aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/concat_op.cc
blob: 7011550f7e161c9727b8d31eff0917964b09044e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/array_ops.cc.

#include <limits>
#include <vector>

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_types.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/kernels/concat_lib.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/platform/types.h"

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;
#if GOOGLE_CUDA
typedef Eigen::GpuDevice GPUDevice;
#endif  // GOOGLE_CUDA
#ifdef TENSORFLOW_USE_SYCL
typedef Eigen::SyclDevice SYCLDevice;
#endif  // TENSORFLOW_USE_SYCL

enum AxisArgumentName { NAME_IS_AXIS, NAME_IS_CONCAT_DIM };

// --------------------------------------------------------------------------
template <typename Device, typename T, AxisArgumentName AxisArgName>
class ConcatBaseOp : public OpKernel {
 public:
  typedef std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>
      ConstMatrixVector;

  explicit ConcatBaseOp(OpKernelConstruction* c) : OpKernel(c) {}

  void Compute(OpKernelContext* c) override {
    const Tensor* concat_dim_tensor;
    const char* axis_attribute_name =
        AxisArgName == NAME_IS_AXIS
            ? "axis"
            : AxisArgName == NAME_IS_CONCAT_DIM ? "concat_dim" : "<invalid>";
    OP_REQUIRES_OK(c, c->input(axis_attribute_name, &concat_dim_tensor));
    OP_REQUIRES(c, IsLegacyScalar(concat_dim_tensor->shape()),
                errors::InvalidArgument(
                    axis_attribute_name,
                    " tensor should be a scalar integer, but got shape ",
                    concat_dim_tensor->shape().DebugString()));
    const int32 concat_dim =
        internal::SubtleMustCopy(concat_dim_tensor->scalar<int32>()());
    OpInputList values;
    OP_REQUIRES_OK(c, c->input_list("values", &values));
    const int N = values.size();
    const int input_dims = values[0].dims();
    const TensorShape& input_shape = values[0].shape();

    int32 axis = concat_dim < 0 ? concat_dim + input_dims : concat_dim;
    OP_REQUIRES(c,
                (0 <= axis && axis < input_dims) ||
                    (allow_legacy_scalars() && concat_dim == 0),
                errors::InvalidArgument(
                    "ConcatOp : Expected concatenating dimensions in the range "
                    "[",
                    -input_dims, ", ", input_dims, "), but got ", concat_dim));
    // Note that we reduce the concat of n-dimensional tensors into a two
    // dimensional concat. Assuming the dimensions of any input/output
    // tensor are {x0, x1,...,xn-1, y0, y1,...,ym-1}, where the concat is along
    // the dimension indicated with size y0, we flatten it to {x, y}, where y =
    // Prod_i(yi) and x = ((n > 0) ? Prod_i(xi) : 1).
    ConstMatrixVector inputs_flat;
    inputs_flat.reserve(N);
    int64 inputs_flat_dim0 = 1;
    for (int d = 0; d < axis; ++d) {
      inputs_flat_dim0 *= input_shape.dim_size(d);
    }
    int64 output_concat_dim = 0;
    const bool input_is_scalar = IsLegacyScalar(input_shape);
    for (int i = 0; i < N; ++i) {
      const auto in = values[i];
      const bool in_is_scalar = IsLegacyScalar(in.shape());
      OP_REQUIRES(
          c, in.dims() == input_dims || (input_is_scalar && in_is_scalar),
          errors::InvalidArgument(
              "ConcatOp : Ranks of all input tensors should match: shape[0] = ",
              input_shape.DebugString(), " vs. shape[", i,
              "] = ", in.shape().DebugString()));
      for (int j = 0; j < input_dims; ++j) {
        if (j == axis) {
          continue;
        }
        OP_REQUIRES(
            c, in.dim_size(j) == input_shape.dim_size(j),
            errors::InvalidArgument(
                "ConcatOp : Dimensions of inputs should match: shape[0] = ",
                input_shape.DebugString(), " vs. shape[", i,
                "] = ", in.shape().DebugString()));
      }
      if (in.NumElements() > 0) {
        int64 inputs_flat_dim1 = in.NumElements() / inputs_flat_dim0;
        inputs_flat.emplace_back(new typename TTypes<T, 2>::ConstMatrix(
            in.shaped<T, 2>({inputs_flat_dim0, inputs_flat_dim1})));
      }
      // TODO(irving): Remove check once !allow_legacy_scalars().
      output_concat_dim += in.dims() > 0 ? in.dim_size(axis) : 1;
    }

    TensorShape output_shape(input_shape);
    // TODO(irving): Remove rank 0 case once !allow_legacy_scalars().
    if (output_shape.dims() == 0) {
      output_shape.AddDim(output_concat_dim);
    } else {
      output_shape.set_dim(axis, output_concat_dim);
    }
    Tensor* output = nullptr;
    OP_REQUIRES_OK(c, c->allocate_output(0, output_shape, &output));
    if (output->NumElements() > 0) {
      int64 output_dim1 = output->NumElements() / inputs_flat_dim0;
      auto output_flat = output->shaped<T, 2>({inputs_flat_dim0, output_dim1});
#if GOOGLE_CUDA
      if (std::is_same<Device, GPUDevice>::value) {
        ConcatGPU<T>(c, inputs_flat, output, &output_flat);
        return;
      }
#endif  // GOOGLE_CUDA
#ifdef TENSORFLOW_USE_SYCL
      if (std::is_same<Device, SYCLDevice>::value) {
        ConcatSYCL<T>(c->eigen_sycl_device(), inputs_flat, &output_flat);
        return;
      }
#endif  // TENSORFLOW_USE_SYCL
      ConcatCPU<T>(c->device(), inputs_flat, &output_flat);
    }
  }
};

template <typename Device, typename T>
using ConcatOp = ConcatBaseOp<Device, T, NAME_IS_CONCAT_DIM>;
template <typename Device, typename T>
using ConcatV2Op = ConcatBaseOp<Device, T, NAME_IS_AXIS>;

#define REGISTER_CONCAT(type)                                \
  REGISTER_KERNEL_BUILDER(Name("Concat")                     \
                              .Device(DEVICE_CPU)            \
                              .TypeConstraint<type>("T")     \
                              .HostMemory("concat_dim"),     \
                          ConcatOp<CPUDevice, type>)         \
  REGISTER_KERNEL_BUILDER(Name("ConcatV2")                   \
                              .Device(DEVICE_CPU)            \
                              .TypeConstraint<type>("T")     \
                              .TypeConstraint<int32>("Tidx") \
                              .HostMemory("axis"),           \
                          ConcatV2Op<CPUDevice, type>)

TF_CALL_POD_STRING_TYPES(REGISTER_CONCAT);
REGISTER_CONCAT(quint8);
REGISTER_CONCAT(qint8);
REGISTER_CONCAT(quint16);
REGISTER_CONCAT(qint16);
REGISTER_CONCAT(qint32);

#undef REGISTER_CONCAT

#if GOOGLE_CUDA

#define REGISTER_GPU(type)                                   \
  REGISTER_KERNEL_BUILDER(Name("Concat")                     \
                              .Device(DEVICE_GPU)            \
                              .TypeConstraint<type>("T")     \
                              .HostMemory("concat_dim"),     \
                          ConcatOp<GPUDevice, type>)         \
  REGISTER_KERNEL_BUILDER(Name("ConcatV2")                   \
                              .Device(DEVICE_GPU)            \
                              .TypeConstraint<type>("T")     \
                              .TypeConstraint<int32>("Tidx") \
                              .HostMemory("axis"),           \
                          ConcatV2Op<GPUDevice, type>)

TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU);
REGISTER_GPU(bfloat16);
TF_CALL_complex64(REGISTER_GPU);
TF_CALL_complex128(REGISTER_GPU);
TF_CALL_int64(REGISTER_GPU);
REGISTER_GPU(bool);
#undef REGISTER_GPU

// A special GPU kernel for int32.
// TODO(b/25387198): Also enable int32 in device memory. This kernel
// registration requires all int32 inputs and outputs to be in host memory.
REGISTER_KERNEL_BUILDER(Name("Concat")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<int32>("T")
                            .HostMemory("concat_dim")
                            .HostMemory("values")
                            .HostMemory("output"),
                        ConcatOp<CPUDevice, int32>);
REGISTER_KERNEL_BUILDER(Name("ConcatV2")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<int32>("T")
                            .TypeConstraint<int32>("Tidx")
                            .HostMemory("values")
                            .HostMemory("axis")
                            .HostMemory("output"),
                        ConcatV2Op<CPUDevice, int32>);

#endif  // GOOGLE_CUDA

#ifdef TENSORFLOW_USE_SYCL
#define REGISTER_SYCL(type)                                  \
  REGISTER_KERNEL_BUILDER(Name("Concat")                     \
                              .Device(DEVICE_SYCL)           \
                              .TypeConstraint<type>("T")     \
                              .HostMemory("concat_dim"),     \
                          ConcatOp<SYCLDevice, type>)        \
  REGISTER_KERNEL_BUILDER(Name("ConcatV2")                   \
                              .Device(DEVICE_SYCL)           \
                              .TypeConstraint<type>("T")     \
                              .TypeConstraint<int32>("Tidx") \
                              .HostMemory("axis"),           \
                          ConcatV2Op<SYCLDevice, type>)

TF_CALL_GPU_NUMBER_TYPES_NO_HALF(REGISTER_SYCL);

REGISTER_KERNEL_BUILDER(Name("Concat")
                            .Device(DEVICE_SYCL)
                            .TypeConstraint<int32>("T")
                            .HostMemory("concat_dim")
                            .HostMemory("values")
                            .HostMemory("output"),
                        ConcatOp<CPUDevice, int32>);
REGISTER_KERNEL_BUILDER(Name("ConcatV2")
                            .Device(DEVICE_SYCL)
                            .TypeConstraint<int32>("T")
                            .TypeConstraint<int32>("Tidx")
                            .HostMemory("values")
                            .HostMemory("axis")
                            .HostMemory("output"),
                        ConcatV2Op<CPUDevice, int32>);

#undef REGISTER_SYCL
#endif  // TENSORFLOW_USE_SYCL

class ConcatOffsetOp : public OpKernel {
 public:
  explicit ConcatOffsetOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    const Tensor& concat_dim = ctx->input(0);
    OP_REQUIRES(
        ctx, IsLegacyScalar(concat_dim.shape()),
        errors::InvalidArgument(
            "Concat dim tensor should be a scalar integer, but got shape ",
            concat_dim.shape().DebugString()));
    for (int i = 1; i < ctx->num_inputs(); ++i) {
      const Tensor& inp = ctx->input(i);
      OP_REQUIRES(ctx, TensorShapeUtils::IsVector(inp.shape()),
                  errors::InvalidArgument("input ", i,
                                          " should be a vector, but got shape ",
                                          inp.shape().DebugString()));
    }
    // Suppose a Concat() op needs to Concatenate N tensors, each of
    // which has the same number of dimensions.  Their shapes match
    // except the concat dimension.
    //
    // E.g., say, we want to concatenate 3 tensors in the 2nd
    // dimension, and their shapes are:
    //
    //  [2, 2, 5, 7]
    //  [2, 3, 5, 7]
    //  [2, 4, 5, 7]
    //
    // Here, N=3, cdim=1, dims=4. The concatenated tensor has shape
    // [2,9,5,7]. We will compute the cumulative sum along the 2nd
    // dimension to figure out each input's offset in the concatenated
    // output:
    //  [0, 0, 0, 0]
    //  [0, 2, 0, 0]
    //  [0, 5, 0, 0]
    const int32 N = ctx->num_inputs() - 1;
    const Tensor& inp0 = ctx->input(1);
    auto inp0_vec = inp0.vec<int32>();
    const int64 cdim = internal::SubtleMustCopy(concat_dim.scalar<int32>()());
    const int64 dims = inp0.NumElements();
    int32 axis = cdim < 0 ? cdim + dims : cdim;
    OP_REQUIRES(ctx, FastBoundsCheck(axis, dims),
                errors::InvalidArgument("Concat dim is out of range: ", cdim,
                                        " vs. ", dims));
    int32 offset = 0;
    for (int i = 0; i < N; ++i) {
      const Tensor& inp = ctx->input(1 + i);
      OP_REQUIRES(
          ctx, dims == inp.NumElements(),
          errors::InvalidArgument("input ", i, " should contain ", dims,
                                  " elements, but got ", inp.NumElements()));
      auto inp_vec = inp.vec<int32>();
      Tensor* out = nullptr;
      OP_REQUIRES_OK(ctx, ctx->allocate_output(i, {dims}, &out));
      auto out_vec = out->vec<int32>();
      for (int64 j = 0; j < dims; ++j) {
        if (j == axis) {
          out_vec(j) = offset;
          offset += inp_vec(j);
        } else {
          OP_REQUIRES(ctx, (inp0_vec(j) == inp_vec(j)),
                      errors::InvalidArgument(
                          "All dimensions except ", axis, " must match. Input ",
                          i, " has shape [", inp.SummarizeValue(10),
                          "] and doesn't match input 0 with shape [",
                          inp0.SummarizeValue(10), "]."));
          out_vec(j) = 0;
        }
      }
    }
  }

  bool IsExpensive() override { return false; }
};

REGISTER_KERNEL_BUILDER(Name("ConcatOffset").Device(DEVICE_CPU),
                        ConcatOffsetOp);

REGISTER_KERNEL_BUILDER(Name("ConcatOffset")
                            .Device(DEVICE_GPU)
                            .HostMemory("concat_dim")
                            .HostMemory("shape")
                            .HostMemory("offset"),
                        ConcatOffsetOp);

#ifdef TENSORFLOW_USE_SYCL
REGISTER_KERNEL_BUILDER(Name("ConcatOffset")
                            .Device(DEVICE_SYCL)
                            .HostMemory("concat_dim")
                            .HostMemory("shape")
                            .HostMemory("offset"),
                        ConcatOffsetOp);
#endif  // TENSORFLOW_USE_SYCL
}  // namespace tensorflow