aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/avgpooling_op_gpu.cu.cc
blob: 35511d5c313fb4b3794d00bd685ec4249580daa3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#if GOOGLE_CUDA

#define EIGEN_USE_GPU

#include <stdio.h>
#include <iostream>

#include "tensorflow/core/kernels/avgpooling_op.h"

#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor_types.h"
#include "tensorflow/core/util/cuda_kernel_helper.h"

namespace tensorflow {

typedef Eigen::GpuDevice GPUDevice;

#define DEFINE_GPU_KERNELS(T) \
  template struct functor::SpatialAvgPooling<GPUDevice, T>;

DEFINE_GPU_KERNELS(Eigen::half)
DEFINE_GPU_KERNELS(float)
DEFINE_GPU_KERNELS(double)

#undef DEFINE_GPU_KERNELS

template <typename dtype>
__global__ void AvePoolBackwardNHWC(const int nthreads,
                                    const dtype* const top_diff, const int num,
                                    const int height, const int width,
                                    const int channels, const int pooled_height,
                                    const int pooled_width, const int kernel_h,
                                    const int kernel_w, const int stride_h,
                                    const int stride_w, const int pad_t,
                                    const int pad_l, dtype* const bottom_diff) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // find out the local index
    // find out the local offset
    const int c = index % channels;
    const int w = index / channels % width + pad_l;
    const int h = (index / channels / width) % height + pad_t;
    const int n = index / channels / width / height;
    const int phstart = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
    const int phend = min(h / stride_h + 1, pooled_height);
    const int pwstart = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
    const int pwend = min(w / stride_w + 1, pooled_width);
    dtype gradient(0);
    const dtype* const top_diff_slice =
        top_diff + n * pooled_height * pooled_width * channels + c;
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
        // figure out the pooling size
        int hstart = ph * stride_h - pad_t;
        int wstart = pw * stride_w - pad_l;
        int hend = min(hstart + kernel_h, height);
        int wend = min(wstart + kernel_w, width);
        hstart = max(hstart, 0);
        wstart = max(wstart, 0);
        int pool_size = (hend - hstart) * (wend - wstart);
        gradient += top_diff_slice[(ph * pooled_width + pw) * channels] /
                    dtype(pool_size);
      }
    }
    bottom_diff[index] = gradient;
  }
}

template <typename T>
bool RunAvePoolBackwardNHWC(const T* const top_diff, const int num,
                            const int height, const int width,
                            const int channels, const int pooled_height,
                            const int pooled_width, const int kernel_h,
                            const int kernel_w, const int stride_h,
                            const int stride_w, const int pad_t,
                            const int pad_l, T* const bottom_diff,
                            const GPUDevice& d) {
  int x_size = num * height * width * channels;
  CudaLaunchConfig config = GetCudaLaunchConfig(x_size, d);
  AvePoolBackwardNHWC<T>
      <<<config.block_count, config.thread_per_block, 0, d.stream()>>>(
          config.virtual_thread_count, top_diff, num, height, width, channels,
          pooled_height, pooled_width, kernel_h, kernel_w, stride_h, stride_w,
          pad_t, pad_t, bottom_diff);

  return d.ok();
}

template bool RunAvePoolBackwardNHWC(
    const double* const top_diff, const int num, const int height,
    const int width, const int channels, const int pooled_height,
    const int pooled_width, const int kernel_h, const int kernel_w,
    const int stride_h, const int stride_w, const int pad_t, const int pad_l,
    double* const bottom_diff, const GPUDevice& d);
template bool RunAvePoolBackwardNHWC(
    const float* const top_diff, const int num, const int height,
    const int width, const int channels, const int pooled_height,
    const int pooled_width, const int kernel_h, const int kernel_w,
    const int stride_h, const int stride_w, const int pad_t, const int pad_l,
    float* const bottom_diff, const GPUDevice& d);
template bool RunAvePoolBackwardNHWC(
    const Eigen::half* const top_diff, const int num, const int height,
    const int width, const int channels, const int pooled_height,
    const int pooled_width, const int kernel_h, const int kernel_w,
    const int stride_h, const int stride_w, const int pad_t, const int pad_l,
    Eigen::half* const bottom_diff, const GPUDevice& d);

}  // end namespace tensorflow

#endif  // GOOGLE_CUDA