aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/batch_matmul_op.cc
blob: f5a64e1f46ec77a25a7111e4e96899f23e50ccbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/* Copyright 2015 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/math_ops.cc.

#define EIGEN_USE_THREADS

#include <vector>
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/fill_functor.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/util/work_sharder.h"

#if GOOGLE_CUDA
#include "tensorflow/core/platform/stream_executor.h"
#endif  // GOOGLE_CUDA

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;
typedef Eigen::GpuDevice GPUDevice;

template <typename Device, typename Scalar>
struct LaunchBatchMatMul;

template <typename Scalar>
struct LaunchBatchMatMul<CPUDevice, Scalar> {
  static void Launch(OpKernelContext* context, const Tensor& in_x,
                     const Tensor& in_y, bool adj_x, bool adj_y, Tensor* out) {
    auto Tx = in_x.tensor<Scalar, 3>();
    auto Ty = in_y.tensor<Scalar, 3>();
    auto Tz = out->tensor<Scalar, 3>();

    // Shards "n"-matmuls into "num" shards. Each shard is
    // dispatched to a thread.
    auto worker_threads = *(context->device()->tensorflow_cpu_worker_threads());
    const int64 num_units = in_x.dim_size(0);
    const int64 cost_per_unit =
        in_x.dim_size(0) * in_x.dim_size(1) * out->dim_size(2);
    Shard(worker_threads.num_threads, worker_threads.workers, num_units,
          cost_per_unit, [&Tx, &Ty, adj_x, adj_y, &Tz](int start, int limit) {
            LaunchBatchMatMul<CPUDevice, Scalar>::Run(Tx, Ty, adj_x, adj_y, Tz,
                                                      start, limit);
          });
  }

  template <typename In, typename Out>
  static void Run(In Tx, In Ty, bool adj_x, bool adj_y, Out Tz, int start,
                  int limit) {
    Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1> contract_pairs;

    Eigen::internal::scalar_conjugate_op<Scalar> conj;
    if (!adj_x && !adj_y) {
      for (int i = start; i < limit; ++i) {
        auto x = Tx.template chip<0>(i);
        auto y = Ty.template chip<0>(i);
        auto z = Tz.template chip<0>(i);
        contract_pairs[0] = Eigen::IndexPair<Eigen::DenseIndex>(1, 0);
        z = x.contract(y, contract_pairs);  // matmul
      }
    } else if (!adj_x && adj_y) {
      for (int i = start; i < limit; ++i) {
        auto x = Tx.template chip<0>(i);
        auto y = Ty.template chip<0>(i).unaryExpr(conj);
        auto z = Tz.template chip<0>(i);
        contract_pairs[0] = Eigen::IndexPair<Eigen::DenseIndex>(1, 1);
        z = x.contract(y, contract_pairs);  // matmul
      }
    } else if (adj_x && !adj_y) {
      for (int i = start; i < limit; ++i) {
        auto x = Tx.template chip<0>(i).unaryExpr(conj);
        auto y = Ty.template chip<0>(i);
        auto z = Tz.template chip<0>(i);
        contract_pairs[0] = Eigen::IndexPair<Eigen::DenseIndex>(0, 0);
        z = x.contract(y, contract_pairs);  // matmul
      }
    } else {
      for (int i = start; i < limit; ++i) {
        auto x = Tx.template chip<0>(i).unaryExpr(conj);
        auto y = Ty.template chip<0>(i).unaryExpr(conj);
        auto z = Tz.template chip<0>(i);
        contract_pairs[0] = Eigen::IndexPair<Eigen::DenseIndex>(0, 1);
        z = x.contract(y, contract_pairs);  // matmul
      }
    }
  }
};

#if GOOGLE_CUDA

namespace {
template <typename T>
perftools::gputools::DeviceMemory<T> AsDeviceMemory(const T* cuda_memory) {
  perftools::gputools::DeviceMemoryBase wrapped(const_cast<T*>(cuda_memory));
  perftools::gputools::DeviceMemory<T> typed(wrapped);
  return typed;
}

class CublasScratchAllocator : public perftools::gputools::ScratchAllocator {
 public:
  using Stream = ::perftools::gputools::Stream;
  using DeviceMemoryBytes = ::perftools::gputools::DeviceMemory<uint8>;

  CublasScratchAllocator(OpKernelContext* context) : context_(context) {}

  int64 GetMemoryLimitInBytes(Stream* stream) override { return -1; }

  perftools::gputools::port::StatusOr<DeviceMemoryBytes> AllocateBytes(
      Stream* stream, int64 byte_size) override {
    Tensor temporary_memory;

    Status allocation_status(context_->allocate_temp(
        DT_UINT8, TensorShape({byte_size}), &temporary_memory));
    if (!allocation_status.ok()) {
      return perftools::gputools::port::StatusOr<DeviceMemoryBytes>(
          DeviceMemoryBytes::MakeFromByteSize(nullptr, 0));
    }
    // Hold the reference of the allocated tensors until the end of the
    // allocator.
    allocated_tensors_.push_back(temporary_memory);
    return perftools::gputools::port::StatusOr<DeviceMemoryBytes>(
        DeviceMemoryBytes::MakeFromByteSize(
            temporary_memory.flat<uint8>().data(),
            temporary_memory.flat<uint8>().size()));
  }

 private:
  OpKernelContext* context_;
  std::vector<Tensor> allocated_tensors_;
};
}  // namespace

template <typename Scalar>
struct LaunchBatchMatMul<GPUDevice, Scalar> {
  static void Launch(OpKernelContext* context, const Tensor& in_x,
                     const Tensor& in_y, bool adj_x, bool adj_y, Tensor* out) {
    perftools::gputools::blas::Transpose trans[] = {
        perftools::gputools::blas::Transpose::kNoTranspose,
        perftools::gputools::blas::Transpose::kTranspose};
    const uint64 m = in_x.dim_size(adj_x ? 2 : 1);
    const uint64 k = in_x.dim_size(adj_x ? 1 : 2);
    const uint64 n = in_y.dim_size(adj_y ? 1 : 2);
    const uint64 batch_size = in_x.dim_size(0);
    auto blas_transpose_a = trans[adj_x];
    auto blas_transpose_b = trans[adj_y];

    auto* stream = context->op_device_context()->stream();
    OP_REQUIRES(context, stream, errors::Internal("No GPU stream available."));

    typedef perftools::gputools::DeviceMemory<Scalar> DeviceMemoryType;
    std::vector<DeviceMemoryType> a_device_memory;
    std::vector<DeviceMemoryType> b_device_memory;
    std::vector<DeviceMemoryType> c_device_memory;
    std::vector<DeviceMemoryType*> a_ptrs;
    std::vector<DeviceMemoryType*> b_ptrs;
    std::vector<DeviceMemoryType*> c_ptrs;
    a_device_memory.reserve(batch_size);
    b_device_memory.reserve(batch_size);
    c_device_memory.reserve(batch_size);
    a_ptrs.reserve(batch_size);
    b_ptrs.reserve(batch_size);
    c_ptrs.reserve(batch_size);
    auto* a_base_ptr = in_x.template flat<Scalar>().data();
    auto* b_base_ptr = in_y.template flat<Scalar>().data();
    auto* c_base_ptr = out->template flat<Scalar>().data();
    for (int64 i = 0; i < batch_size; ++i) {
      a_device_memory.push_back(AsDeviceMemory(a_base_ptr + i * m * k));
      b_device_memory.push_back(AsDeviceMemory(b_base_ptr + i * k * n));
      c_device_memory.push_back(AsDeviceMemory(c_base_ptr + i * m * n));
      a_ptrs.push_back(&a_device_memory.back());
      b_ptrs.push_back(&b_device_memory.back());
      c_ptrs.push_back(&c_device_memory.back());
    }

    // Cublas does
    // C = A x B
    // where A, B and C are assumed to be in column major.
    // We want the output to be in row-major, so we can compute
    // C' = B' x A' (' stands for transpose)
    CublasScratchAllocator scratch_allocator(context);
    bool blas_launch_status =
        stream
            ->ThenBlasGemmBatchedWithScratch(
                blas_transpose_b, blas_transpose_a, n, m, k,
                static_cast<Scalar>(1.0), b_ptrs, adj_y ? k : n, a_ptrs,
                adj_x ? m : k, static_cast<Scalar>(0.0), c_ptrs, n, batch_size,
                &scratch_allocator)
            .ok();
    if (!blas_launch_status) {
      context->SetStatus(errors::Internal(
          "Blas SGEMMBatched launch failed : a.shape=",
          in_x.shape().DebugString(), ", b.shape=", in_y.shape().DebugString(),
          ", m=", m, ", n=", n, ", k=", k, ", batch_size=", batch_size));
    }
  }
};

#endif  // GOOGLE_CUDA

template <typename Device, typename Scalar>
class BatchMatMul : public OpKernel {
 public:
  explicit BatchMatMul(OpKernelConstruction* context) : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("adj_x", &adj_x_));
    OP_REQUIRES_OK(context, context->GetAttr("adj_y", &adj_y_));
  }

  virtual ~BatchMatMul() {}

  void Compute(OpKernelContext* ctx) override {
    const Tensor& in0 = ctx->input(0);
    const Tensor& in1 = ctx->input(1);
    OP_REQUIRES(ctx, in0.dims() == in1.dims(),
                errors::InvalidArgument("In[0] and In[1] has different ndims: ",
                                        in0.shape().DebugString(), " vs. ",
                                        in1.shape().DebugString()));
    const int ndims = in0.dims();
    OP_REQUIRES(
        ctx, ndims >= 3,
        errors::InvalidArgument("In[0] and In[1] ndims must be >= 3: ", ndims));
    TensorShape out_shape;
    for (int i = 0; i < ndims - 2; ++i) {
      OP_REQUIRES(ctx, in0.dim_size(i) == in1.dim_size(i),
                  errors::InvalidArgument("In[0].dim(", i, ") and In[1].dim(",
                                          i, ") must be the same: ",
                                          in0.shape().DebugString(), " vs ",
                                          in1.shape().DebugString()));
      out_shape.AddDim(in0.dim_size(i));
    }
    auto n = out_shape.num_elements();
    auto d0 = in0.dim_size(ndims - 2);
    auto d1 = in0.dim_size(ndims - 1);
    Tensor in0_reshaped;
    CHECK(in0_reshaped.CopyFrom(in0, TensorShape({n, d0, d1})));
    auto d2 = in1.dim_size(ndims - 2);
    auto d3 = in1.dim_size(ndims - 1);
    Tensor in1_reshaped;
    CHECK(in1_reshaped.CopyFrom(in1, TensorShape({n, d2, d3})));
    if (adj_x_) std::swap(d0, d1);
    if (adj_y_) std::swap(d2, d3);
    OP_REQUIRES(ctx, d1 == d2,
                errors::InvalidArgument(
                    "In[0] mismatch In[1] shape: ", d1, " vs. ", d2, ": ",
                    in0.shape().DebugString(), " ", in1.shape().DebugString(),
                    " ", adj_x_, " ", adj_y_));
    out_shape.AddDim(d0);
    out_shape.AddDim(d3);
    Tensor* out = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, out_shape, &out));
    if (out->NumElements() == 0) {
      return;
    }
    if (in0.NumElements() == 0 || in1.NumElements() == 0) {
      functor::SetZeroFunctor<Device, Scalar> f;
      f(ctx->eigen_device<Device>(), out->flat<Scalar>());
      return;
    }
    Tensor out_reshaped;
    CHECK(out_reshaped.CopyFrom(*out, TensorShape({n, d0, d3})));
    LaunchBatchMatMul<Device, Scalar>::Launch(ctx, in0_reshaped, in1_reshaped,
                                              adj_x_, adj_y_, &out_reshaped);
  }

 private:
  bool adj_x_;
  bool adj_y_;
};

#define REGISTER_CPU(TYPE)                                              \
  REGISTER_KERNEL_BUILDER(                                              \
      Name("BatchMatMul").Device(DEVICE_CPU).TypeConstraint<TYPE>("T"), \
      BatchMatMul<CPUDevice, TYPE>)

#define REGISTER_GPU(TYPE)                                              \
  REGISTER_KERNEL_BUILDER(                                              \
      Name("BatchMatMul").Device(DEVICE_GPU).TypeConstraint<TYPE>("T"), \
      BatchMatMul<GPUDevice, TYPE>)

REGISTER_CPU(float);
REGISTER_CPU(double);
REGISTER_CPU(int32);
REGISTER_CPU(complex64);

#ifdef GOOGLE_CUDA
REGISTER_GPU(float);
#endif  // GOOGLE_CUDA

#undef REGISTER_CPU
#undef REGISTER_GPU
}  // end namespace tensorflow