aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/boosted_trees/stats_ops.cc
blob: 64ec1caa9c02db8a0d4e22f5c9b5477bf8cc69ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <vector>

#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/kernels/boosted_trees/tree_helper.h"

namespace tensorflow {

class BoostedTreesCalculateBestGainsPerFeatureOp : public OpKernel {
 public:
  explicit BoostedTreesCalculateBestGainsPerFeatureOp(
      OpKernelConstruction* const context)
      : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("max_splits", &max_splits_));
    OP_REQUIRES_OK(context, context->GetAttr("num_features", &num_features_));
  }

  void Compute(OpKernelContext* const context) override {
    // node_id_range
    const Tensor* node_id_range_t;
    OP_REQUIRES_OK(context, context->input("node_id_range", &node_id_range_t));
    const auto node_id_range = node_id_range_t->vec<int32>();
    const int32 node_id_first = node_id_range(0);  // inclusive
    const int32 node_id_last = node_id_range(1);   // exclusive
    // stats_summary_list
    OpInputList stats_summary_list;
    OP_REQUIRES_OK(context, context->input_list("stats_summary_list",
                                                &stats_summary_list));
    const int64 num_buckets = stats_summary_list[0].dim_size(1);
    std::vector<TTypes<float, 3>::ConstTensor> stats_summary;
    stats_summary.reserve(stats_summary_list.size());
    for (const auto& tensor : stats_summary_list) {
      stats_summary.emplace_back(tensor.tensor<float, 3>());
    }
    const Tensor* l1_t;
    OP_REQUIRES_OK(context, context->input("l1", &l1_t));
    const auto l1 = l1_t->scalar<float>()();
    const Tensor* l2_t;
    OP_REQUIRES_OK(context, context->input("l2", &l2_t));
    const auto l2 = l2_t->scalar<float>()();
    const Tensor* tree_complexity_t;
    OP_REQUIRES_OK(context,
                   context->input("tree_complexity", &tree_complexity_t));
    const auto tree_complexity = tree_complexity_t->scalar<float>()();
    const Tensor* min_node_weight_t;
    OP_REQUIRES_OK(context,
                   context->input("min_node_weight", &min_node_weight_t));
    const auto min_node_weight = min_node_weight_t->scalar<float>()();

    // Allocate output lists of tensors:
    OpOutputList output_node_ids_list;
    OP_REQUIRES_OK(
        context, context->output_list("node_ids_list", &output_node_ids_list));
    OpOutputList output_gains_list;
    OP_REQUIRES_OK(context,
                   context->output_list("gains_list", &output_gains_list));
    OpOutputList output_thresholds_list;
    OP_REQUIRES_OK(context, context->output_list("thresholds_list",
                                                 &output_thresholds_list));
    OpOutputList output_left_node_contribs_list;
    OP_REQUIRES_OK(context,
                   context->output_list("left_node_contribs_list",
                                        &output_left_node_contribs_list));
    OpOutputList output_right_node_contribs_list;
    OP_REQUIRES_OK(context,
                   context->output_list("right_node_contribs_list",
                                        &output_right_node_contribs_list));

    // Get the best split info per node for each feature.
    for (int feature_idx = 0; feature_idx < num_features_; ++feature_idx) {
      std::vector<float> cum_grad;
      std::vector<float> cum_hess;
      cum_grad.reserve(num_buckets);
      cum_hess.reserve(num_buckets);

      std::vector<int32> output_node_ids;
      std::vector<float> output_gains;
      std::vector<int32> output_thresholds;
      std::vector<float> output_left_node_contribs;
      std::vector<float> output_right_node_contribs;
      for (int node_id = node_id_first; node_id < node_id_last; ++node_id) {
        // Calculate gains.
        cum_grad.clear();
        cum_hess.clear();
        float total_grad = 0.0;
        float total_hess = 0.0;
        for (int bucket = 0; bucket < num_buckets; ++bucket) {
          // TODO(nponomareva): Consider multi-dimensional gradients/hessians.
          total_grad += stats_summary[feature_idx](node_id, bucket, 0);
          total_hess += stats_summary[feature_idx](node_id, bucket, 1);
          cum_grad.push_back(total_grad);
          cum_hess.push_back(total_hess);
        }
        // Check if node has enough of average hessian.
        if (total_hess < min_node_weight) {
          // Do not split the node because not enough avg hessian.
          continue;
        }
        float best_gain = std::numeric_limits<float>::lowest();
        float best_bucket = 0;
        float best_contrib_for_left = 0.0;
        float best_contrib_for_right = 0.0;
        // Parent gain.
        float parent_gain;
        float unused;
        CalculateWeightsAndGains(total_grad, total_hess, l1, l2, &unused,
                                 &parent_gain);

        for (int bucket = 0; bucket < num_buckets; ++bucket) {
          const float cum_grad_bucket = cum_grad[bucket];
          const float cum_hess_bucket = cum_hess[bucket];
          // Left child.
          float contrib_for_left;
          float gain_for_left;
          CalculateWeightsAndGains(cum_grad_bucket, cum_hess_bucket, l1, l2,
                                   &contrib_for_left, &gain_for_left);
          // Right child.
          float contrib_for_right;
          float gain_for_right;
          CalculateWeightsAndGains(total_grad - cum_grad_bucket,
                                   total_hess - cum_hess_bucket, l1, l2,
                                   &contrib_for_right, &gain_for_right);

          if (GainIsLarger(gain_for_left + gain_for_right, best_gain)) {
            best_gain = gain_for_left + gain_for_right;
            best_bucket = bucket;
            best_contrib_for_left = contrib_for_left;
            best_contrib_for_right = contrib_for_right;
          }
        }  // for bucket
        output_node_ids.push_back(node_id);
        // Remove the parent gain for the parent node.
        output_gains.push_back(best_gain - parent_gain);
        output_thresholds.push_back(best_bucket);
        output_left_node_contribs.push_back(best_contrib_for_left);
        output_right_node_contribs.push_back(best_contrib_for_right);
      }  // for node_id
      const int num_nodes = output_node_ids.size();
      // output_node_ids
      Tensor* output_node_ids_t;
      OP_REQUIRES_OK(context,
                     output_node_ids_list.allocate(feature_idx, {num_nodes},
                                                   &output_node_ids_t));
      auto output_node_ids_vec = output_node_ids_t->vec<int32>();
      // output_gains
      Tensor* output_gains_t;
      OP_REQUIRES_OK(context, output_gains_list.allocate(
                                  feature_idx, {num_nodes}, &output_gains_t));
      auto output_gains_vec = output_gains_t->vec<float>();
      // output_thresholds
      Tensor* output_thresholds_t;
      OP_REQUIRES_OK(context,
                     output_thresholds_list.allocate(feature_idx, {num_nodes},
                                                     &output_thresholds_t));
      auto output_thresholds_vec = output_thresholds_t->vec<int32>();
      // output_left_node_contribs
      Tensor* output_left_node_contribs_t;
      OP_REQUIRES_OK(context, output_left_node_contribs_list.allocate(
                                  feature_idx, {num_nodes, 1},
                                  &output_left_node_contribs_t));
      auto output_left_node_contribs_matrix =
          output_left_node_contribs_t->matrix<float>();
      // output_right_node_contribs
      Tensor* output_right_node_contribs_t;
      OP_REQUIRES_OK(context, output_right_node_contribs_list.allocate(
                                  feature_idx, {num_nodes, 1},
                                  &output_right_node_contribs_t));
      auto output_right_node_contribs_matrix =
          output_right_node_contribs_t->matrix<float>();
      // Sets output tensors from vectors.
      for (int i = 0; i < num_nodes; ++i) {
        output_node_ids_vec(i) = output_node_ids[i];
        // Adjust the gains to penalize by tree complexity.
        output_gains_vec(i) = output_gains[i] - tree_complexity;
        output_thresholds_vec(i) = output_thresholds[i];
        // Logits are 1-dimensional for now.
        // TODO(nponomareva): Consider multi-dimensional logits.
        output_left_node_contribs_matrix(i, 0) = output_left_node_contribs[i];
        output_right_node_contribs_matrix(i, 0) = output_right_node_contribs[i];
      }
    }  // for f
  }

 private:
  int max_splits_;
  int num_features_;
};

REGISTER_KERNEL_BUILDER(
    Name("BoostedTreesCalculateBestGainsPerFeature").Device(DEVICE_CPU),
    BoostedTreesCalculateBestGainsPerFeatureOp);

class BoostedTreesMakeStatsSummaryOp : public OpKernel {
 public:
  explicit BoostedTreesMakeStatsSummaryOp(OpKernelConstruction* const context)
      : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("max_splits", &max_splits_));
    OP_REQUIRES_OK(context, context->GetAttr("num_buckets", &num_buckets_));
    OP_REQUIRES_OK(context, context->GetAttr("num_features", &num_features_));
  }

  void Compute(OpKernelContext* const context) override {
    // node_ids
    const Tensor* node_ids_t;
    OP_REQUIRES_OK(context, context->input("node_ids", &node_ids_t));
    const auto node_ids = node_ids_t->vec<int32>();
    // gradients
    const Tensor* gradients_t;
    OP_REQUIRES_OK(context, context->input("gradients", &gradients_t));
    const auto gradients = gradients_t->matrix<float>();
    // hessians
    const Tensor* hessians_t;
    OP_REQUIRES_OK(context, context->input("hessians", &hessians_t));
    const auto hessians = hessians_t->matrix<float>();
    // bucketized_features
    OpInputList bucketized_features_list;
    OP_REQUIRES_OK(context, context->input_list("bucketized_features_list",
                                                &bucketized_features_list));
    // Infer batch size.
    const int64 batch_size = node_ids_t->dim_size(0);

    // Allocate temporary stats tensor (Rank 4).
    Tensor temp_stats_double_t;
    OP_REQUIRES_OK(context, context->allocate_temp(
                                DT_DOUBLE,
                                {num_features_, max_splits_, num_buckets_, 2},
                                &temp_stats_double_t));
    auto temp_stats_double = temp_stats_double_t.tensor<double, 4>();
    temp_stats_double.setZero();

    // Partition by node, and then bucketize.
    for (int feature_idx = 0; feature_idx < num_features_; ++feature_idx) {
      const auto& features = bucketized_features_list[feature_idx].vec<int32>();
      for (int i = 0; i < batch_size; ++i) {
        const int32 node = node_ids(i);
        const int32 bucket = features(i);
        temp_stats_double(feature_idx, node, bucket, 0) += gradients(i, 0);
        temp_stats_double(feature_idx, node, bucket, 1) += hessians(i, 0);
      }
    }

    // Copy temp tensor over to output tensor.
    Tensor* output_stats_summary_t = nullptr;
    OP_REQUIRES_OK(context, context->allocate_output(
                                "stats_summary", temp_stats_double_t.shape(),
                                &output_stats_summary_t));
    output_stats_summary_t->tensor<float, 4>() =
        temp_stats_double.template cast<float>();
  }

 private:
  int max_splits_;
  int num_buckets_;
  int num_features_;
};

REGISTER_KERNEL_BUILDER(Name("BoostedTreesMakeStatsSummary").Device(DEVICE_CPU),
                        BoostedTreesMakeStatsSummaryOp);

}  // namespace tensorflow