aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/bias_op.cc
blob: 10f5d4ce85d6b5e8b246fa105298e5b59c5dd70d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/nn_ops.cc.

#define EIGEN_USE_THREADS

#include "tensorflow/core/kernels/bias_op.h"
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/util/tensor_format.h"

#if GOOGLE_CUDA
#include "tensorflow/core/kernels/bias_op_gpu.h"
#include "tensorflow/core/platform/stream_executor.h"
#endif  // GOOGLE_CUDA

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;
typedef Eigen::GpuDevice GPUDevice;

template <typename Device, typename T>
class BiasOp;

template <typename T>
class BiasOp<CPUDevice, T> : public BinaryOp<T> {
 public:
  typedef CPUDevice Device;
  explicit BiasOp(OpKernelConstruction* context) : BinaryOp<T>(context) {
    string data_format;
    if (context->GetAttr("data_format", &data_format).ok()) {
      OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                  errors::InvalidArgument("Invalid data format"));
    } else {
      data_format_ = FORMAT_NHWC;
    }
    OP_REQUIRES(context, data_format_ == FORMAT_NHWC,
                errors::InvalidArgument("CPU BiasOp only supports NHWC."));
  }

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    const Tensor& bias = context->input(1);

    OP_REQUIRES(context, TensorShapeUtils::IsMatrixOrHigher(input.shape()),
                errors::InvalidArgument("Input tensor must be at least 2D: ",
                                        input.shape().DebugString()));
    OP_REQUIRES(context, TensorShapeUtils::IsVector(bias.shape()),
                errors::InvalidArgument("Biases must be 1D: ",
                                        bias.shape().DebugString()));
    const auto last_dim = input.shape().dims() - 1;
    OP_REQUIRES(
        context, bias.shape().dim_size(0) == input.shape().dim_size(last_dim),
        errors::InvalidArgument(
            "Must provide as many biases as the last dimension "
            "of the input tensor: ",
            bias.shape().DebugString(), " vs. ", input.shape().DebugString()));

    Tensor* output = nullptr;
    OP_REQUIRES_OK(context, context->forward_input_or_allocate_output(
                                {0}, 0, input.shape(), &output));
    if (input.NumElements() == 0) return;

    switch (input.shape().dims()) {
      case 2:
        Compute<2>(context, input, bias, output);
        break;
      case 3:
        Compute<3>(context, input, bias, output);
        break;
      case 4:
        Compute<4>(context, input, bias, output);
        break;
      case 5:
        Compute<5>(context, input, bias, output);
        break;
      default:
        OP_REQUIRES(context, false,
                    errors::InvalidArgument("Only ranks up to 5 supported: ",
                                            input.shape().DebugString()));
    }
  }

  // Add biases for an input matrix of rank Dims, by using the Bias.
  template <int Dims>
  void Compute(OpKernelContext* ctx, const Tensor& input, const Tensor& bias,
               Tensor* output) {
    functor::Bias<Device, T, Dims> functor;
    functor(ctx->eigen_device<Device>(), input.tensor<T, Dims>(), bias.vec<T>(),
            output->tensor<T, Dims>());
  }

 private:
  TensorFormat data_format_;
};

#define REGISTER_KERNEL(type)                                         \
  REGISTER_KERNEL_BUILDER(                                            \
      Name("BiasAdd").Device(DEVICE_CPU).TypeConstraint<type>("T"),   \
      BiasOp<CPUDevice, type>);                                       \
  REGISTER_KERNEL_BUILDER(                                            \
      Name("BiasAddV1").Device(DEVICE_CPU).TypeConstraint<type>("T"), \
      BiasOp<CPUDevice, type>);

TF_CALL_NUMBER_TYPES(REGISTER_KERNEL);
#undef REGISTER_KERNEL

namespace {

void GetBiasValueDims(const Tensor& value_tensor, TensorFormat data_format,
                      int32* batch, int32* height, int32* width,
                      int32* channel) {
  *batch = 1;
  *width = 1;
  *height = 1;
  *channel = 1;
  if (data_format == FORMAT_NHWC) {
    int32 channel_dim = value_tensor.dims() - 1;
    *channel = static_cast<int32>(value_tensor.dim_size(channel_dim));
    for (int32 i = 0; i < channel_dim; i++) {
      *batch *= static_cast<int32>(value_tensor.dim_size(i));
    }
  } else if (data_format == FORMAT_NCHW) {
    int32 channel_dim = value_tensor.dims() - 3;
    int32 height_dim = value_tensor.dims() - 2;
    int32 width_dim = value_tensor.dims() - 1;
    *channel = static_cast<int32>(value_tensor.dim_size(channel_dim));
    *height = static_cast<int32>(value_tensor.dim_size(height_dim));
    *width = static_cast<int32>(value_tensor.dim_size(width_dim));
    for (int32 i = 0; i < channel_dim; i++) {
      *batch *= static_cast<int32>(value_tensor.dim_size(i));
    }
  }
}

template <class T>
struct AccumulatorType {
  typedef T type;
};

// float is faster on the CPU than half, and also more precise,
// so use float for the temporary accumulators.
template <>
struct AccumulatorType<Eigen::half> {
  typedef float type;
};

}  // namespace

template <typename Device, typename T>
class BiasGradOp;

template <typename T>
class BiasGradOp<CPUDevice, T> : public OpKernel {
 public:
  typedef CPUDevice Device;
  explicit BiasGradOp(OpKernelConstruction* context) : OpKernel(context) {
    string data_format;
    if (context->GetAttr("data_format", &data_format).ok()) {
      OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                  errors::InvalidArgument("Invalid data format"));
    } else {
      data_format_ = FORMAT_NHWC;
    }
    OP_REQUIRES(context, data_format_ == FORMAT_NHWC,
                errors::InvalidArgument("CPU BiasGradOp only supports NHWC."));
  }

  void Compute(OpKernelContext* context) override {
    const Tensor& output_backprop = context->input(0);

    OP_REQUIRES(context,
                TensorShapeUtils::IsMatrixOrHigher(output_backprop.shape()),
                errors::InvalidArgument("Input tensor must be at least 2D: ",
                                        output_backprop.shape().DebugString()));

    OP_REQUIRES(
        context, FastBoundsCheck(output_backprop.NumElements(),
                                 std::numeric_limits<int32>::max()),
        errors::InvalidArgument("BiasGrad requires tensor size <= int32 max"));

    int32 batch, height, width, channel;
    GetBiasValueDims(output_backprop, data_format_, &batch, &height, &width,
                     &channel);
    Tensor* output = nullptr;
    TensorShape output_shape{channel};
    OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output));

    if (channel == 0) {
      return;  // Nothing to do
    } else if (output_backprop.NumElements() == 0) {
      // Eigen often crashes by design on empty tensors, but setZero is safe
      output->template flat<T>().setZero();
    } else {
      Eigen::DSizes<int, 2> two_dims(batch * height * width, channel);
#ifdef EIGEN_HAS_INDEX_LIST
      Eigen::IndexList<Eigen::type2index<0> > reduction_axis;
#else
      Eigen::array<int, 1> reduction_axis = {0};
#endif
      output->template flat<T>().device(context->eigen_device<CPUDevice>()) =
          output_backprop.flat<T>()
              .template cast<typename AccumulatorType<T>::type>()
              .reshape(two_dims)
              .sum(reduction_axis)
              .template cast<T>();
    }
  }

 private:
  TensorFormat data_format_;
};

// Registration of the GPU implementations.
#define REGISTER_KERNEL(type)                                           \
  REGISTER_KERNEL_BUILDER(                                              \
      Name("BiasAddGrad").Device(DEVICE_CPU).TypeConstraint<type>("T"), \
      BiasGradOp<CPUDevice, type>);

TF_CALL_NUMBER_TYPES(REGISTER_KERNEL);
#undef REGISTER_KERNEL

#if GOOGLE_CUDA
template <typename T>
class BiasOp<GPUDevice, T> : public BinaryOp<T> {
 public:
  typedef GPUDevice Device;
  explicit BiasOp(OpKernelConstruction* context) : BinaryOp<T>(context) {
    string data_format;
    if (context->GetAttr("data_format", &data_format).ok()) {
      OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                  errors::InvalidArgument("Invalid data format"));
    } else {
      data_format_ = FORMAT_NHWC;
    }
  }

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    const Tensor& bias = context->input(1);

    OP_REQUIRES(context, TensorShapeUtils::IsMatrixOrHigher(input.shape()),
                errors::InvalidArgument("Input tensor must be at least 2D: ",
                                        input.shape().DebugString()));
    OP_REQUIRES(context, TensorShapeUtils::IsVector(bias.shape()),
                errors::InvalidArgument("Biases must be 1D: ",
                                        bias.shape().DebugString()));
    int32 batch, height, width, channel;
    GetBiasValueDims(input, data_format_, &batch, &height, &width, &channel);
    OP_REQUIRES(context, bias.shape().dim_size(0) == channel,
                errors::InvalidArgument(
                    "Must provide as many biases as the channel dimension "
                    "of the input tensor: ",
                    bias.shape().DebugString(), " vs. ", channel, " in ",
                    input.shape().DebugString()));
    Tensor* output = nullptr;
    OP_REQUIRES_OK(context, context->forward_input_or_allocate_output(
                                {0}, 0, input.shape(), &output));
    if (input.NumElements() > 0) {
      BiasGPU<T>::compute(context->template eigen_device<Device>(),
                          input.flat<T>().data(), bias.flat<T>().data(),
                          output->flat<T>().data(), batch, width, height,
                          channel, data_format_);
    }
  }

 private:
  TensorFormat data_format_;
};

// Registration of the GPU implementations.
#define REGISTER_GPU_KERNEL(type)                                     \
  REGISTER_KERNEL_BUILDER(                                            \
      Name("BiasAdd").Device(DEVICE_GPU).TypeConstraint<type>("T"),   \
      BiasOp<GPUDevice, type>);                                       \
  REGISTER_KERNEL_BUILDER(                                            \
      Name("BiasAddV1").Device(DEVICE_GPU).TypeConstraint<type>("T"), \
      BiasOp<GPUDevice, type>);

TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU_KERNEL);
#undef REGISTER_GPU_KERNEL

template <typename T>
class BiasGradOp<GPUDevice, T> : public OpKernel {
 public:
  typedef GPUDevice Device;
  explicit BiasGradOp(OpKernelConstruction* context) : OpKernel(context) {
    string data_format;
    if (context->GetAttr("data_format", &data_format).ok()) {
      OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                  errors::InvalidArgument("Invalid data format"));
    } else {
      data_format_ = FORMAT_NCHW;
    }
  }

  void Compute(OpKernelContext* context) override {
    const Tensor& output_backprop = context->input(0);

    OP_REQUIRES(context,
                TensorShapeUtils::IsMatrixOrHigher(output_backprop.shape()),
                errors::InvalidArgument("Input tensor must be at least 2D: ",
                                        output_backprop.shape().DebugString()));
    int32 batch, height, width, channel;
    GetBiasValueDims(output_backprop, data_format_, &batch, &height, &width,
                     &channel);
    Tensor* output = nullptr;
    TensorShape output_shape{channel};
    OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output));
    if (channel == 0) return;
    auto* stream = context->op_device_context()->stream();
    OP_REQUIRES(context, stream, errors::Internal("No GPU stream available."));
    perftools::gputools::DeviceMemoryBase output_ptr(
        output->flat<T>().data(), output->NumElements() * sizeof(T));
    stream->ThenMemZero(&output_ptr, output->NumElements() * sizeof(T));
    if (output_backprop.NumElements() > 0) {
      BiasGradGPU<T>::compute(context->template eigen_device<Device>(),
                              output_backprop.template flat<T>().data(),
                              output->flat<T>().data(), batch, width, height,
                              channel, data_format_);
    }
  }

 private:
  TensorFormat data_format_;
};

// Registration of the GPU implementations.
#define REGISTER_GPU_KERNEL(type)                                       \
  REGISTER_KERNEL_BUILDER(                                              \
      Name("BiasAddGrad").Device(DEVICE_GPU).TypeConstraint<type>("T"), \
      BiasGradOp<GPUDevice, type>);

TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU_KERNEL);
#undef REGISTER_GPU_KERNEL

#endif  // GOOGLE_CUDA

}  // namespace tensorflow