desc.H = input_rows;
    desc.W = input_cols;
    desc.K = out_depth;
    desc.R = filter_rows;
    desc.S = filter_cols;
    desc.u = row_stride;
    desc.v = col_stride;
    desc.pad_h = pad_h;
    desc.pad_w = pad_w;
    desc.pad_h_in = 0;  // pad_rows;  // ignored by libxsmm for now.
    desc.pad_w_in = 0;  // pad_cols;  // ignored by libxsmm for now.
    desc.pad_h_out = 0;
    desc.pad_w_out = 0;
    desc.threads = num_threads;
    desc.algo = LIBXSMM_DNN_CONV_ALGO_DIRECT;
    desc.buffer_format = LIBXSMM_DNN_TENSOR_FORMAT_NHWC;
    desc.filter_format = LIBXSMM_DNN_TENSOR_FORMAT_RSCK;
    desc.fuse_ops = LIBXSMM_DNN_CONV_FUSE_NONE;
    desc.options = LIBXSMM_DNN_CONV_OPTION_NONE;
    desc.datatype = LIBXSMM_DNN_DATATYPE_F32;

    if (!CanUseXsmmConv2D(desc, data_format)) {
      return false;
    }

    auto input_ptr = input.data();
    auto filter_ptr = filter.data();
    auto output_ptr = output.data();
    bool success = functor::XsmmBkwFilterConv2D<CPUDevice, float>()(
        context, desc, input_ptr, filter_ptr, output_ptr);
    return success;
  }
};
#endif

template <typename Device, class T>
class Conv2DFastBackpropFilterOp : public OpKernel {
 public:
  explicit Conv2DFastBackpropFilterOp(OpKernelConstruction* context)
      : OpKernel(context) {
    string data_format;
    OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
    OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                errors::InvalidArgument("Invalid data format"));
    OP_REQUIRES(context, data_format_ == FORMAT_NHWC,
                errors::InvalidArgument(
                    "Conv2DFastBackpropFilterOp only supports NHWC."));
    OP_REQUIRES_OK(context, context->GetAttr("strides", &strides_));
    OP_REQUIRES(context, strides_.size() == 4,
                errors::InvalidArgument("Sliding window strides field must "
                                        "specify 4 dimensions"));
    OP_REQUIRES(
        context, (strides_[0] == 1 && strides_[3] == 1),
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));
    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
  }

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    const Tensor& filter_sizes = context->input(1);
    const Tensor& out_backprop = context->input(2);
    OP_REQUIRES(
        context, TensorShapeUtils::IsVector(filter_sizes.shape()),
        errors::InvalidArgument(
            "Conv2DBackpropFilter: filter_sizes input must be 1-dim, not ",
            filter_sizes.dims()));
    TensorShape filter_shape;
    OP_REQUIRES_OK(context, TensorShapeUtils::MakeShape(
                                filter_sizes.vec<int32>(), &filter_shape));

    ConvBackpropDimensions dims;
    OP_REQUIRES_OK(
        context,
        ConvBackpropComputeDimensions(
            type_string(), /*num_spatial_dims=*/2, input.shape(), filter_shape,
            out_backprop.shape(), strides_, padding_, data_format_, &dims));

    Tensor* filter_backprop = nullptr;
    OP_REQUIRES_OK(context,
                   context->allocate_output(0, filter_shape, &filter_backprop));

#if defined TENSORFLOW_USE_LIBXSMM && defined TENSORFLOW_USE_LIBXSMM_BACKWARD

    int64 pad_top, pad_bottom;
    int64 pad_left, pad_right;
    OP_REQUIRES_OK(
        context,
        GetWindowedOutputSizeVerbose(
            dims.spatial_dims[0].input_size, dims.spatial_dims[0].filter_size,
            dims.spatial_dims[0].stride, padding_,
            &dims.spatial_dims[0].output_size, &pad_top, &pad_bottom));
    OP_REQUIRES_OK(
        context,
        GetWindowedOutputSizeVerbose(
            dims.spatial_dims[1].input_size, dims.spatial_dims[1].filter_size,
            dims.spatial_dims[1].stride, padding_,
            &dims.spatial_dims[1].output_size, &pad_left, &pad_right));

    if (pad_left == pad_right && pad_top == pad_bottom) {
      if (LaunchXsmmBackwardFilter<Device, T>()(
              context, context->eigen_device<Device>(), input.tensor<T, 4>(),
              filter_backprop->tensor<T, 4>(), out_backprop.tensor<T, 4>(),
              dims.spatial_dims[0].input_size, dims.spatial_dims[1].input_size,
              (int)dims.spatial_dims[0].stride,
              (int)dims.spatial_dims[1].stride, (int)pad_top, (int)pad_left,
              data_format_)) {
        return;
      }
    }
#endif

    functor::SpatialConvolutionBackwardKernel<Device, T>()(
        context->eigen_device<Device>(), filter_backprop->tensor<T, 4>(),
        input.tensor<T, 4>(), out_backprop.tensor<T, 4>(),
        dims.spatial_dims[0].filter_size, dims.spatial_dims[1].filter_size,
        dims.spatial_dims[0].stride, dims.spatial_dims[1].stride);
  }

 private:
  std::vector<int32> strides_;
  Padding padding_;
  TensorFormat data_format_;

  TF_DISALLOW_COPY_AND_ASSIGN(Conv2DFastBackpropFilterOp);
};

// Based on implementation written by Yangqing Jia (jiayq).
template <typename Device, class T>
class Conv2DCustomBackpropFilterOp : public OpKernel {
 public:
  explicit Conv2DCustomBackpropFilterOp(OpKernelConstruction* context)
      : OpKernel(context) {
    string data_format;
    OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
    OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                errors::InvalidArgument("Invalid data format"));
    OP_REQUIRES(context, data_format_ == FORMAT_NHWC,
                errors::InvalidArgument(
                    "Conv2DCustomBackpropFilterOp only supports NHWC."));
    OP_REQUIRES_OK(context, context->GetAttr("strides", &strides_));
    OP_REQUIRES(context, strides_.size() == 4,
                errors::InvalidArgument("Sliding window strides field must "
                                        "specify 4 dimensions"));
    OP_REQUIRES(
        context, (strides_[0] == 1 && strides_[3] == 1),
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));
    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
  }

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    const Tensor& filter_sizes = context->input(1);
    const Tensor& out_backprop = context->input(2);
    OP_REQUIRES(
        context, TensorShapeUtils::IsVector(filter_sizes.shape()),
        errors::InvalidArgument(
            "Conv2DCustomBackpropFilter: filter_sizes input must be 1-dim, "
            "not ",
            filter_sizes.dims()));
    TensorShape filter_shape;
    OP_REQUIRES_OK(context, TensorShapeUtils::MakeShape(
                                filter_sizes.vec<int32>(), &filter_shape));

    ConvBackpropDimensions dims;
    OP_REQUIRES_OK(context,
                   ConvBackpropComputeDimensions(
                       "Conv2DCustomBackpropFilter", /*num_spatial_dims=*/2,
                       input.shape(), filter_shape, out_backprop.shape(),
                       strides_, padding_, data_format_, &dims));

    Tensor* filter_backprop;
    OP_REQUIRES_OK(context,
                   context->allocate_output(0, filter_shape, &filter_backprop));

    int64 pad_top, pad_bottom;
    int64 pad_left, pad_right;
    OP_REQUIRES_OK(
        context,
        GetWindowedOutputSizeVerbose(
            dims.spatial_dims[0].input_size, dims.spatial_dims[0].filter_size,
            dims.spatial_dims[0].stride, padding_,
            &dims.spatial_dims[0].output_size, &pad_top, &pad_bottom));
    OP_REQUIRES_OK(
        context,
        GetWindowedOutputSizeVerbose(
            dims.spatial_dims[1].input_size, dims.spatial_dims[1].filter_size,
            dims.spatial_dims[1].stride, padding_,
            &dims.spatial_dims[1].output_size, &pad_left, &pad_right));
#if defined TENSORFLOW_USE_LIBXSMM && defined TENSORFLOW_USE_LIBXSMM_BACKWARD
    if (pad_left == pad_right && pad_top == pad_bottom) {
      if (LaunchXsmmBackwardFilter<Device, T>()(
              context, context->eigen_device<Device>(), input.tensor<T, 4>(),
              filter_backprop->tensor<T, 4>(), out_backprop.tensor<T, 4>(),
              dims.spatial_dims[0].input_size, dims.spatial_dims[1].input_size,
              (int)dims.spatial_dims[0].stride,
              (int)dims.spatial_dims[1].stride, (int)pad_top, (int)pad_left,
              data_format_)) {
        return;
      }
    }
#endif

    // The total dimension size of each kernel.
    const int filter_total_size = dims.spatial_dims[0].filter_size *
                                  dims.spatial_dims[1].filter_size *
                                  dims.in_depth;
    // The output image size is the spatial size of the output.
    const int output_image_size =
        dims.spatial_dims[0].output_size * dims.spatial_dims[1].output_size;

    // Shard 'batch' images into 'shard_size' groups of images to be fed
    // into the parallel matmul. Calculate 'shard_size' by dividing the L3 cache
    // size ('target_working_set_size') by the matmul size of an individual
    // image ('work_unit_size').

    // TODO(andydavis)
    // *) Get L3 cache size from device at runtime (30MB is from ivybridge).
    // *) Consider reducing 'target_working_set_size' if L3 is shared by
    //    other concurrently running tensorflow ops.
    const size_t target_working_set_size = (30LL << 20) / sizeof(T);

    const size_t size_A = output_image_size * filter_total_size;

    const size_t size_B = output_image_size * dims.out_depth;

    const size_t size_C = filter_total_size * dims.out_depth;

    const size_t work_unit_size = size_A + size_B + size_C;

    const size_t shard_size =
        (target_working_set_size + work_unit_size - 1) / work_unit_size;

    Tensor col_buffer;
    OP_REQUIRES_OK(context,
                   context->allocate_temp(
                       DataTypeToEnum<T>::value,
                       TensorShape({static_cast<int64>(shard_size),
                                    static_cast<int64>(output_image_size),
                                    static_cast<int64>(filter_total_size)}),
                       &col_buffer));

    // The input offset corresponding to a single input image.
    const int input_offset = dims.spatial_dims[0].input_size *
                             dims.spatial_dims[1].input_size * dims.in_depth;
    // The output offset corresponding to a single output image.
    const int output_offset = dims.spatial_dims[0].output_size *
                              dims.spatial_dims[1].output_size * dims.out_depth;

    const T* input_data = input.template flat<T>().data();
    T* col_buffer_data = col_buffer.template flat<T>().data();
    const T* out_backprop_data = out_backprop.template flat<T>().data();
    T* filter_backprop_data = filter_backprop->template flat<T>().data();

    typedef Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor>,
                             Eigen::Unaligned>
        TensorMap;
    typedef Eigen::TensorMap<Eigen::Tensor<const T, 2, Eigen::RowMajor>,
                             Eigen::Unaligned>
        ConstTensorMap;

    TensorMap C(filter_backprop_data, filter_total_size, dims.out_depth);
    C.setZero();

    // Initialize contraction dims (we need to transpose 'A' below).
    Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1> contract_dims;
    contract_dims[0].first = 0;
    contract_dims[0].second = 0;

    auto worker_threads = *(context->device()->tensorflow_cpu_worker_threads());

    for (int image_id = 0; image_id < dims.batch_size; image_id += shard_size) {
      const int shard_limit =
          std::min(static_cast<int>(shard_size),
                   static_cast<int>(dims.batch_size) - image_id);

      auto shard = [&input_data, &col_buffer_data, &dims, &pad_top, &pad_left,
                    &pad_bottom, &pad_right, &input_offset,
                    &size_A](int64 start, int64 limit) {
        for (int shard_id = start; shard_id < limit; ++shard_id) {
          const T* input_data_shard = input_data + shard_id * input_offset;
          T* col_data_shard = col_buffer_data + shard_id * size_A;

          // When we compute the gradient with respect to the filters, we need
          // to do im2col to allow gemm-type computation.
          Im2col<T>(
              input_data_shard, dims.in_depth, dims.spatial_dims[0].input_size,
              dims.spatial_dims[1].input_size, dims.spatial_dims[0].filter_size,
              dims.spatial_dims[1].filter_size, pad_top, pad_left, pad_bottom,
              pad_right, dims.spatial_dims[0].stride,
              dims.spatial_dims[1].stride, col_data_shard);
        }
      };
      Shard(worker_threads.num_threads, worker_threads.workers, shard_limit,
            size_A, shard);

      ConstTensorMap A(col_buffer_data, output_image_size * shard_limit,
                       filter_total_size);
      ConstTensorMap B(out_backprop_data, output_image_size * shard_limit,
                       dims.out_depth);

      // Gradient with respect to filter.
      C.device(context->eigen_cpu_device()) += A.contract(B, contract_dims);

      input_data += input_offset * shard_limit;
      out_backprop_data += output_offset * shard_limit;
    }
  }

 private:
  std::vector<int32> strides_;
  Padding padding_;
  TensorFormat data_format_;

  TF_DISALLOW_COPY_AND_ASSIGN(Conv2DCustomBackpropFilterOp);
};

#define REGISTER_CPU_KERNELS(T)                                               \
  REGISTER_KERNEL_BUILDER(                                                    \
      Name("Conv2DBackpropFilter").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
      Conv2DCustomBackpropFilterOp<CPUDevice, T>);                            \
  REGISTER_KERNEL_BUILDER(Name("Conv2DBackpropFilter")                        \
                              .Device(DEVICE_CPU)                             \
                              .Label("custom")                                \
                              .TypeConstraint<T>("T"),                        \
                          Conv2DCustomBackpropFilterOp<CPUDevice, T>);        \
  REGISTER_KERNEL_BUILDER(Name("Conv2DBackpropFilter")                        \
                              .Device(DEVICE_CPU)                             \
                              .Label("eigen_tensor")                          \
                              .TypeConstraint<T>("T"),                        \
                          Conv2DFastBackpropFilterOp<CPUDevice, T>);

TF_CALL_half(REGISTER_CPU_KERNELS);
TF_CALL_float(REGISTER_CPU_KERNELS);
#undef REGISTER_CPU_KERNELS

// GPU definitions.
#if GOOGLE_CUDA
// The slow version (but compiles for GPU)

// A dummy type to group forward backward filter autotune results together.
struct ConvBackwardFilterAutoTuneGroup {
  static string name() { return "ConvBwdFilter"; }
};
typedef AutoTuneSingleton<ConvBackwardFilterAutoTuneGroup, ConvParameters,
                          perftools::gputools::dnn::AlgorithmConfig>
    AutoTuneConvBwdFilter;

// Backprop for filter.
template <typename Device, class T>
class Conv2DSlowBackpropFilterOp : public OpKernel {
 public:
  explicit Conv2DSlowBackpropFilterOp(OpKernelConstruction* context)
      : OpKernel(context) {
    string data_format;
    OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
    OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                errors::InvalidArgument("Invalid data format"));
    OP_REQUIRES_OK(context, context->GetAttr("strides", &strides_));
    int stride_n = GetTensorDim(strides_, data_format_, 'N');
    int stride_c = GetTensorDim(strides_, data_format_, 'C');
    OP_REQUIRES(
        context, (stride_n == 1 && stride_c == 1),
        errors::InvalidArgument("Current implementation does not yet support "
                                "strides in the batch and depth dimensions."));
    OP_REQUIRES_OK(context, context->GetAttr("use_cudnn_on_gpu", &use_cudnn_));
    use_cudnn_ &= CanUseCudnn();
    cudnn_use_autotune_ = CudnnUseAutotune();
    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
  }

  void Compute(OpKernelContext* context) override {
    using perftools::gputools::dnn::AlgorithmConfig;
    using perftools::gputools::dnn::AlgorithmType;
    using perftools::gputools::dnn::ProfileResult;
    using perftools::gputools::dnn::kDefaultAlgorithm;
    const Tensor& input = context->input(0);
    const Tensor& filter_sizes = context->input(1);
    const Tensor& out_backprop = context->input(2);
    OP_REQUIRES(
        context, TensorShapeUtils::IsVector(filter_sizes.shape()),
        errors::InvalidArgument(
            "Conv2DBackpropFilter: filter_sizes input must be 1-dim, not ",
            filter_sizes.dims()));
    const TensorShape& input_shape = input.shape();
    TensorShape filter_shape;
    OP_REQUIRES_OK(context, TensorShapeUtils::MakeShape(
                                filter_sizes.vec<int32>(), &filter_shape));

    ConvBackpropDimensions dims;
    OP_REQUIRES_OK(context,
                   ConvBackpropComputeDimensions(
                       "Conv2DSlowBackpropFilter", /*num_spatial_dims=*/2,
                       input.shape(), filter_shape, out_backprop.shape(),
                       strides_, padding_, data_format_, &dims));

    Tensor* filter_backprop = nullptr;
    OP_REQUIRES_OK(context,
                   context->allocate_output(0, filter_shape, &filter_backprop));

    const int padding_rows =
        (padding_ == VALID)
            ? 0
            : std::max<int>(0, (dims.spatial_dims[0].output_size - 1) *
                                       dims.spatial_dims[0].stride +
                                   dims.spatial_dims[0].filter_size -
                                   dims.spatial_dims[0].input_size);
    const int padding_cols =
        (padding_ == VALID)
            ? 0
            : std::max<int>(0, (dims.spatial_dims[1].output_size - 1) *
                                       dims.spatial_dims[1].stride +
                                   dims.spatial_dims[1].filter_size -
                                   dims.spatial_dims[1].input_size);

    // TODO(zhengxq): cuDNN only supports equal padding on both sides, so only
    // calling it when that is true. Remove this check when (if?) cuDNN starts
    // supporting different padding.
    bool rows_odd = (padding_rows % 2 != 0);
    bool cols_odd = (padding_cols % 2 != 0);

    auto* stream = context->op_device_context()->stream();
    OP_REQUIRES(context, stream, errors::Internal("No GPU stream available."));

    if (!use_cudnn_) {
      context->SetStatus(errors::Unimplemented(
          "Conv2DBackprop for GPU is not currently supported "
          "without cudnn"));
      return;
    }

    if (dims.spatial_dims[0].filter_size == 1 &&
        dims.spatial_dims[1].filter_size == 1 &&
        dims.spatial_dims[0].stride == 1 && dims.spatial_dims[1].stride == 1 &&
        data_format_ == FORMAT_NHWC) {
      const uint64 m = dims.in_depth;
      const uint64 k = dims.batch_size * dims.spatial_dims[0].input_size *
                       dims.spatial_dims[1].input_size;
      const uint64 n = dims.out_depth;

      // The shape of output backprop is
      //   [batch, out_rows, out_cols, out_depth]
      //   From cublas's perspective, it is: n x k
      auto a_ptr = AsDeviceMemory(out_backprop.template flat<T>().data(),
                                  out_backprop.template flat<T>().size());

      // The shape of input is
      //   [batch, in_rows, in_cols, in_depth],
      //   From cublas's perspective, it is: m x k
      auto b_ptr = AsDeviceMemory(input.template flat<T>().data(),
                                  input.template flat<T>().size());

      // the shape of the filter backprop from the conv_2d should be
      //   [1, 1, in_depth, out_depth]
      //   From cublas's perspective, it is: n x m
      auto c_ptr = AsDeviceMemory(filter_backprop->template flat<T>().data(),
                                  filter_backprop->template flat<T>().size());

      bool blas_launch_status =
          stream
              ->ThenBlasGemm(perftools::gputools::blas::Transpose::kNoTranspose,
                             perftools::gputools::blas::Transpose::kTranspose,
                             n, m, k, 1.0f, a_ptr, n, b_ptr, m, 0.0f, &c_ptr, n)
              .ok();
      if (!blas_launch_status) {
        context->SetStatus(errors::Internal("Blas SGEMM launch failed : m=", m,
                                            ", n=", n, ", k=", k));
      }
      return;
    } else if (dims.spatial_dims[0].filter_size ==
                   dims.spatial_dims[0].input_size &&
               dims.spatial_dims[1].filter_size ==
                   dims.spatial_dims[1].input_size &&
               padding_ == VALID && data_format_ == FORMAT_NHWC) {
      // The input data and filter have the same height/width, so call cublas
      // directly.
      const uint64 m = dims.spatial_dims[0].input_size *
                       dims.spatial_dims[1].input_size * dims.in_depth;
      const uint64 k = dims.batch_size;
      const uint64 n = dims.out_depth;

      auto a_ptr = AsDeviceMemory(input.template flat<T>().data(),
                                  input.template flat<T>().size());
      auto b_ptr = AsDeviceMemory(out_backprop.template flat<T>().data(),
                                  out_backprop.template flat<T>().size());
      auto c_ptr = AsDeviceMemory(filter_backprop->template flat<T>().data(),
                                  filter_backprop->template flat<T>().size());

      bool blas_launch_status =
          stream
              ->ThenBlasGemm(perftools::gputools::blas::Transpose::kNoTranspose,
                             perftools::gputools::blas::Transpose::kTranspose,
                             n, m, k, 1.0f, b_ptr, n, a_ptr, m, 0.0f, &c_ptr, n)
              .ok();
      if (!blas_launch_status) {
        context->SetStatus(errors::Internal("Blas SGEMM launch failed : m=", m,
                                            ", n=", n, ", k=", k));
      }
      return;
    }

    Tensor compatible_input;
    if (rows_odd || cols_odd) {
      // If a padding dimension is odd, we have one more element on the right
      // side or the bottom side. This is unsupported in cudnn. Therefore,
      // we pad that extra element and make it compatible.
      OP_REQUIRES_OK(
          context,
          context->allocate_temp(
              DataTypeToEnum<T>::value,
              ShapeFromFormat(data_format_, dims.batch_size,
                              dims.spatial_dims[0].input_size + rows_odd,
                              dims.spatial_dims[1].input_size + cols_odd,
                              dims.in_depth),
              &compatible_input));

      functor::PadInput<GPUDevice, T, int, 4>()(
          context->template eigen_device<GPUDevice>(),
          To32Bit(input.tensor<T, 4>()), {{0, 0}}, {{rows_odd, cols_odd}},
          To32Bit(compatible_input.tensor<T, 4>()), data_format_);
    } else {
      compatible_input = input;
    }

    CHECK(padding_rows >= 0 && padding_cols >= 0)
        << "Negative row or col paddings: (" << padding_rows << ", "
        << padding_cols << ")";
    perftools::gputools::dnn::BatchDescriptor input_desc;
    input_desc.set_count(dims.batch_size)
        .set_height(GetTensorDim(compatible_input, data_format_, 'H'))
        .set_width(GetTensorDim(compatible_input, data_format_, 'W'))
        .set_feature_map_count(dims.in_depth)
        .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);
    perftools::gputools::dnn::BatchDescriptor output_desc;
    output_desc.set_count(dims.batch_size)
        .set_height(dims.spatial_dims[0].output_size)
        .set_width(dims.spatial_dims[1].output_size)
        .set_feature_map_count(dims.out_depth)
        .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);
    perftools::gputools::dnn::FilterDescriptor filter_desc;
    filter_desc.set_input_filter_height(dims.spatial_dims[0].filter_size)
        .set_input_filter_width(dims.spatial_dims[1].filter_size)
        .set_input_feature_map_count(dims.in_depth)
        .set_output_feature_map_count(dims.out_depth);
    perftools::gputools::dnn::ConvolutionDescriptor conv_desc;
    conv_desc.set_vertical_filter_stride(dims.spatial_dims[0].stride)
        .set_horizontal_filter_stride(dims.spatial_dims[1].stride)
        .set_zero_padding_height(padding_rows / 2)
        .set_zero_padding_width(padding_cols / 2);

    // NOTE(zhengxq):
    // cuDNN only supports the following layouts :
    // Input  : B x D x R x C
    // Filter : OD x ID x R x C
    // Whereas, we have
    // Input  : B x R x C x D
    // Filter : R x C x ID x OD
    // TransformFilter performs (R x C x ID x OD) => (OD x ID x R x C)
    // The first TransformDepth performs
    // (B x R x C x D) => (B x D x R x C).
    // Since the tensor returned from cuDNN is B x D x R x C also,
    // the second TransformDepth performs
    // (B x D x R x C) => (B x R x C x D).

    Tensor pre_transformed_filter_backprop;
    OP_REQUIRES_OK(context, context->allocate_temp(
                                DataTypeToEnum<T>::value,
                                TensorShape({dims.out_depth, dims.in_depth,
                                             dims.spatial_dims[0].filter_size,
                                             dims.spatial_dims[1].filter_size}),
                                &pre_transformed_filter_backprop));

    Tensor transformed_out_backprop;
    if (data_format_ == FORMAT_NHWC) {
      TensorShape nchw_shape = ShapeFromFormat(
          FORMAT_NCHW, dims.batch_size, dims.spatial_dims[0].output_size,
          dims.spatial_dims[1].output_size, dims.out_depth);
      if (dims.out_depth > 1) {
        OP_REQUIRES_OK(context, context->allocate_temp(
                                    DataTypeToEnum<T>::value, nchw_shape,
                                    &transformed_out_backprop));
        functor::NHWCToNCHW<Device, T, 4>()(
            context->eigen_device<Device>(), out_backprop.tensor<T, 4>(),
            transformed_out_backprop.tensor<T, 4>());
      } else {
        // If depth <= 1, just reshape.
        CHECK(transformed_out_backprop.CopyFrom(out_backprop, nchw_shape));
      }
    } else {
      transformed_out_backprop = out_backprop;
    }

    Tensor transformed_input;
    if (data_format_ == FORMAT_NHWC) {
      TensorShape nchw_shape = ShapeFromFormat(
          FORMAT_NCHW, GetTensorDim(compatible_input, data_format_, 'N'),
          GetTensorDim(compatible_input, data_format_, 'H'),
          GetTensorDim(compatible_input, data_format_, 'W'),
          GetTensorDim(compatible_input, data_format_, 'C'));
      if (nchw_shape.dim_size(1) > 1) {
        OP_REQUIRES_OK(context,
                       context->allocate_temp(DataTypeToEnum<T>::value,
                                              nchw_shape, &transformed_input));
        functor::NHWCToNCHW<Device, T, 4>()(
            context->eigen_device<Device>(),
            const_cast<const Tensor&>(compatible_input).tensor<T, 4>(),
            transformed_input.tensor<T, 4>());
      } else {
        // If depth <= 1, just reshape.
        CHECK(transformed_input.CopyFrom(compatible_input, nchw_shape));
      }
    } else {
      transformed_input = compatible_input;
    }

    auto out_backprop_ptr =
        AsDeviceMemory(transformed_out_backprop.template flat<T>().data(),
                       transformed_out_backprop.template flat<T>().size());
    auto filter_backprop_ptr = AsDeviceMemory(
        pre_transformed_filter_backprop.template flat<T>().data(),
        pre_transformed_filter_backprop.template flat<T>().size());
    auto input_ptr =
        AsDeviceMemory(transformed_input.template flat<T>().data(),
                       transformed_input.template flat<T>().size());

    static int64 ConvolveBackwardFilterScratchSize = GetCudnnWorkspaceLimit(
        "TF_CUDNN_WORKSPACE_LIMIT_IN_MB", 1LL << 32  // 4GB by default
        );
    int device_id = stream->parent()->device_ordinal();
    DataType dtype = input.dtype();
    ConvParameters conv_parameters = {
        dims.batch_size,                       // batch
        dims.in_depth,                         // in_depths
        {{input_desc.height(),                 // in_rows
          input_desc.width()}},                // in_cols
        dims.out_depth,                        // out_depths
        {{dims.spatial_dims[0].filter_size,    // filter_rows
          dims.spatial_dims[1].filter_size}},  // filter_cols
        {{dims.spatial_dims[0].stride,         // stride_rows
          dims.spatial_dims[1].stride}},       // stride_cols
        {{padding_rows,                        // padding_rows
          padding_cols}},                      // padding_cols
        dtype,                                 // tensor datatype
        device_id,                             // device_id
    };
    AlgorithmConfig algorithm_config;
    if (cudnn_use_autotune_ && !AutoTuneConvBwdFilter::GetInstance()->Find(
                                   conv_parameters, &algorithm_config)) {
      std::vector<AlgorithmType> algorithms;
      CHECK(stream->parent()->GetConvolveBackwardFilterAlgorithms(&algorithms));
      ProfileResult best_result;
      ProfileResult best_result_no_scratch;
      for (auto profile_algorithm : algorithms) {
        // TODO(zhengxq): profile each algorithm multiple times to better
        // accuracy.
        CudnnScratchAllocator scratch_allocator(
            ConvolveBackwardFilterScratchSize, context);
        ProfileResult profile_result;
        bool cudnn_launch_status =
            stream
                ->ThenConvolveBackwardFilterWithAlgorithm(
                    input_desc, input_ptr, output_desc, out_backprop_ptr,
                    conv_desc, filter_desc, &filter_backprop_ptr,
                    &scratch_allocator, AlgorithmConfig(profile_algorithm),
                    &profile_result)
                .ok();
        if (cudnn_launch_status) {
          if (profile_result.is_valid()) {
            if (profile_result.elapsed_time_in_ms() <
                best_result.elapsed_time_in_ms()) {
              best_result = profile_result;
            }
            if (scratch_allocator.TotalByteSize() == 0 &&
                profile_result.elapsed_time_in_ms() <
                    best_result_no_scratch.elapsed_time_in_ms()) {
              best_result_no_scratch = profile_result;
            }
          }
        }
      }
      OP_REQUIRES(context,
                  best_result.is_valid() &&
                      best_result.algorithm() != kDefaultAlgorithm,
                  errors::NotFound("No algorithm worked!"));
      OP_REQUIRES(context,
                  best_result_no_scratch.is_valid() &&
                      best_result_no_scratch.algorithm() != kDefaultAlgorithm,
                  errors::NotFound("No algorithm without scratch worked!"));
      algorithm_config.set_algorithm(best_result.algorithm());
      algorithm_config.set_algorithm_no_scratch(
          best_result_no_scratch.algorithm());
      AutoTuneConvBwdFilter::GetInstance()->Insert(conv_parameters,
                                                   algorithm_config);
    }
    CudnnScratchAllocator scratch_allocator(ConvolveBackwardFilterScratchSize,
                                            context);
    bool cudnn_launch_status =
        stream
            ->ThenConvolveBackwardFilterWithAlgorithm(
                input_desc, input_ptr, output_desc, out_backprop_ptr, conv_desc,
                filter_desc, &filter_backprop_ptr, &scratch_allocator,
                algorithm_config, nullptr)
            .ok();

    if (!cudnn_launch_status) {
      context->SetStatus(errors::Internal(
          "cuDNN Backward Filter function launch failure : input shape(",
          input_shape.DebugString(), ") filter shape(",
          filter_shape.DebugString(), ")"));
      return;
    }

    auto toConstTensor = [](const Tensor& x) -> const Tensor { return x; };
    functor::ReverseTransformFilter<Device, T, 4>()(
        context->eigen_device<Device>(),
        toConstTensor(pre_transformed_filter_backprop).template tensor<T, 4>(),
        filter_backprop->tensor<T, 4>());
  }

 private:
  std::vector<int32> strides_;
  Padding padding_;
  bool use_cudnn_;
  TensorFormat data_format_;
  bool cudnn_use_autotune_;

  TF_DISALLOW_COPY_AND_ASSIGN(Conv2DSlowBackpropFilterOp);
};

// Forward declarations of the functor specializations for GPU.
namespace functor {
#define DECLARE_GPU_SPEC(T)                                              \
  template <>                                                            \
  void ShuffleAndReverse<GPUDevice, T, 4, int>::operator()(              \
      const GPUDevice& d, typename TTypes<T, 4, int>::ConstTensor input, \
      const Eigen::DSizes<int, 4>& order,                                \
      const Eigen::array<bool, 4>& reverse_dims,                         \
      typename TTypes<T, 4, int>::Tensor output);                        \
  extern template struct ShuffleAndReverse<GPUDevice, T, 4, int>;        \
  template <>                                                            \
  void InflatePadAndShuffle<GPUDevice, T, 4, int>::operator()(           \
      const GPUDevice& d, typename TTypes<T, 4, int>::ConstTensor input, \
      const Eigen::DSizes<int, 4>& strides,                              \
      const Eigen::array<Eigen::IndexPair<int>, 4>& pad_dims,            \
      const Eigen::DSizes<int, 4>& order,                                \
      typename TTypes<T, 4, int>::Tensor output);                        \
  extern template struct InflatePadAndShuffle<GPUDevice, T, 4, int>;     \
  template <>                                                            \
  void TransformFilter<GPUDevice, T, int, 4>::operator()(                \
      const GPUDevice& d, typename TTypes<T, 4, int>::ConstTensor in,    \
      typename TTypes<T, 4, int>::Tensor out);                           \
  extern template struct TransformFilter<GPUDevice, T, int, 4>;          \
  template <>                                                            \
  void TransformDepth<GPUDevice, T, int>::operator()(                    \
      const GPUDevice& d, typename TTypes<T, 4, int>::ConstTensor in,    \
      const Eigen::DSizes<int, 4>& shuffle,                              \
      typename TTypes<T, 4, int>::Tensor out);                           \
  extern template struct TransformDepth<GPUDevice, T, int>;              \
  template <>                                                            \
  void PadInput<GPUDevice, T, int, 4>::operator()(                       \
      const GPUDevice& d, typename TTypes<T, 4, int>::ConstTensor in,    \
      const std::array<int, 2>& padding_left,                            \
      const std::array<int, 2>& padding_right,                           \
      typename TTypes<T, 4, int>::Tensor out, TensorFormat data_format); \
  extern template struct PadInput<GPUDevice, T, int, 4>;

DECLARE_GPU_SPEC(float);
DECLARE_GPU_SPEC(Eigen::half);
#undef DECLARE_GPU_SPEC
}  // namespace functor

REGISTER_KERNEL_BUILDER(Name("Conv2DBackpropFilter")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<float>("T")
                            .HostMemory("filter_sizes"),
                        Conv2DSlowBackpropFilterOp<GPUDevice, float>);
REGISTER_KERNEL_BUILDER(Name("Conv2DBackpropFilter")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<Eigen::half>("T")
                            .HostMemory("filter_sizes"),
                        Conv2DSlowBackpropFilterOp<GPUDevice, Eigen::half>);
#endif  // GOOGLE_CUDA

}  // namespace tensorflow