aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc
blob: da8d6777370a0edb53e15e65f1daa64c310bdc86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/grappler/optimizers/arithmetic_optimizer.h"

#include <algorithm>
#include <deque>
#include <limits>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "tensorflow/core/framework/attr_value.pb.h"
#include "tensorflow/core/framework/node_def.pb.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/tensor_shape.pb.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/grappler/costs/graph_properties.h"
#include "tensorflow/core/grappler/grappler_item.h"
#include "tensorflow/core/grappler/op_types.h"
#include "tensorflow/core/grappler/optimizers/constant_folding.h"
#include "tensorflow/core/grappler/optimizers/graph_optimizer_stage.h"
#include "tensorflow/core/grappler/optimizers/symbolic_shapes.h"
#include "tensorflow/core/grappler/utils.h"
#include "tensorflow/core/grappler/utils/topological_sort.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/tensor_coding.h"
#include "tensorflow/core/util/device_name_utils.h"
#include "tensorflow/core/util/saved_tensor_slice_util.h"

using tensorflow::strings::StrCat;

namespace tensorflow {
namespace grappler {
namespace {

// Extract values from a Const op to `values`. Returns true if succeeds.
template <typename T>
bool ValuesFromConstNode(const NodeDef& node, std::vector<T>* values) {
  if (node.op() != "Const") {
    return false;
  }

  if (node.attr().at("dtype").type() != DataTypeToEnum<T>::value) {
    return false;
  }

  // TensorProto represents the content of the tensor in either <type>_val or
  // tensor_content.
  const TensorProto& tensor = node.attr().at("value").tensor();
  typename checkpoint::SaveTypeTraits<T>::RepeatedField* tensor_values =
      checkpoint::MutableTensorProtoData<T>(const_cast<TensorProto*>(&tensor));

  if (!tensor_values->empty() && tensor.has_tensor_shape()) {
    // When tensor_shape is set, theoretically the representation of the data
    // could be compressed. So, before copying values to the returned vector,
    // make sure no compression happens.
    const TensorShapeProto& shape = tensor.tensor_shape();
    if (shape.dim_size() == 1 && shape.dim(0).size() == tensor_values->size()) {
      values->insert(values->end(), tensor_values->begin(),
                     tensor_values->end());
      return true;
    }
  }

  const auto tensor_content_size = tensor.tensor_content().size();
  if (tensor_content_size > 0) {
    CHECK_EQ(0, tensor_content_size % sizeof(T))
        << "tensor_content_size (" << tensor_content_size
        << ") is not a multiple of " << sizeof(T);
    values->resize(tensor_content_size / sizeof(T));
    port::CopyToArray(tensor.tensor_content(),
                      reinterpret_cast<char*>(values->data()));
    return true;
  }

  return false;
}

template <typename T>
bool IsInnerMatrixTranspose(const std::vector<T>& perm) {
  const T n = perm.size();
  if (n < 2) {
    return false;
  }
  for (T i = 0; i < n - 2; ++i) {
    if (perm[i] != i) {
      return false;
    }
  }
  return perm[n - 1] == n - 2 && perm[n - 2] == n - 1;
}

bool IsInnerMatrixTransposeNode(const NodeDef& transpose_node,
                                const NodeMap* node_map) {
  if (transpose_node.op() != "Transpose" &&
      transpose_node.op() != "ConjugateTranspose") {
    return false;
  }
  const NodeDef* perm_node = node_map->GetNode(transpose_node.input(1));
  std::vector<int> perm32;
  if (ValuesFromConstNode(*perm_node, &perm32)) {
    return IsInnerMatrixTranspose(perm32);
  }
  std::vector<int64> perm64;
  if (ValuesFromConstNode(*perm_node, &perm64)) {
    return IsInnerMatrixTranspose(perm64);
  }
  return false;
}

bool MaybeAddControlInput(const string& new_input, NodeDef* node,
                          GraphDef* graph, NodeMap* node_map) {
  bool already_exists = false;
  for (const string& input : node->input()) {
    if (input == new_input || AsControlDependency(input) == new_input) {
      already_exists = true;
      break;
    }
  }
  if (!already_exists) {
    const string ctrl_dep =
        ConstantFolding::AddControlDependency(new_input, graph, node_map);
    node->add_input(ctrl_dep);
    node_map->AddOutput(NodeName(new_input), node->name());
  }
  return !already_exists;
}

int CopyControlInputs(const NodeDef& from, NodeDef* to, GraphDef* graph,
                      NodeMap* node_map) {
  int num_copied = 0;
  for (const string& input : from.input()) {
    if (IsControlInput(input) &&
        MaybeAddControlInput(input, to, graph, node_map)) {
      ++num_copied;
    }
  }
  return num_copied;
}

void SetDataTypeToAttr(DataType dtype, const string& attr_name, NodeDef* node) {
  (*node->mutable_attr())[attr_name].set_type(dtype);
}

void FlipBooleanAttr(const string& attr_name, NodeDef* node) {
  const bool old_value =
      !node->attr().count(attr_name) ? false : node->attr().at(attr_name).b();
  (*node->mutable_attr())[attr_name].set_b(!old_value);
}

string SourceDataTypeAttrName(const NodeDef& node) {
  if (node.op() == "Bitcast") {
    return "T";
  } else if (node.op() == "Cast") {
    return "SrcT";
  } else {
    LOG(FATAL) << "SourceDataTypeAttrName not implemented for op " << node.op();
  }
}

string DestinationDataTypeAttrName(const NodeDef& node) {
  if (node.op() == "Bitcast") {
    return "type";
  } else if (node.op() == "Cast") {
    return "DstT";
  } else {
    LOG(FATAL) << "DestinationDataTypeAttrName not implemented for op "
               << node.op();
  }
}

DataType GetSourceDataType(const NodeDef& node) {
  return GetDataTypeFromAttr(node, SourceDataTypeAttrName(node));
}

DataType GetDestinationDataType(const NodeDef& node) {
  return GetDataTypeFromAttr(node, DestinationDataTypeAttrName(node));
}

void SetSourceDataType(DataType dtype, NodeDef* node) {
  SetDataTypeToAttr(dtype, SourceDataTypeAttrName(*node), node);
}

bool IsNumberType(DataType dtype) { return kNumberTypes.Contains(dtype); }

// Returns whether `reshape` is an identity op. The tensor that `reshape`
// reshapes is the `output_pos`-th output of node `input`.
bool ReshapeIsIdentity(const NodeDef& reshape, const NodeDef& input,
                       const int output_pos,
                       const GraphProperties& graph_properties) {
  const std::vector<OpInfo::TensorProperties>& reshape_props =
      graph_properties.GetOutputProperties(reshape.name());
  const std::vector<OpInfo::TensorProperties>& input_props =
      graph_properties.GetOutputProperties(input.name());
  if (reshape_props.empty() || input_props.empty() ||
      input_props.size() <= output_pos) {
    return false;
  }

  const PartialTensorShape& src_shape = input_props[output_pos].shape();
  const PartialTensorShape& dst_shape = reshape_props[0].shape();

  if (src_shape.unknown_rank() || dst_shape.unknown_rank()) {
    return false;
  }

  if (!dst_shape.IsCompatibleWith(src_shape)) {
    return false;
  }

  // Returns false when src_shape or dst_shape has >=2 dimensions with unknown
  // sizes.
  auto num_unknown_dim_sizes = [](const PartialTensorShape& partial_shape) {
    auto dim_sizes = partial_shape.dim_sizes();
    return std::count_if(dim_sizes.begin(), dim_sizes.end(),
                         [](int dim) { return dim < 0; });
  };
  int src_num_unknown_dim_sizes = num_unknown_dim_sizes(src_shape);
  int dst_num_unknown_dim_sizes = num_unknown_dim_sizes(dst_shape);
  if (src_num_unknown_dim_sizes > 1 || dst_num_unknown_dim_sizes > 1) {
    return false;
  }

  // If dst_num_unknown_dim_sizes != src_num_unknown_dim_sizes we would weaken
  // shape inference in subsequent passes if we removed this reshape.
  if (src_num_unknown_dim_sizes != dst_num_unknown_dim_sizes) {
    return false;
  }

  // Remove the reshape if both are fully defined or partially defined and the
  // unknown or symbolic shape appears on the same dimension, i.e., if
  // IsIdenticalTo returns true.
  return dst_shape.IsIdenticalTo(src_shape);
}

NodeDef* GetTailOfValuePreservingChain(
    const NodeDef& node, const NodeMap& node_map,
    const std::unordered_set<string>& nodes_to_preserve) {
  auto is_value_preserving_non_branching = [&](const NodeDef& node) {
    return IsValuePreserving(node) &&
           NumNonControlOutputs(node, node_map) == 1 &&
           nodes_to_preserve.count(node.name()) == 0;
  };
  return GetTailOfChain(node, node_map, /*follow_control_input=*/false,
                        is_value_preserving_non_branching);
}

// Graph optimizer context extension specific to ArithmeticOptimizer
struct ArithmeticOptimizerContext {
  explicit ArithmeticOptimizerContext(SetVector<NodeDef*>* nodes_to_simplify)
      : nodes_to_simplify(nodes_to_simplify) {}
  SetVector<NodeDef*>* nodes_to_simplify;
};

// Base class for single arithmetic optimization: e.g. Bitcast optimization,
// AddOps optimization, etc...
class ArithmeticOptimizerStage : public GraphOptimizerStage<string> {
 public:
  explicit ArithmeticOptimizerStage(const string& name,
                                    const GraphOptimizerContext& ctx,
                                    const ArithmeticOptimizerContext ctx_ext)
      : GraphOptimizerStage("ArithmeticOptimizer", name, ctx),
        ctx_ext_(ctx_ext) {}
  virtual ~ArithmeticOptimizerStage() = default;

  // Simplification graph rewrite can create additional nodes that are inputs
  // to final simplified node, they can be also added to the arithmetic
  // optimizer queue for further optimization.
  void AddToOptimizationQueue(NodeDef* node) {
    ctx_ext_.nodes_to_simplify->PushBack(node);
  }

  // TODO(ezhulenev): remove this method from ArithmeticOptimizer when all
  // optimizations will be migrated to stages
  void ForwardControlDependencies(
      NodeDef* target_node, const std::vector<const NodeDef*>& src_nodes) {
    for (const auto& src : src_nodes) {
      for (int i = src->input_size() - 1; i >= 0; --i) {
        if (IsControlInput(src->input(i))) {
          *target_node->add_input() = src->input(i);
          ctx_.node_map->AddOutput(NodeName(src->input(i)),
                                   target_node->name());
        } else {
          break;
        }
      }
    }
  }

 private:
  // extened context required for ArithmeticOptimizer
  const ArithmeticOptimizerContext ctx_ext_;
};

// Rewrite a tree of Add/AddN with a single AddN operation, consuming all the
// original inputs of absorbed nodes.
//
// 1) All nodes must have the same device placement.
//
// 2) If All nodes in a Add/AddN subgraph have symbolically equal shape, tree is
//    optimized to a single AddN node.
//
//                AddN_1
//             /    |    \
//          Add_1   z   Add_2       -> AddN(x, y, z, w, q, e)
//          /  \        /  \
//         x    y      w    Add_3
//                          / \
//                         q   e
//
// 3) If some nodes have different shape (it needs to be broadcastable to the
//    shape of a "root), tree is optimized to AddNs for symbolically equal
//    shapes, and a tree of Add ops, that minimize broadcasts.
//
//                AddN_1                                 Add
//             /    |    \                              /  \
//          Add_1   z   Add_2       ->               Add    w
//          /  \        /  \                        /   \
//         x    y      w    Add_3      AddN(x, y, q, e)  z
//                          / \
//                         q   e
class AddOpsRewriteStage : public ArithmeticOptimizerStage {
 public:
  explicit AddOpsRewriteStage(const GraphOptimizerContext& ctx,
                              const ArithmeticOptimizerContext& ctx_ext)
      : ArithmeticOptimizerStage("AddOpsRewrite", ctx, ctx_ext),
        rewritten_nodes_() {}

  ~AddOpsRewriteStage() override = default;

  // Check if a node can become a root of AddOpsGroup
  bool IsSupported(const NodeDef* node) const override {
    // check basic preconditions
    if (!IsRewritable(node)) {
      return false;
    }

    // shape must be symbolically defined and all inputs compatible with it
    OpInfo::TensorProperties properties;
    Status has_properties = GetTensorProperties(node->name(), &properties);
    return has_properties.ok() && ShapeIsSymbolicallyDefined(properties) &&
           HasAllInputsOfBroadcastableShape(*node, properties);
  }

  Status TrySimplify(NodeDef* node, string* simplified_node_name) override {
    CHECK(IsSupported(node));
    AddOpsGroup group;
    TF_RETURN_IF_ERROR(CreateAddOpsGroup(node, &group));

    if (!group.absorbed_nodes.empty()) {
      *simplified_node_name = RewriteAddOpsGroup(group);
    }

    return Status::OK();
  }

 private:
  // Input name with a statically inferred shape from GraphProperties
  struct InputAndShape {
    InputAndShape(const string& input, const TensorShapeProto& shape)
        : input(input), shape(shape) {}
    string input;
    TensorShapeProto shape;
  };

  // Holds together an add ops subgraph that we want to rewrite together.
  //
  // For the graph above the AddOpsGroup will be:
  //   root_node: AddN_1
  //   absorbed_nodes: [Add_1, Add_2]
  //   input_nodes: [x, y, z, w, q, e]
  struct AddOpsGroup {
    const NodeDef* root_node;
    TensorShapeProto root_shape;
    // Add/AddN operations below the root level that were absorbed by this group
    std::vector<NodeDef*> absorbed_nodes;
    // Inputs of absorbed nodes that will be forwarded to optimized AddN ops
    std::vector<InputAndShape> inputs;
  };

  // Check if all inputs can be broadcasted to the same shape
  bool HasAllInputsOfBroadcastableShape(
      const NodeDef& node, const OpInfo::TensorProperties& properties) const {
    const AddOpsRewriteStage* self = this;
    return std::all_of(
        node.input().begin(), node.input().end(),
        [self, &properties](const string& input) {
          OpInfo::TensorProperties input_properties;
          Status has_input_properties =
              self->GetTensorProperties(input, &input_properties);
          return has_input_properties.ok() &&
                 ShapesBroadcastable(properties, input_properties);
        });
  }

  // TODO(ezhulenev): use GraphRewriter?
  bool IsDrivenByControlDependency(const NodeDef& node) const {
    return std::any_of(node.input().begin(), node.input().end(),
                       IsControlInput);
  }

  // TODO(ezhulenev): use GraphRewriter?
  bool DrivesControlDependency(const NodeDef& node) const {
    int position;
    for (const NodeDef* output : ctx_.node_map->GetOutputs(node.name())) {
      for (int i = 0; i < output->input_size(); ++i) {
        auto input = output->input(i);
        string name = ParseNodeName(input, &position);
        if (name == node.name() && /*control input*/ position < 0) {
          return true;
        }
      }
    }
    return false;
  }

  // Check if a node can be absorbed by current AddOpsGroup
  bool IsAbsorbableByAddOpsGroup(const string& name, const AddOpsGroup& group) {
    NodeDef* node;
    Status node_status = GetInputNode(name, &node);
    if (!node_status.ok()) {
      return false;
    }
    // check basic preconditions
    if (!IsRewritable(node)) {
      return false;
    }
    // with a single output data consumer (presumably if we reach this node from
    // previously absorbed or a root node, it means that this node is not used
    // as an input to any other op, outside of the group)
    if (NumNonControlDataOutputs(*node, *ctx_.node_map) != 1) {
      return false;
    }
    // must be on the same device as a root node
    if (node->device() != group.root_node->device()) {
      return false;
    }
    // All input shapes must be broadcastable to the node shape
    OpInfo::TensorProperties properties;
    Status has_properties = GetTensorProperties(name, &properties);
    return has_properties.ok() &&
           HasAllInputsOfBroadcastableShape(*node, properties);
  }

  // Node requirements both for a root node and an absorbed node
  bool IsRewritable(const NodeDef* node) const {
    // only Add or AddN can be a root node
    // TODO(ezhulenev): check if AccumulateNV2 can be supported too
    if (!IsAdd(*node) && !IsAddN(*node)) {
      return false;
    }
    // it must not be in a preserve set
    if (ctx_.nodes_to_preserve->find(node->name()) !=
        ctx_.nodes_to_preserve->end()) {
      return false;
    }
    // it must not be a node created or absorbed by previous iteration
    if (rewritten_nodes_.find(node->name()) != rewritten_nodes_.end()) {
      return false;
    }
    // it must not be created by this stage at any of previous optimization runs
    if (str_util::StrContains(node->name(), stage_name_)) {
      return false;
    }
    // should not drive or be driven by control dependency
    // TODO(ezhulenev): relax this condition for root node
    return !(IsDrivenByControlDependency(*node) ||
             DrivesControlDependency(*node));
  }

  // Create an AddOpsGroup with a root in a given node
  Status CreateAddOpsGroup(const NodeDef* root_node, AddOpsGroup* group) {
    OpInfo::TensorProperties root_node_output_properties;
    TF_RETURN_IF_ERROR(
        GetTensorProperties(root_node->name(), &root_node_output_properties));

    group->root_node = root_node;
    group->root_shape = root_node_output_properties.shape();

    group->absorbed_nodes.reserve(root_node->input_size());
    for (int i = 0; i < root_node->input_size(); ++i) {
      const string& input_i = root_node->input(i);
      if (!IsControlInput(input_i)) {
        TF_RETURN_IF_ERROR(AbsorbInputByAddOpsGroup(input_i, group));
      }
    }

    return Status::OK();
  }

  Status AbsorbInputByAddOpsGroup(const string& input, AddOpsGroup* group) {
    NodeDef* node;
    TF_RETURN_IF_ERROR(GetInputNode(input, &node));

    if (IsAbsorbableByAddOpsGroup(input, *group)) {
      group->absorbed_nodes.push_back(node);
      for (int i = 0; i < node->input_size(); ++i) {
        const string& input_i = node->input(i);
        if (!IsControlInput(input)) {
          TF_RETURN_IF_ERROR(AbsorbInputByAddOpsGroup(input_i, group));
        }
      }
    } else {
      // If node can't be absorbed, add it to AddOpsGroup input
      OpInfo::TensorProperties properties;
      TF_RETURN_IF_ERROR(GetTensorProperties(input, &properties));
      group->inputs.emplace_back(input, properties.shape());
    }
    return Status::OK();
  }

  // Rewrite an add ops group into a single AddN if all input shapes are
  // symbolically equal. If not, create AddN for equal shapes first, and then
  // build an Add tree, minimizing the cost of broadcasts.
  string RewriteAddOpsGroup(const AddOpsGroup& group) {
    // all new nodes will be placed under the scope of a root node
    auto root_scope_and_name = ParseNodeScopeAndName(group.root_node->name());

    auto shape_sig = [](const TensorShapeProto& shape) {
      string name = strings::StrCat("r:", shape.dim_size(), ":d");
      for (int i = 0; i < shape.dim_size(); ++i)
        strings::StrAppend(&name, ":", shape.dim(i).size());
      return name;
    };

    // Find what shapes are present in the inputs of absorbed nodes
    std::unordered_map<string, std::vector<InputAndShape>> shape_sig_to_inputs;
    for (const auto& input : group.inputs) {
      shape_sig_to_inputs[shape_sig(input.shape)].push_back(input);
    }

    // Collect all the shapes from representative elements
    std::vector<TensorShapeProto> shapes;
    shapes.reserve(shape_sig_to_inputs.size());
    for (const auto& el : shape_sig_to_inputs)
      shapes.push_back(el.second[0].shape);

    // If all inputs have the same shape, rewrite whole group with a single AddN
    if (shapes.size() == 1) {
      string node_name = OptimizedNodeName(root_scope_and_name);
      AddInputsOfSymbolicallyEqualShape(*group.root_node, node_name,
                                        group.inputs);
      // keep track of nodes that were created or absorbed as a part of rewrite
      rewritten_nodes_.insert(node_name);
      return node_name;
    }

    // For inputs of different shapes:
    // 1. Rewrite inputs of the same shape using AddN (leaf nodes)
    // 2. Build a tree of Add nodes, minimizing cost of broadcast
    std::sort(shapes.begin(), shapes.end(),
              [](const TensorShapeProto& left, const TensorShapeProto& right) {
                return CompareSymbolicallyShapedTensorSizes(left, right);
              });

    // optimized name for leaf AddN nodes
    auto leaf_node_name = [&root_scope_and_name, this](int i) {
      return OptimizedNodeName(root_scope_and_name,
                               strings::StrCat("Leaf_", i));
    };
    // optimized name for internal nodes of a tree built up from AddN leaves
    auto internal_node_name = [&root_scope_and_name, this](int i) {
      return OptimizedNodeName(root_scope_and_name,
                               strings::StrCat("Internal_", i));
    };

    // Add/AddN nodes that must be added to the tree
    std::deque<InputAndShape> add_ops;

    // Prepare leaf AddN nodes for inputs of equal shape
    for (int i = 0; i < shapes.size(); ++i) {
      const auto node_name = leaf_node_name(i);
      const auto& inputs = shape_sig_to_inputs[shape_sig(shapes[i])];
      add_ops.push_back(AddInputsOfSymbolicallyEqualShape(*group.root_node,
                                                          node_name, inputs));
    }

    // Build up a tree of Add ops
    int internal_nodes = 0;
    do {
      const InputAndShape lhs = add_ops.front();
      add_ops.pop_front();
      const InputAndShape rhs = add_ops.front();
      add_ops.pop_front();
      string name = add_ops.empty() ? OptimizedNodeName(root_scope_and_name)
                                    : internal_node_name(internal_nodes++);
      InputAndShape add = AddAggregatedInputs(*group.root_node, name, lhs, rhs);
      add_ops.push_front(add);
    } while (add_ops.size() > 1);

    InputAndShape optimized_root_node = add_ops.front();
    return optimized_root_node.input;
  }

  // Add 'AddN' node to aggregate inputs of symbolically equal shape
  InputAndShape AddInputsOfSymbolicallyEqualShape(
      const NodeDef& root_node, const string& node_name,
      const std::vector<InputAndShape>& inputs) {
    CHECK(!inputs.empty()) << "Inputs must be non-empty";

    // Do not create redundant AddN nodes
    if (inputs.size() == 1) {
      return inputs[0];
    }

    // get shape from representative element
    auto shape = inputs[0].shape;

    // copy attributes from a root node
    DataType dtype = root_node.attr().at("T").type();

    // add new AddN node
    NodeDef* node = AddEmptyNode(node_name);
    node->set_op("AddN");
    node->set_device(root_node.device());
    (*node->mutable_attr())["T"].set_type(dtype);
    (*node->mutable_attr())["N"].set_i(inputs.size());

    for (const auto& inputAndShape : inputs) {
      ctx_.node_map->AddOutput(inputAndShape.input, node_name);
      node->add_input(inputAndShape.input);
    }

    rewritten_nodes_.insert(node_name);
    return InputAndShape(node_name, shape);
  }

  // Add a single 'Add' node to sum two inputs
  InputAndShape AddAggregatedInputs(const NodeDef& root_node,
                                    const string& node_name,
                                    const InputAndShape& left,
                                    const InputAndShape& right) {
    // copy attributes from a root node
    DataType dtype = root_node.attr().at("T").type();

    // add new Add node
    NodeDef* node = AddEmptyNode(node_name);
    node->set_op("Add");
    node->set_device(root_node.device());
    (*node->mutable_attr())["T"].set_type(dtype);

    ctx_.node_map->AddOutput(left.input, node_name);
    ctx_.node_map->AddOutput(right.input, node_name);

    node->add_input(left.input);
    node->add_input(right.input);

    rewritten_nodes_.insert(node_name);
    return InputAndShape(
        node_name, TensorShapeProto());  // shape is not important at this point
  }

  // keep nodes that were added or absorbed as a part of AddOpsGroup rewrite
  std::unordered_set<string> rewritten_nodes_;
};

// Use the commutativity and (left- and right-) distributive property of
// multiplication over addition to hoist common factors out of aggregate nodes
// where all the inputs are Mul nodes. This pattern occurs frequently in
// regularization terms for the gradients during training.
//
// For example, we can rewrite an expression of the form:
//   AddN(Mul(x, y1), Mul(y2, x), Mul(x, y3), ... Mul(x, yn))
// to the following:
//   Mul(x, AddN(y1, y2, y3, ... yn))
class HoistCommonFactorOutOfAggregation : public ArithmeticOptimizerStage {
 public:
  explicit HoistCommonFactorOutOfAggregation(
      const GraphOptimizerContext& ctx,
      const ArithmeticOptimizerContext& ctx_ext)
      : ArithmeticOptimizerStage("HoistCommonFactor", ctx, ctx_ext) {}
  ~HoistCommonFactorOutOfAggregation() override = default;

  bool IsSupported(const NodeDef* node) const override {
    return IsAggregate(*node) && NumNonControlInputs(*node) > 1 &&
           !IsRewritten(node);
  }

  Status TrySimplify(NodeDef* node, string* simplified_node_name) override {
    CHECK(IsSupported(node));

    std::set<string> common_factors;
    std::vector<string> ctrl_deps;
    TF_RETURN_IF_ERROR(GetCommonFactors(node, &common_factors, &ctrl_deps));

    if (common_factors.size() == 1) {
      const string& common_factor = *common_factors.begin();

      // Gather up the non-shared factors
      bool shapes_match = true;
      std::vector<string> unique_factors;
      TF_RETURN_IF_ERROR(GetUniqueFactors(node, common_factor, &shapes_match,
                                          &unique_factors));

      if (shapes_match) {
        NodeDef* input_0;
        TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &input_0));

        // Use a copy of the first Mul node for the outer multiplication.
        NodeDef* new_mul_node = AddCopyNode(OuterMulNodeName(node), input_0);
        // And a copy of aggregation node as one of the inner operands
        NodeDef* new_add_node = AddCopyNode(InnerAddNodeName(node), node);

        new_mul_node->set_device(node->device());
        new_mul_node->set_input(0, common_factor);
        new_mul_node->set_input(1, new_add_node->name());

        ctx_.node_map->AddOutput(common_factor, new_mul_node->name());
        ctx_.node_map->AddOutput(new_add_node->name(), new_mul_node->name());

        // Hoist non-shared factors up into the new AddN node.
        for (int i = 0; i < unique_factors.size(); ++i) {
          const string& unique_factor_i = unique_factors[i];
          new_add_node->set_input(i, unique_factor_i);
          ctx_.node_map->AddOutput(unique_factor_i, new_add_node->name());
        }

        // Add control deps on add node
        for (const string& ctrl_dep : ctrl_deps) {
          *new_add_node->add_input() = ctrl_dep;
          ctx_.node_map->AddOutput(NodeName(ctrl_dep), new_add_node->name());
        }

        // optimize new inner aggregation node
        AddToOptimizationQueue(new_add_node);
        // do not optimize the same node twice
        rewritten_nodes_.insert(node->name());
        *simplified_node_name = new_mul_node->name();
      }
    }
    return Status::OK();
  }

 private:
  // Get a name for new outer Mul node
  string OuterMulNodeName(const NodeDef* node) const {
    auto scope_and_name = ParseNodeScopeAndName(node->name());
    return OptimizedNodeName(scope_and_name, "Mul");
  }

  // Get a name new inner Add node
  string InnerAddNodeName(const NodeDef* node) const {
    auto scope_and_name = ParseNodeScopeAndName(node->name());
    return OptimizedNodeName(scope_and_name, "Add");
  }

  // Determine the set of common factors if the input nodes are all Mul nodes.
  Status GetCommonFactors(const NodeDef* node, std::set<string>* common_factors,
                          std::vector<string>* ctrl_deps) const {
    CHECK(common_factors->empty());

    for (int i = 0; i < node->input_size(); ++i) {
      if (i > 0 && common_factors->empty()) break;
      if (IsControlInput(node->input(i))) {
        ctrl_deps->push_back(node->input(i));
        continue;
      }
      NodeDef* input;
      TF_RETURN_IF_ERROR(GetInputNode(node->input(i), &input));

      if (!IsMul(*input)) {
        common_factors->clear();
        break;
      }

      std::set<string> factors_i{input->input(0), input->input(1)};
      if (i == 0) {
        std::swap(*common_factors, factors_i);
      } else {
        std::set<string> intersection;
        std::set_intersection(
            factors_i.begin(), factors_i.end(), common_factors->begin(),
            common_factors->end(),
            std::inserter(intersection, intersection.begin()));
        std::swap(*common_factors, intersection);
      }
      for (int i = 2; i < input->input_size(); ++i) {
        ctrl_deps->push_back(input->input(i));
      }
    }
    return Status::OK();
  }

  // Gather up the non-shared factors (the y's in the example).
  // Unless the aggregation is Add, we have to make sure that all the y's
  // have the same shape since the other aggregation ops do not support
  // broadcasting.
  Status GetUniqueFactors(const NodeDef* node, const string& common_factor,
                          bool* shapes_match,
                          std::vector<string>* unique_factors) const {
    *shapes_match = true;
    unique_factors->reserve(node->input_size());

    for (int i = 0; i < node->input_size() && shapes_match; ++i) {
      const string& input = node->input(i);
      if (IsControlInput(input)) {
        break;
      }
      NodeDef* mul_node;
      TF_RETURN_IF_ERROR(GetInputNode(input, &mul_node));
      const int unique_factor_index =
          mul_node->input(0) == common_factor ? 1 : 0;
      unique_factors->push_back(mul_node->input(unique_factor_index));
      if (i > 0 && !IsAdd(*node)) {
        OpInfo::TensorProperties lhs;
        OpInfo::TensorProperties rhs;
        TF_RETURN_IF_ERROR(GetTensorProperties(unique_factors->front(), &lhs));
        TF_RETURN_IF_ERROR(GetTensorProperties(unique_factors->back(), &rhs));
        *shapes_match = ShapesSymbolicallyEqual(lhs, rhs);
      }
    }
    return Status::OK();
  }

  bool IsRewritten(const NodeDef* node) const {
    // if graph rewrite happens in multiple passes without graph pruning between
    // them, it's possible that rewritten node already exists in a graph
    return rewritten_nodes_.find(node->name()) != rewritten_nodes_.end() ||
           ctx_.node_map->NodeExists(OuterMulNodeName(node));
  }

  // keep names of the nodes that were optimized by this stage
  std::unordered_set<string> rewritten_nodes_;
};

// Removes inverse transpose nodes
class RemoveIdentityTranspose : public ArithmeticOptimizerStage {
 public:
  explicit RemoveIdentityTranspose(const GraphOptimizerContext& ctx,
                                   const ArithmeticOptimizerContext& ctx_ext)
      : ArithmeticOptimizerStage("RemoveIdentityTranspose", ctx, ctx_ext) {}
  ~RemoveIdentityTranspose() override = default;

  bool IsSupported(const NodeDef* node) const override {
    return IsTranspose(*node) || IsConjugateTranspose(*node);
  }

  // TODO(rmlarsen): Forward control dependencies on the bypassed
  // transpose nodes.
  Status TrySimplify(NodeDef* node, string* simplified_node_name) override {
    CHECK(IsSupported(node));

    NodeDef* input;
    TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &input));
    NodeDef* node_perm;
    TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &node_perm));
    if (!IsConstant(*node_perm)) {
      return Status::OK();
    }
    std::vector<int64> node_perm_values;
    TF_RETURN_IF_ERROR(GetPermutation(*node_perm, &node_perm_values));
    if (input->op() == node->op()) {
      // Remove pairs of transposes that cancel each other.
      NodeDef* input_perm;
      TF_RETURN_IF_ERROR(GetInputNode(input->input(1), &input_perm));
      if (!IsConstant(*input_perm)) {
        return Status::OK();
      }
      std::vector<int64> input_perm_values;
      TF_RETURN_IF_ERROR(GetPermutation(*input_perm, &input_perm_values));
      if (AreInversePermutations(node_perm_values, input_perm_values)) {
        *simplified_node_name = input->input(0);
      }
    } else {
      // Remove simple identity transposes.
      if (IsIdentityPermutation(node_perm_values)) {
        *simplified_node_name = node->input(0);
      }
    }
    return Status::OK();
  }

 private:
  Status GetPermutation(const NodeDef& node_perm,
                        std::vector<int64>* perm64) const {
    std::vector<int> perm32;
    if (ValuesFromConstNode(node_perm, &perm32)) {
      perm64->reserve(perm32.size());
      for (int val : perm32) {
        perm64->push_back(static_cast<int64>(val));
      }
      return Status::OK();
    }
    if (ValuesFromConstNode(node_perm, perm64)) {
      return Status::OK();
    }
    return errors::InvalidArgument("Couldn't extract permutation from ",
                                   node_perm.name());
  }

  bool AreInversePermutations(const std::vector<int64>& a,
                              const std::vector<int64>& b) {
    if (a.size() != b.size()) {
      return false;
    }
    for (int i = 0; i < a.size(); ++i) {
      if (a[b[i]] != i) {
        return false;
      }
    }
    return true;
  }

  bool IsIdentityPermutation(const std::vector<int64>& perm) {
    for (int64 i = 0; i < perm.size(); ++i) {
      if (i != perm[i]) {
        return false;
      }
    }
    return true;
  }
};

// Remove redundant Bitcasts.
// 1) Remove Bitcast whose source type and destination type are equal
// 2) Rewrite Bitcast(Bitcast(x, type1), type2) => Bitcast(x, type2)
class RemoveRedundantBitcastStage : public ArithmeticOptimizerStage {
 public:
  explicit RemoveRedundantBitcastStage(
      const GraphOptimizerContext& ctx,
      const ArithmeticOptimizerContext& ctx_ext)
      : ArithmeticOptimizerStage("RemoveRedundantBitcast", ctx, ctx_ext) {}
  ~RemoveRedundantBitcastStage() override = default;

  bool IsSupported(const NodeDef* node) const override {
    return IsBitcast(*node);
  }

  Status TrySimplify(NodeDef* node, string* simplified_node_name) override {
    CHECK(IsSupported(node));

    // Bypass Bitcast whose source type and destination type are equal.
    if (GetSourceDataType(*node) == GetDestinationDataType(*node)) {
      *simplified_node_name = node->input(0);
      return Status::OK();
    }

    NodeDef* bitcast;
    TF_RETURN_IF_ERROR(GetInputNode(node->name(), &bitcast));
    NodeDef* operand;
    TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &operand));

    if (IsBitcast(*operand)) {
      // Bitcast(Bitcast(x, type1), type2) => Bitcast(x, type2)
      bitcast->set_input(0, operand->input(0));
      SetSourceDataType(GetSourceDataType(*operand), bitcast);
      ctx_.node_map->UpdateInput(bitcast->name(), bitcast->input(0),
                                 operand->input(0));
      AddToOptimizationQueue(bitcast);
      *simplified_node_name = bitcast->name();
    }

    return Status::OK();
  }
};

// Remove Casts whose source type and destination type are equal.
class RemoveRedundantCastStage : public ArithmeticOptimizerStage {
 public:
  explicit RemoveRedundantCastStage(const GraphOptimizerContext& ctx,
                                    const ArithmeticOptimizerContext& ctx_ext)
      : ArithmeticOptimizerStage("RemoveRedundantCast", ctx, ctx_ext) {}
  ~RemoveRedundantCastStage() override = default;

  bool IsSupported(const NodeDef* node) const override { return IsCast(*node); }

  Status TrySimplify(NodeDef* node, string* simplified_node_name) override {
    CHECK(IsSupported(node));
    // Bypass Cast whose source type and destination type are equal.
    if (GetSourceDataType(*node) == GetDestinationDataType(*node)) {
      *simplified_node_name = node->input(0);
    }
    return Status::OK();
  }
};

class RemoveNegationStage : public ArithmeticOptimizerStage {
 public:
  explicit RemoveNegationStage(const GraphOptimizerContext& ctx,
                               const ArithmeticOptimizerContext& ctx_ext)
      : ArithmeticOptimizerStage("RemoveNegation", ctx, ctx_ext) {}
  ~RemoveNegationStage() override = default;

  bool IsSupported(const NodeDef* node) const override {
    return IsAdd(*node) || IsSub(*node);
  }

  Status TrySimplify(NodeDef* node, string* simplified_node_name) override {
    const string node_name = node->name();
    NodeDef* x;
    NodeDef* y;
    TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &x));
    TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &y));
    bool updated = false;
    if (IsAdd(*node)) {
      if (IsNeg(*x)) {
        // (-a) + b = b - a
        node->set_op("Sub");
        node->mutable_input()->SwapElements(0, 1);
        node->set_input(1, x->input(0));
        node->add_input(AsControlDependency(x->name()));
        ctx_.node_map->AddOutput(NodeName(x->input(0)), node_name);
        updated = true;
      } else if (IsNeg(*y)) {
        // a + (-b) = a - b
        node->set_op("Sub");
        node->set_input(1, y->input(0));
        node->add_input(AsControlDependency(y->name()));
        ctx_.node_map->AddOutput(NodeName(y->input(0)), node_name);
        updated = true;
      }
    } else if (IsSub(*node)) {
      if (IsNeg(*y)) {
        // a - (-b) = a + b
        node->set_op("Add");
        node->set_input(1, y->input(0));
        node->add_input(AsControlDependency(y->name()));
        ctx_.node_map->AddOutput(NodeName(y->input(0)), node_name);
        updated = true;
      }
    }
    if (updated) {
      AddToOptimizationQueue(node);
    }
    return Status::OK();
  }
};

}  // namespace

class UniqueNodes {
 public:
  NodeDef* FindOrAddRepresentative(NodeDef* node) {
    std::size_t sig = ComputeSignature(*node);
    std::vector<NodeDef*>& candidates = rep_[sig];
    for (auto& candidate : candidates) {
      if (SameNode(*candidate, *node)) {
        return candidate;
      }
    }
    candidates.push_back(node);
    return node;
  }

 private:
  std::size_t ComputeSignature(const NodeDef& node) const;
  bool SameNode(const NodeDef& node1, const NodeDef& node2) const;

  std::unordered_map<std::size_t, std::vector<NodeDef*>> rep_;
};

std::size_t UniqueNodes::ComputeSignature(const NodeDef& node) const {
  std::size_t h = std::hash<string>{}(node.op());
  h ^= std::hash<string>{}(node.device());
  for (const auto& input : node.input()) {
    int pos;
    string node_name = ParseNodeName(input, &pos);
    h ^= std::hash<string>{}(node_name);
    h ^= static_cast<std::size_t>(pos);
  }
  for (const auto& attr : node.attr()) {
    h ^= std::hash<string>{}(attr.first);
    string tmp;
    attr.second.AppendToString(&tmp);
    h ^= std::hash<string>{}(tmp);
  }
  return h;
}

bool UniqueNodes::SameNode(const NodeDef& node1, const NodeDef& node2) const {
  if (node1.op() != node2.op()) {
    return false;
  }
  if (node1.device() != node2.device()) {
    return false;
  }
  if (node1.input_size() != node2.input_size()) {
    return false;
  }
  if (node1.attr_size() != node2.attr_size()) {
    return false;
  }

  // Compare inputs.
  if (IsCommutative(node1)) {
    std::vector<string> inputs1(node1.input().begin(), node1.input().end());
    std::vector<string> inputs2(node2.input().begin(), node2.input().end());
    std::sort(inputs1.begin(), inputs1.end());
    std::sort(inputs2.begin(), inputs2.end());
    return inputs1 == inputs2;
  } else {
    std::vector<string> regular_inputs1;
    std::vector<string> regular_inputs2;
    std::vector<string> ctrl_inputs1;
    std::vector<string> ctrl_inputs2;
    for (int index = 0; index < node1.input_size(); ++index) {
      if (IsControlInput(node1.input(index))) {
        ctrl_inputs1.push_back(node1.input(index));
        ctrl_inputs2.push_back(node2.input(index));
      } else {
        regular_inputs1.push_back(node1.input(index));
        regular_inputs2.push_back(node2.input(index));
      }
    }
    if (regular_inputs1 != regular_inputs2) {
      return false;
    }
    std::sort(ctrl_inputs1.begin(), ctrl_inputs1.end());
    std::sort(ctrl_inputs2.begin(), ctrl_inputs2.end());
    if (ctrl_inputs1 != ctrl_inputs2) {
      return false;
    }
  }

  // Compare attributes.
  if (node1.attr().size() != node2.attr().size()) {
    return false;
  }
  for (const auto& attr1 : node1.attr()) {
    auto it = node2.attr().find(attr1.first);
    if (it == node2.attr().end()) {
      return false;
    }
    const auto& attr2 = *it;
    string val1;
    attr1.second.AppendToString(&val1);
    string val2;
    attr2.second.AppendToString(&val2);
    if (val1 != val2) {
      return false;
    }
  }

  return true;
}

NodeDef* ArithmeticOptimizer::AddNode(const NodeDef& node, StringPiece suffix,
                                      bool copy_node) {
  return AddNode(OptimizedNodeName(node, suffix), copy_node ? &node : nullptr);
}

NodeDef* ArithmeticOptimizer::AddNode(const string& name,
                                      const NodeDef* node_to_copy) {
  NodeDef* new_node = optimized_graph_->add_node();
  node_map_->AddNode(NodeName(name), new_node);
  if (node_to_copy != nullptr) {
    *new_node = *node_to_copy;
  }
  new_node->set_name(name);
  return new_node;
}

string ArithmeticOptimizer::OptimizedNodeName(const NodeDef& node,
                                              StringPiece suffix) const {
  return AddPrefixToNodeName(strings::StrCat(node.name(), "_", suffix),
                             kArithmeticOptimizer);
}

bool ArithmeticOptimizer::OptimizedNodeExists(const NodeDef& node,
                                              StringPiece suffix) const {
  return node_map_->NodeExists(OptimizedNodeName(node, suffix));
}

namespace {

bool FeedsInPlaceOp(const SimpleGraphView& graph_view, const NodeDef& node) {
  const std::unordered_set<string> op_types_to_traverse = {
      node.op(),    "Identity", "IdentityN", "Reshape",
      "ExpandDims", "Enter",    "Switch",    "Merge"};
  int node_idx = graph_view.index(node.name());
  std::set<int> node_fanout;
  graph_view.DepthFirstSearch(op_types_to_traverse, node_idx, &node_fanout);
  for (int fanout : node_fanout) {
    if (ModifiesInputsInPlace(graph_view.graph()->node(fanout))) {
      return true;
    }
  }
  return false;
}

}  // namespace

bool ArithmeticOptimizer::CanDedup(const NodeDef& node) const {
  if (nodes_to_preserve_.find(node.name()) != nodes_to_preserve_.end()) {
    return false;
  }
  if (IsEnter(node) || IsExit(node)) {
    return false;
  }
  if (node.device().find("SPU") != string::npos) {
    return false;
  }
  // Workaround for Assert mistakenly being labeled as stateful.
  if (IsAssert(node)) {
    return true;
  }
  return IsFreeOfSideEffect(node);
}

void ArithmeticOptimizer::DedupComputations() {
  bool stop = true;
  SimpleGraphView graph_view;
  if (!graph_view.Initialize(*optimized_graph_).ok()) {
    LOG(WARNING) << "Failed to build SimpleGraphView.";
    return;
  }
  std::set<int> duplicates;
  do {
    stop = true;
    UniqueNodes nodes;
    for (int i = 0; i < optimized_graph_->node_size(); ++i) {
      if (duplicates.find(i) != duplicates.end()) {
        continue;
      }
      NodeDef* node = optimized_graph_->mutable_node(i);
      if (!CanDedup(*node)) {
        continue;
      }
      NodeDef* rep = nodes.FindOrAddRepresentative(node);
      if (rep == node) {
        continue;
      }
      // If either node feeds an inplace op, deduping them may cause data races.
      // For example: If we dedup nodes initializing two independent inplace
      // accumulations, they will write to the same buffer, clobbering each
      // other's results.
      if (FeedsInPlaceOp(graph_view, *rep) ||
          FeedsInPlaceOp(graph_view, *node)) {
        continue;
      }
      const std::set<NodeDef*>& fanouts = node_map_->GetOutputs(node->name());
      for (NodeDef* fanout : fanouts) {
        for (int i = 0; i < fanout->input_size(); ++i) {
          string* name = fanout->mutable_input(i);
          int position;
          const string nodename = ParseNodeName(*name, &position);
          if (nodename == node->name()) {
            // Update name in-place.
            if (position > 0) {
              *name = StrCat(rep->name(), ":", position);
            } else if (position == 0) {
              *name = rep->name();
            } else {
              *name = StrCat("^", rep->name());
            }
            node_map_->AddOutput(rep->name(), fanout->name());
          }
        }
      }
      duplicates.insert(i);
      stop = false;
    }
  } while (!stop);

  // Delete duplicates
  if (fetch_nodes_known_ && !duplicates.empty()) {
    int last = optimized_graph_->node_size() - 1;
    for (auto it = duplicates.rbegin(); it != duplicates.rend(); ++it) {
      int index = *it;
      optimized_graph_->mutable_node()->SwapElements(index, last);
      last--;
    }
    optimized_graph_->mutable_node()->DeleteSubrange(last + 1,
                                                     duplicates.size());
    // Rebuild the NodeMap which was invalidated by the node  swapping above.
    node_map_.reset(new NodeMap(optimized_graph_));
  }
}

void ArithmeticOptimizer::ForwardControlDependencies(
    NodeDef* target_node, const std::vector<const NodeDef*>& src_nodes) {
  for (const auto& src : src_nodes) {
    for (int i = src->input_size() - 1; i >= 0; --i) {
      if (IsControlInput(src->input(i))) {
        *target_node->add_input() = src->input(i);
        node_map_->AddOutput(NodeName(src->input(i)), target_node->name());
      } else {
        break;
      }
    }
  }
}

// TODO(ezhulenev): extract each individual simplify rewrite into separate
// ArithmeticOptimizerStage
string ArithmeticOptimizer::TrySimplifyAndReplaceUses(
    const NodeDef* node, SetVector<NodeDef*>* nodes_to_simplify) {
  // Remove involutions applied twice.
  if (IsInvolution(*node)) {
    // An involution is an element-wise function f(x) that is its own inverse,
    // i.e. f(f(x)) = x. If we can find a chain of ops
    //   f->op1->op2->...opn->f
    // where op1 through opn preserve the values of their inputs, we can remove
    // the two instances of the involution from the graph, since they cancel
    // each other.
    NodeDef* tail =
        GetTailOfValuePreservingChain(*node, *node_map_, nodes_to_preserve_);
    NodeDef* involution = node_map_->GetNode(tail->input(0));
    if (involution->op() == node->op()) {
      // Skip both *node and *involution since they cancel each other.
      if (tail == node) {
        // The two nodes to eliminate are adjacent.
        return involution->input(0);
      } else {
        tail->set_input(0, involution->input(0));
        node_map_->UpdateInput(tail->name(), involution->name(),
                               involution->input(0));
        return node->input(0);
      }
    }
  }

  if (node->op() == "Reshape") {
    //   Reshape
    //      ^
    //      |
    //   Reshape
    //      ^
    //      |
    //    input
    //
    // becomes
    //
    //   Reshape <-+
    //             |
    //   Reshape   |
    //      ^      |
    //      |      |
    //    input ---+
    NodeDef* reshape = const_cast<NodeDef*>(node);
    int output_pos = 0;
    string input_node_name = ParseNodeName(reshape->input(0), &output_pos);
    const NodeDef* input = node_map_->GetNode(input_node_name);
    if (input->op() == "Reshape" && !HasControlInputs(*input)) {
      reshape->set_input(0, input->input(0));
      node_map_->UpdateInput(reshape->name(), input->name(), input->input(0));
      nodes_to_simplify->PushBack(reshape);
      return reshape->name();
    }

    // If the reshape is a no-op, forward its input to its consumers, unless it
    // anchors a control dependency since we want to make sure that control
    // dependency is triggered.
    if (ReshapeIsIdentity(*reshape, *input, output_pos, *graph_properties_) &&
        !HasControlInputs(*reshape)) {
      return reshape->input(0);
    }
  }

  if (node->op() == "Transpose") {
    // Reorder Cast and Transpose if beneficial.
    //
    // A common pattern after the layout optimizer is casting an uint8 NHWC
    // image to float before transposing it to NCHW. It is beneficial to reorder
    // the cast and the transpose to make the transpose process smaller amount
    // of data. This optimization converts
    //   Transpose(Cast(image, dst_type), perm)
    // to
    //   Cast(Transpose(image, perm), dst_type)
    // when sizeof(image.type) < sizeof(dst_type).
    //
    // TODO(jingyue): This optimization can be generalized to a cast followed by
    // a chain of ops that merely reorder elements (e.g. Reshape and
    // DepthToSpace).
    const NodeDef* transpose = node;
    string dontcare;
    string device;
    // This optimization can be dangerous on devices other than CPU and GPU. The
    // transpose might not be implemented for image.type, or might be slower
    // with image.type than with dst_type.
    if (DeviceNameUtils::SplitDeviceName(transpose->device(), &dontcare,
                                         &device) &&
        (str_util::StrContains(device, DEVICE_CPU) ||
         str_util::StrContains(device, DEVICE_GPU))) {
      const NodeDef* cast = node_map_->GetNode(transpose->input(0));
      if (cast->op() == "Cast") {
        const NodeDef* input = node_map_->GetNode(cast->input(0));
        const DataType src_type = GetSourceDataType(*cast);
        const DataType dst_type = GetDestinationDataType(*cast);
        if (IsNumberType(src_type) && IsNumberType(dst_type) &&
            DataTypeSize(src_type) < DataTypeSize(dst_type) &&
            !OptimizedNodeExists(*cast, DataTypeString(dst_type)) &&
            !OptimizedNodeExists(*transpose, DataTypeString(src_type))) {
          NodeDef* new_transpose = AddNode(*transpose, DataTypeString(src_type),
                                           /*copy_node=*/true);
          (*new_transpose->mutable_attr())["T"].set_type(src_type);
          new_transpose->set_input(0, cast->input(0));
          node_map_->AddOutput(input->name(), new_transpose->name());
          node_map_->AddOutput(NodeName(new_transpose->input(1)),
                               new_transpose->name());

          NodeDef* new_cast =
              AddNode(*cast, DataTypeString(dst_type), /*copy_node=*/true);
          new_cast->set_input(0, new_transpose->name());
          node_map_->AddOutput(new_transpose->name(), new_cast->name());

          nodes_to_simplify->PushBack(new_transpose);
          ForwardControlDependencies(new_transpose, {cast, node});
          return new_cast->name();
        }
      }
    }
  }

  // Fold a multiply of a scalar into the following convolution. This folding
  // can jump across nodes that merely reorders data (such as reshape and
  // transpose). For example, we can optimize
  //
  //
  //         Conv2D
  //        /      \
  //    Transpose  weights
  //       |
  //      Mul
  //     /   \
  //   inputs 255.0
  //
  // to
  //
  //         Conv2D
  //        /      \
  //    Transpose   Mul
  //       |       /   \
  //       |   weights  255.0
  //       |
  //     inputs
  //
  // when `weights` are constant. `Mul` in the optimized graph can be
  // constant-folded.
  //
  // TODO(jingyue): Fold scalar multiplies to Conv?DBackpropFilter and
  // Conv?DBackpropInput.
  if (node->op() == "Conv2D" || node->op() == "Conv3D") {
    NodeDef* conv = const_cast<NodeDef*>(node);
    const NodeDef* weights = node_map_->GetNode(NodeName(conv->input(1)));
    // Fold the multiply to conv only when the weights are constant, so the
    // multiply can be constant-folded. TODO(jingyue): When the weights aren't
    // constant, this should also help performance a bit and memory usage a lot,
    // since the weights tend to be smaller than the activations.
    if (weights->op() == "Const" &&
        !OptimizedNodeExists(*weights, StrCat("scaled_", conv->name()))) {
      const NodeDef* source = node_map_->GetNode(
          GetTailOfValuePreservingChain(*node, *node_map_, nodes_to_preserve_)
              ->input(0));
      if (source->op() == "Mul" &&
          node_map_->GetOutputs(source->name()).size() == 1) {
        const NodeDef* mul = source;
        // `scale` is the scalar multiplier, and `other` is the other operand.
        // TODO(jingyue): handle the case where `scale` is 0-th operand.
        const NodeDef* scale = node_map_->GetNode(mul->input(1));
        const NodeDef* other = node_map_->GetNode(mul->input(0));
        if (scale->op() == "Const" && scale->attr().at("dtype").type() ==
                                          weights->attr().at("dtype").type()) {
          const TensorProto& scale_tensor = scale->attr().at("value").tensor();
          // Test whether `scale` is a scalar.
          if (scale_tensor.has_tensor_shape() &&
              scale_tensor.tensor_shape().dim_size() == 0) {
            // Create new node `scaled_weights`.
            NodeDef* scaled_weights = AddNode(
                *weights, StrCat("scaled_", conv->name()), /*copy_node=*/false);
            scaled_weights->set_op("Mul");
            scaled_weights->set_device(weights->device());
            (*scaled_weights->mutable_attr())["T"] =
                weights->attr().at("dtype");
            nodes_to_simplify->PushBack(scaled_weights);

            // Link in its inputs.
            scaled_weights->add_input(conv->input(1));
            node_map_->AddOutput(weights->name(), scaled_weights->name());
            scaled_weights->add_input(mul->input(1));
            node_map_->AddOutput(scale->name(), scaled_weights->name());
            ForwardControlDependencies(scaled_weights, {source});

            // Update `conv`'s weights to `scaled_weights`.
            conv->set_input(1, scaled_weights->name());
            node_map_->UpdateInput(conv->name(), weights->name(),
                                   scaled_weights->name());
            nodes_to_simplify->PushBack(conv);

            // Update `mul`'s consumer to bypass `mul` because it's folded to
            // the weights.
            CHECK_EQ(node_map_->GetOutputs(mul->name()).size(), 1);
            NodeDef* consumer_of_mul =
                *node_map_->GetOutputs(mul->name()).begin();
            consumer_of_mul->set_input(0, mul->input(0));
            node_map_->UpdateInput(consumer_of_mul->name(), mul->name(),
                                   other->name());
            nodes_to_simplify->PushBack(consumer_of_mul);
            return conv->name();
          }
        }
      }
    }
  }

  if (node->op() == "Mul" && node->input(0) == node->input(1) &&
      !OptimizedNodeExists(*node, "square")) {
    NodeDef* new_square_node = AddNode(*node, "square", /*copy_node=*/true);
    new_square_node->set_op("Square");
    for (int i = 1; i < new_square_node->input_size(); ++i) {
      new_square_node->set_input(i - 1, new_square_node->input(i));
    }
    new_square_node->mutable_input()->RemoveLast();
    return new_square_node->name();
  }

  if (IsAggregate(*node) && NumNonControlInputs(*node) > 0) {
    // Discard aggregate nodes with a single input and no control dependencies.
    if (node->input_size() == 1) {
      return node->input(0);
    }

    // Try to rewrite aggregations of N >= 2 identical terms (possibly due
    // to deduping or other rewrites) so we can get rid of the sum entirely.
    // The expression (using AddN as an example of an aggregate op):
    //   AddN(x, x, x, ... ,x)
    //        <-- N terms -->
    // can be rewritten to
    //   Mul(Const(N), x))
    //
    bool all_equal = true;
    int num_inputs = 1;
    for (int i = 1; i < node->input_size(); ++i) {
      if (IsControlInput(node->input(i))) {
        break;
      }
      ++num_inputs;
      if (node->input(i) != node->input(0)) {
        all_equal = false;
        break;
      }
    }
    if (all_equal && !OptimizedNodeExists(*node, "const") &&
        !OptimizedNodeExists(*node, "mul")) {
      // 1. Create constant node with value N.
      const auto type = GetDataTypeFromAttr(*node, "T");
      Tensor t(type, TensorShape({}));
      Status status = SetTensorValue(type, num_inputs, &t);
      if (!status.ok()) {
        LOG(WARNING) << "Failed to create const node: "
                     << status.error_message();
        return "";
      }
      TensorValue value(&t);
      NodeDef* new_const_node = AddNode(*node, "const", /*copy_node=*/false);
      status = ConstantFolding::CreateNodeDef(new_const_node->name(), value,
                                              new_const_node);
      if (!status.ok()) {
        LOG(WARNING) << "Failed to create const node: "
                     << status.error_message();
        return "";
      }
      new_const_node->set_device(node->device());
      MaybeAddControlInput(NodeName(node->input(0)), new_const_node,
                           optimized_graph_, node_map_.get());
      nodes_to_simplify->PushBack(new_const_node);

      // 2. Replace the aggregate node with Mul(Const(N), x).
      NodeDef* new_mul_node = AddNode(*node, "mul", /*copy_node=*/false);
      new_mul_node->set_op("Mul");
      new_mul_node->set_device(node->device());
      SetDataTypeToAttr(type, "T", new_mul_node);
      new_mul_node->add_input(new_const_node->name());
      node_map_->AddOutput(new_const_node->name(), new_mul_node->name());
      new_mul_node->add_input(node->input(0));
      node_map_->AddOutput(node->input(0), new_mul_node->name());

      ForwardControlDependencies(new_mul_node, {node});
      return new_mul_node->name();
    }
  }

  // Fold Transpose into matrix multiplication.
  if ((node->op() == "MatMul" || node->op() == "SparseMatMul" ||
       node->op() == "BatchMatMul") &&
      !OptimizedNodeExists(*node, "fused")) {
    const NodeDef* a = node_map_->GetNode(node->input(0));
    const NodeDef* b = node_map_->GetNode(node->input(1));
    bool is_complex = false;
    if (node->op() != "SparseMatMul") {
      const DataType type = GetDataTypeFromAttr(*node, "T");
      is_complex = (type == DT_COMPLEX64) || (type == DT_COMPLEX128);
    }
    const std::set<string> foldable_transpose_ops =
        !is_complex ? std::set<string>{"ConjugateTranspose", "Transpose"}
                    : (node->op() == "BatchMatMul"
                           ? std::set<string>{"ConjugateTranspose"}
                           : std::set<string>{"Transpose"});
    const bool a_is_foldable = foldable_transpose_ops.count(a->op()) > 0 &&
                               IsInnerMatrixTransposeNode(*a, node_map_.get());
    const bool b_is_foldable = foldable_transpose_ops.count(b->op()) > 0 &&
                               IsInnerMatrixTransposeNode(*b, node_map_.get());
    if (a_is_foldable || b_is_foldable) {
      NodeDef* new_op = AddNode(*node, "fused", /*copy_node=*/true);
      if (a_is_foldable) {
        const string attr_a =
            node->op() == "BatchMatMul" ? "adj_x" : "transpose_a";
        FlipBooleanAttr(attr_a, new_op);
        new_op->set_input(0, a->input(0));
        node_map_->UpdateInput(new_op->name(), a->name(), a->input(0));
      }
      if (b_is_foldable) {
        const string attr_b =
            node->op() == "BatchMatMul" ? "adj_y" : "transpose_b";
        FlipBooleanAttr(attr_b, new_op);
        new_op->set_input(1, b->input(0));
        node_map_->UpdateInput(new_op->name(), b->name(), b->input(0));
      }
      std::vector<const NodeDef*> deps_to_forward({node});
      if (a_is_foldable) {
        deps_to_forward.push_back(a);
      }
      if (b_is_foldable) {
        deps_to_forward.push_back(b);
      }
      ForwardControlDependencies(new_op, deps_to_forward);
    }
  }

  // Fold Conj into Transpose or ConjugateTranspose.
  if ((node->op() == "Conj" || node->op() == "Transpose" ||
       node->op() == "ConjugateTranspose") &&
      !OptimizedNodeExists(*node, "fused")) {
    const NodeDef* input = node_map_->GetNode(node->input(0));
    const NodeDef* transpose_op = node->op() == "Conj" ? input : node;
    const NodeDef* conj_op = node->op() == "Conj" ? node : input;

    if ((transpose_op->op() == "Transpose" ||
         transpose_op->op() == "ConjugateTranspose") &&
        conj_op->op() == "Conj") {
      NodeDef* new_op =
          AddNode(OptimizedNodeName(*node, "fused"), transpose_op);
      // Flip the type of transpose op to absorb the conjugation.
      new_op->set_op(transpose_op->op() == "Transpose" ? "ConjugateTranspose"
                                                       : "Transpose");
      new_op->set_input(0, input->input(0));
      node_map_->UpdateInput(new_op->name(), node->name(), input->input(0));
      ForwardControlDependencies(new_op, {node, input});
      return new_op->name();
    }
  }

  return "";
}

Status ArithmeticOptimizer::SimplifyArithmeticOps(bool can_use_shapes) {
  SetVector<NodeDef*> nodes_to_simplify;
  nodes_to_simplify.Reserve(optimized_graph_->node_size());
  for (int i = 0; i < optimized_graph_->node_size(); ++i) {
    nodes_to_simplify.PushBack(optimized_graph_->mutable_node(i));
  }

  const GraphOptimizerContext ctx(&nodes_to_preserve_, optimized_graph_,
                                  graph_properties_.get(), node_map_.get());
  const ArithmeticOptimizerContext ctx_ext(&nodes_to_simplify);

  // Stop pipeline after first stage returning non-empty simplified tensor name.
  const auto stop = [](const string& result) { return !result.empty(); };
  GraphOptimizerStagePipeline<string> pipeline(stop);

  if (options_.combine_add_to_addn && can_use_shapes)
    pipeline.AddStage<AddOpsRewriteStage>(ctx, ctx_ext);
  if (options_.hoist_common_factor_out_of_aggregation && can_use_shapes)
    pipeline.AddStage<HoistCommonFactorOutOfAggregation>(ctx, ctx_ext);
  if (options_.remove_identity_transpose && can_use_shapes)
    pipeline.AddStage<RemoveIdentityTranspose>(ctx, ctx_ext);
  if (options_.remove_redundant_bitcast)
    pipeline.AddStage<RemoveRedundantBitcastStage>(ctx, ctx_ext);
  if (options_.remove_redundant_cast)
    pipeline.AddStage<RemoveRedundantCastStage>(ctx, ctx_ext);
  if (options_.remove_negation)
    pipeline.AddStage<RemoveNegationStage>(ctx, ctx_ext);

  VLOG(1) << "Simplify arithmetic ops using " << pipeline.NumStages()
          << " arithmetic optimization stages";

  while (!nodes_to_simplify.Empty()) {
    NodeDef* node = nodes_to_simplify.PopBack();

    // TODO(ezhulenev): move all rewrites into separate stages
    string simplified_tensor = "";
    if (options_.enable_try_simplify_and_replace) {
      simplified_tensor = TrySimplifyAndReplaceUses(node, &nodes_to_simplify);
    }

    // if it was not simplified try to run it through all configured stages
    if (!stop(simplified_tensor)) {
      bool optimized = pipeline.PassThroughAllStages(node, &simplified_tensor);
      if (!optimized) {
        continue;
      }
    }

    // re-wire consumers of an old node to the new one
    if (NodeName(simplified_tensor) != node->name()) {
      // Always consider simplified_tensor for further optimizations.
      NodeDef* simplified_node = node_map_->GetNode(simplified_tensor);
      if (simplified_node != nullptr) {
        nodes_to_simplify.PushBack(simplified_node);
      }
      // When `node` is simplified to another node rather than in-place, the
      // consumers of `node` are already redirected to `simplified_tensor`.
      // Re-push the consumers into `nodes_to_simplify` for further
      // optimizations.
      const std::set<NodeDef*> outputs = node_map_->GetOutputs(node->name());
      std::vector<NodeDef*> consumers(outputs.begin(), outputs.end());
      std::sort(consumers.begin(), consumers.end(),
                [](const NodeDef* n1, const NodeDef* n2) {
                  return n1->name() < n2->name();
                });
      for (NodeDef* consumer : consumers) {
        // Update `consumer`'s use of `node` to `input`'s operand.
        for (int i = 0; i < consumer->input_size(); ++i) {
          int operand_pos;
          string operand_node_name =
              ParseNodeName(consumer->input(i), &operand_pos);
          if (operand_node_name == node->name()) {
            *consumer->mutable_input(i) =
                (operand_pos < 0
                     ? AsControlDependency(NodeName(simplified_tensor))
                     : simplified_tensor);
          }
        }
        node_map_->UpdateInput(consumer->name(), node->name(),
                               simplified_tensor);
        nodes_to_simplify.PushBack(consumer);
      }
    }
  }
  return Status::OK();
}

Status ArithmeticOptimizer::Optimize(Cluster* /*cluster*/,
                                     const GrapplerItem& item,
                                     GraphDef* optimized_graph) {
  GrapplerItem optimized_item(item);
  optimized_graph_ = &optimized_item.graph;

  // Set up helper data structures.
  nodes_to_preserve_ = item.NodesToPreserve();
  fetch_nodes_known_ = !item.fetch.empty();
  node_map_.reset(new NodeMap(optimized_graph_));

  DedupComputations();

  // Perform topological sort on the graph in order to help AddOpsRewrite to
  // optimize larger subgraphs starting from the roots with more inputs.
  TF_RETURN_IF_ERROR(TopologicalSort(optimized_graph_));

  // Shapes are only needed in aggressive mode.
  graph_properties_.reset(new GraphProperties(item));
  const Status status = graph_properties_->InferStatically(false);
  const bool can_use_shapes = status.ok();
  if (!can_use_shapes) {
    VLOG(1) << "Shape inference failed." << status.error_message();
  }

  // Perform the optimizations.
  TF_RETURN_IF_ERROR(SimplifyArithmeticOps(can_use_shapes));

  optimized_graph->Swap(optimized_graph_);
  return Status::OK();
}

void ArithmeticOptimizer::Feedback(Cluster* /*cluster*/,
                                   const GrapplerItem& /*item*/,
                                   const GraphDef& /*optimized_graph*/,
                                   double /*result*/) {
  // Nothing to do for ArithmeticOptimizer.
}

}  // end namespace grappler
}  // end namespace tensorflow