aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/grappler/optimizers/meta_optimizer.cc
blob: a5fd33d28b423e7f41dfc435ee632f62ad7618d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/grappler/optimizers/meta_optimizer.h"
#include "tensorflow/core/common_runtime/function.h"
#include "tensorflow/core/framework/function.pb.h"
#include "tensorflow/core/framework/versions.pb.h"
#include "tensorflow/core/grappler/optimizers/arithmetic_optimizer.h"
#include "tensorflow/core/grappler/optimizers/auto_parallel.h"
#include "tensorflow/core/grappler/optimizers/constant_folding.h"
#include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h"
#include "tensorflow/core/grappler/optimizers/debug_stripper.h"
#include "tensorflow/core/grappler/optimizers/dependency_optimizer.h"
#include "tensorflow/core/grappler/optimizers/function_optimizer.h"
#include "tensorflow/core/grappler/optimizers/layout_optimizer.h"
#include "tensorflow/core/grappler/optimizers/loop_optimizer.h"
#include "tensorflow/core/grappler/optimizers/memory_optimizer.h"
#include "tensorflow/core/grappler/optimizers/model_pruner.h"
#include "tensorflow/core/grappler/optimizers/remapper.h"
#include "tensorflow/core/grappler/optimizers/scoped_allocator_optimizer.h"
#include "tensorflow/core/grappler/optimizers/shape_optimizer.h"
#include "tensorflow/core/grappler/utils/colocation.h"
#include "tensorflow/core/grappler/utils/functions.h"
#include "tensorflow/core/grappler/utils/topological_sort.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/util/ptr_util.h"

namespace tensorflow {
namespace grappler {

namespace {

constexpr int kDefaultNumberOfIterations = 2;
constexpr int kDefaultMinGraphNodes = 4;

int64 NumEdges(const GraphDef& graph) {
  int64 num_edges = 0;
  for (const auto& node : graph.node()) {
    num_edges += node.input_size();
  }
  return num_edges;
}

string PrintSizesBeforeAfter(const GraphDef& before, const GraphDef& after) {
  return strings::StrCat("Graph size after: ", after.node_size(), " nodes (",
                         after.node_size() - before.node_size(), "), ",
                         NumEdges(after), " edges (",
                         NumEdges(after) - NumEdges(before), ")");
}

int NumIterations(const RewriterConfig& cfg) {
  return cfg.meta_optimizer_iterations() == RewriterConfig::DEFAULT_NUM_ITERS
             ? kDefaultNumberOfIterations
             : cfg.meta_optimizer_iterations();
}

// Check if optimizer is allowed to run only once.
bool IsRunOnceOptimizer(const string& name) {
  return name == "layout" || name == "memory_optimizer" ||
         name == "loop_optimizer";
}

}  // namespace

#define MK_OPT(NAME, VALUE) \
  if (optimizer == NAME) return std::unique_ptr<GraphOptimizer>(VALUE)

std::unique_ptr<GraphOptimizer> MetaOptimizer::MakeNewOptimizer(
    const string& optimizer) const {
  MK_OPT("pruning", new ModelPruner());
  MK_OPT("function", new FunctionOptimizer(cfg_.function_optimization()));
  MK_OPT("constfold", new ConstantFolding(cpu_device_));
  MK_OPT("shape", new ShapeOptimizer());
  MK_OPT("remap", new Remapper(cfg_.remapping()));
  MK_OPT("layout", new LayoutOptimizer());
  MK_OPT("memory", new MemoryOptimizer(RewriterConfig::MANUAL));
  MK_OPT("arithmetic", new ArithmeticOptimizer(cfg_.arithmetic_optimization()));
  MK_OPT("autoparallel", new AutoParallel(cfg_.auto_parallel().num_replicas()));
  MK_OPT("loop", new LoopOptimizer(cfg_.loop_optimization(), cpu_device_));
  MK_OPT("dependency", new DependencyOptimizer(cfg_.dependency_optimization()));
  MK_OPT("debug_stripper", new DebugStripper());
  MK_OPT("scoped_allocator",
         new ScopedAllocatorOptimizer(cfg_.scoped_allocator_optimization(),
                                      cfg_.scoped_allocator_opts()));

  return std::unique_ptr<GraphOptimizer>();
}

#undef MK_OPT

Status MetaOptimizer::InitializeOptimizers(
    std::vector<std::unique_ptr<GraphOptimizer>>* optimizers) const {
  if (!cfg_.disable_model_pruning()) {
    optimizers->push_back(MakeUnique<ModelPruner>());
  }
  if (cfg_.function_optimization() != RewriterConfig::OFF) {
    optimizers->push_back(
        MakeUnique<FunctionOptimizer>(cfg_.function_optimization()));
  }
  if (cfg_.debug_stripper() == RewriterConfig::ON) {
    optimizers->push_back(MakeUnique<DebugStripper>());
  }
  if (cfg_.constant_folding() != RewriterConfig::OFF) {
    optimizers->push_back(
        MakeUnique<ConstantFolding>(cfg_.constant_folding(), cpu_device_));
  }
  if (cfg_.shape_optimization() != RewriterConfig::OFF) {
    optimizers->push_back(MakeUnique<ShapeOptimizer>());
  }
  if (cfg_.remapping() != RewriterConfig::OFF) {
    optimizers->push_back(MakeUnique<Remapper>(cfg_.remapping()));
  }
  if (cfg_.arithmetic_optimization() != RewriterConfig::OFF) {
    optimizers->push_back(
        MakeUnique<ArithmeticOptimizer>(cfg_.arithmetic_optimization()));
  }
  if (cfg_.loop_optimization() != RewriterConfig::OFF) {
    optimizers->push_back(
        MakeUnique<LoopOptimizer>(cfg_.loop_optimization(), cpu_device_));
  }
  if (cfg_.dependency_optimization() != RewriterConfig::OFF) {
    optimizers->push_back(
        MakeUnique<DependencyOptimizer>(cfg_.dependency_optimization()));
  }
  if (cfg_.layout_optimizer() != RewriterConfig::OFF) {
    optimizers->push_back(MakeUnique<LayoutOptimizer>());
  }
  if (cfg_.memory_optimization() != RewriterConfig::NO_MEM_OPT) {
    if (cfg_.memory_optimizer_target_node_name_scope().empty()) {
      optimizers->push_back(
          // Use the default target node name prefix "gradients/"
          MakeUnique<MemoryOptimizer>(cfg_.memory_optimization()));
    } else {
      optimizers->push_back(MakeUnique<MemoryOptimizer>(
          cfg_.memory_optimization(),
          cfg_.memory_optimizer_target_node_name_scope()));
    }
  }
  if (cfg_.auto_parallel().enable()) {
    optimizers->push_back(
        MakeUnique<AutoParallel>(cfg_.auto_parallel().num_replicas()));
  }
  if (cfg_.scoped_allocator_optimization()) {
    optimizers->push_back(MakeUnique<ScopedAllocatorOptimizer>(
        cfg_.scoped_allocator_optimization(), cfg_.scoped_allocator_opts()));
  }
  return InitializeCustomGraphOptimizers(optimizers);
}

Status MetaOptimizer::InitializeOptimizersByName(
    std::vector<std::unique_ptr<GraphOptimizer>>* optimizers) const {
  for (const string& optimizer_name : cfg_.optimizers()) {
    auto optimizer = MakeNewOptimizer(optimizer_name);
    if (optimizer) {
      VLOG(2) << "Registered default graph optimizer: " << optimizer_name;
      optimizers->push_back(std::move(optimizer));
      continue;
    }

    auto custom_optimizer =
        CustomGraphOptimizerRegistry::CreateByNameOrNull(optimizer_name);

    if (custom_optimizer) {
      VLOG(2) << "Registered custom graph optimizer: " << optimizer_name;
      TF_RETURN_IF_ERROR(custom_optimizer->Init());
      optimizers->push_back(std::move(custom_optimizer));
    } else {
      VLOG(2) << "Can't register an optimizer by name: " << optimizer_name;
    }
  }
  return InitializeCustomGraphOptimizers(optimizers);
}

Status MetaOptimizer::InitializeCustomGraphOptimizers(
    std::vector<std::unique_ptr<GraphOptimizer>>* optimizers) const {
  for (const auto& optimizer_config : cfg_.custom_optimizers()) {
    auto custom_optimizer = CustomGraphOptimizerRegistry::CreateByNameOrNull(
        optimizer_config.name());
    if (custom_optimizer) {
      VLOG(2) << "Registered custom configurable graph optimizer: "
              << optimizer_config.name();
      TF_RETURN_IF_ERROR(custom_optimizer->Init(&optimizer_config));
      optimizers->push_back(std::move(custom_optimizer));
    } else {
      VLOG(2) << "Can't register an optimizer by name: "
              << optimizer_config.name();
    }
  }
  return Status::OK();
}

Status MetaOptimizer::OptimizeGraph(Cluster* cluster, const GrapplerItem& item,
                                    GraphDef* optimized_graph) {
  int min_graph_nodes = cfg_.min_graph_nodes() == 0 ? kDefaultMinGraphNodes
                                                    : cfg_.min_graph_nodes();
  if (item.graph.node_size() < min_graph_nodes) {
    VLOG(3) << "Skipping optimization, graph has less than " << min_graph_nodes
            << " nodes.";
    *optimized_graph = item.graph;
    return Status::OK();
  }

  std::vector<std::unique_ptr<GraphOptimizer>> optimizers;
  if (cfg_.optimizers().empty()) {
    TF_RETURN_IF_ERROR(InitializeOptimizers(&optimizers));
  } else {
    TF_RETURN_IF_ERROR(InitializeOptimizersByName(&optimizers));
  }

  VLOG(2) << "Optimize GrapplerItem: item.id=" << item.id
          << " num_optimizers=" << optimizers.size()
          << ", num nodes = " << item.graph.node_size();

  if (optimizers.empty()) {
    VLOG(3) << "Skipping graph optimization, no optimizers registered";
    *optimized_graph = item.graph;
    return Status::OK();
  }

  // Invariant: optimized_graph contains the most recently optimized version of
  // the graph.
  GrapplerItem optimized_item = item;
  optimized_graph->Swap(&optimized_item.graph);

  bool is_optimized = false;
  GraphOptimizationResult optimization_result(item.id);
  GraphOptimizer* fusion_optimizer = nullptr;
  GraphOptimizer* sa_optimizer = nullptr;

  for (int iteration = 0; iteration < NumIterations(cfg_); ++iteration) {
    // Don't bother optimizing further if the graph is already tiny.
    if (optimized_graph->node_size() < min_graph_nodes) {
      VLOG(3) << "Stopping after iteration " << iteration
              << ", graph is tiny (#nodes = " << optimized_graph->node_size()
              << "  < " << min_graph_nodes << ")";
      break;
    }

    VLOG(4) << "Starting optimization iteration " << iteration;
    for (const auto& optimizer : optimizers) {
      // Some optimizers can run only once.
      if (iteration > 0 && IsRunOnceOptimizer(optimizer->name())) continue;
      // Some must run only on the last iteration.
      if (optimizer->name() == "scoped_allocator_optimizer") {
        if (sa_optimizer == nullptr) sa_optimizer = optimizer.get();
        continue;
      }
      if (optimizer->name() == "xla-fusion") {
        if (fusion_optimizer == nullptr) fusion_optimizer = optimizer.get();
        continue;
      }
      Status status = RunOptimizer(optimizer.get(), cluster, &optimized_item,
                                   optimized_graph, &optimization_result);
      if (status.ok()) is_optimized = true;
    }
  }

  // Run fusion optimizer if requested after all other optimizers since: 1) it
  // doesn't need to be called more than once. 2) we don't want subsequent
  // optimization passes to break the fusion clusters. We could potentially
  // encapsulate the fusion clusters right away, but that will prevent a lot of
  // optimizations from taking place since we don't have shape inference for
  // functions, and we can't optimize across function boundaries.
  if (fusion_optimizer != nullptr) {
    Status status = RunOptimizer(fusion_optimizer, cluster, &optimized_item,
                                 optimized_graph, &optimization_result);
    if (status.ok()) is_optimized = true;
  }

  // ScopedAllocatorOptimizer must run last.
  if (sa_optimizer != nullptr) {
    Status status = RunOptimizer(sa_optimizer, cluster, &optimized_item,
                                 optimized_graph, &optimization_result);
    if (status.ok()) is_optimized = true;
  }

  // Record graph optimization result.
  optimization_results_.push_back(optimization_result);

  if (is_optimized) {
    TF_RETURN_IF_ERROR(TopologicalSort(optimized_graph));
    ReassignColocation(optimized_graph);
    // Make sure that the optimizers preserved the graph version.
    DCHECK_EQ(optimized_graph->versions().producer(),
              item.graph.versions().producer());
  }

  return Status::OK();
}

Status MetaOptimizer::RunOptimizer(
    GraphOptimizer* optimizer, Cluster* cluster, GrapplerItem* optimized_item,
    GraphDef* optimized_graph, GraphOptimizationResult* optimization_result) {
  uint64 start_us = Env::Default()->NowMicros();
  // This swaps the current optimized_graph into optimized item and
  // resets optimized_graph to an empty graph.
  optimized_graph->Swap(&optimized_item->graph);
  *optimized_graph = GraphDef();
  Status status =
      optimizer->Optimize(cluster, *optimized_item, optimized_graph);
  uint64 end_us = Env::Default()->NowMicros();

  string result;
  if (!status.ok()) {
    optimized_graph->Swap(&optimized_item->graph);
    result = status.ToString();
  } else {
    float duration_ms = (end_us - start_us) / 1000.0f;
    result = strings::StrCat(
        PrintSizesBeforeAfter(optimized_item->graph, *optimized_graph),
        ", time = ", duration_ms, "ms.");
  }
  VLOG(1) << optimizer->name() << ": " << result;

  OptimizerResult optimizer_result{optimizer->name(), result};
  optimization_result->results.push_back(optimizer_result);
  return status;
}

Status MetaOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item,
                               GraphDef* optimized_graph) {
  optimization_results_.clear();

  // 1. Optimize main graph
  TF_RETURN_IF_ERROR(OptimizeGraph(cluster, item, optimized_graph));

  // 2. Optimize function library
  FunctionLibraryDefinition flib(OpRegistry::Global(),
                                 optimized_graph->library());

  // Optimize each function only once.
  std::unordered_set<string> optimized_funcs;
  bool optimize_function_library = true;

  while (optimize_function_library) {
    optimize_function_library = false;

    for (const FunctionDef& func : optimized_graph->library().function()) {
      const string& func_name = func.signature().name();

      // Skip already optimized functions.
      if (optimized_funcs.find(func_name) != optimized_funcs.end()) continue;

      // Skip parametrized functions (function type or body is defined only at
      // function call time by caller node attributes).
      if (IsParametrized(func)) continue;

      VLOG(3) << "Optimize function: function=" << func_name;

      // Function optimization might specialize nested function calls, so we
      // have to reset the flag and do at least one more pass over the library.
      optimize_function_library = true;
      optimized_funcs.insert(func_name);

      // Make a GrapplerItem from a FunctionDef.
      GrapplerFunctionItem func_item;
      TF_RETURN_IF_ERROR(MakeGrapplerFunctionItem(
          func, flib, item.graph.versions().producer(), &func_item));

      // Optimize function body graph.
      GraphDef optimized_func_graph;
      TF_RETURN_IF_ERROR(
          OptimizeGraph(cluster, func_item, &optimized_func_graph));

      // Function body optimization might have created new specialized
      // functions for each instantiation context. Add them to the library.
      for (const FunctionDef& func_def :
           optimized_func_graph.library().function()) {
        if (flib.Find(func_def.signature().name()) == nullptr) {
          TF_RETURN_IF_ERROR(flib.AddFunctionDef(func_def));
        }
      }

      // Convert optimized graph back to FunctionDef.
      FunctionDef optimized_func;
      func_item.SwapFunctionBody(std::move(optimized_func_graph));
      TF_RETURN_IF_ERROR(MakeFunctionDef(func_item, flib, &optimized_func));

      // Replace optimized function with a new FunctionDef.
      TF_RETURN_IF_ERROR(flib.ReplaceFunction(func_name, optimized_func));
    }

    // If optimized at least one function, update the graph library.
    if (optimize_function_library) {
      *optimized_graph->mutable_library() = flib.ToProto();
    }
  }

  VLOG(3) << "Optimized " << optimized_funcs.size()
          << " functions: " << str_util::Join(optimized_funcs, ", ");

  return Status::OK();
}

void MetaOptimizer::PrintResult() {
  for (const GraphOptimizationResult& graph_result : optimization_results_) {
    LOG(INFO) << "Optimization results for grappler item: " << graph_result.id;
    for (const OptimizerResult& result : graph_result.results) {
      LOG(INFO) << "  " << result.optimizer_name << ": " << result.result;
    }
  }
}

void MetaOptimizer::Feedback(Cluster* cluster, const GrapplerItem& item,
                             const GraphDef& pruned_graph, double result) {
  // Nothing to do for MetaOptimizer.
}

bool MetaOptimizerEnabled(const RewriterConfig& cfg) {
  return !cfg.disable_model_pruning() ||
         cfg.layout_optimizer() != RewriterConfig::OFF ||
         cfg.function_optimization() != RewriterConfig::OFF ||
         cfg.constant_folding() != RewriterConfig::OFF ||
         cfg.shape_optimization() != RewriterConfig::OFF ||
         cfg.remapping() != RewriterConfig::OFF ||
         cfg.arithmetic_optimization() != RewriterConfig::OFF ||
         cfg.loop_optimization() != RewriterConfig::OFF ||
         cfg.dependency_optimization() != RewriterConfig::OFF ||
         cfg.auto_parallel().enable() ||
         cfg.memory_optimization() != RewriterConfig::NO_MEM_OPT ||
         cfg.debug_stripper() == RewriterConfig::ON ||
         cfg.scoped_allocator_optimization() == RewriterConfig::ON ||
         !cfg.optimizers().empty() || !cfg.custom_optimizers().empty();
}

Status RunMetaOptimizer(const GrapplerItem& item, const RewriterConfig& cfg,
                        DeviceBase* cpu_device, Cluster* cluster,
                        GraphDef* optimized_graph) {
  MetaOptimizer optimizer(cpu_device, cfg);
  return optimizer.Optimize(cluster, item, optimized_graph);
}

}  // namespace grappler
}  // namespace tensorflow