aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/graph/subgraph.cc
blob: 7910511dfb731798c2140a72ebd87c693206e74a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#include "tensorflow/core/graph/subgraph.h"

#include <algorithm>
#include <deque>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/node_def_util.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/graph/algorithm.h"
#include "tensorflow/core/graph/graph.h"
#include "tensorflow/core/graph/graph_constructor.h"
#include "tensorflow/core/graph/node_builder.h"
#include "tensorflow/core/graph/tensor_id.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/public/status.h"

namespace tensorflow {

// ----------------------------------------------------------------------------
// Subgraph construction-related routines
// ----------------------------------------------------------------------------
// TODO(vrv): Profile the unordered_set and unordered_map use in this file to
// see if we should use an alternative implementation.

namespace {

typedef std::unordered_map<StringPiece, Node*, StringPiece::Hasher> NameIndex;

// Rewrite graph by replacing the output tensors specified in
// "fed_outputs" with special feed nodes for each specified output
// tensor, and removing any nodes that are now disconnected from the
// part of the graph that reaches the sink node.  The set of special
// feed nodes added to the graph are returned in "*feed_nodes".
//
// Return true on success.  On error, return false and sets *error to
// an appropriate error message (and *g is left in an indeterminate
// state).
static Status FeedInputs(Graph* g, const DeviceAttributes& device_info,
                              const gtl::ArraySlice<string>& fed_outputs,
                              NameIndex* name_index) {
  for (const string& t : fed_outputs) {
    TensorId id(ParseTensorName(t));

    auto iter = name_index->find(id.first);
    if (iter == name_index->end()) {
      return errors::NotFound("FeedInputs: unable to find feed output ", t);
    }
    const Node* n = iter->second;
    DCHECK_EQ(n->name(), id.first);
    if (id.second >= n->num_outputs()) {
      return errors::InvalidArgument(
          "FeedInputs: ", t, " should have output index < ", n->num_outputs());
    }

    Node* recv_node;
    TF_RETURN_IF_ERROR(
        NodeBuilder(strings::StrCat("_recv_", id.first, "_", id.second),
                    "_Recv")
            .Attr("tensor_type", BaseType(n->output_type(id.second)))
            .Attr("tensor_name", t)
            .Attr("send_device", device_info.name())
            .Attr("recv_device", device_info.name())
            .Attr("send_device_incarnation",
                  static_cast<int64>(device_info.incarnation()))
            .Attr("client_terminated", true)
            .Finalize(g, &recv_node));
    recv_node->set_assigned_device_name(device_info.name());

    // Update name_index
    (*name_index)[recv_node->name()] = recv_node;
    g->AddControlEdge(g->source_node(), recv_node);

    // Look through edges coming out of "n" for edges whose src_output() index
    // matches "output_index".  If found, replace the edges with a connection
    // from the special feed node.
    std::vector<const Edge*> to_remove;
    for (const Edge* e : n->out_edges()) {
      if (e->src_output() == id.second) {
        to_remove.emplace_back(e);
      } else if (e->src_output() == Graph::kControlSlot &&
                 n->def().op() == "Placeholder") {
        // When feeding a Placeholder node, any outgoing control edges
        // will be replaced with a control edge from the replacement
        // recv_node.
        // TODO(josh11b,mrry): Come up with a more elegant way of addressing
        // the general version of this problem.
        to_remove.emplace_back(e);
      }
    }

    for (const Edge* e : to_remove) {
      if (e->src_output() == id.second) {
        g->AddEdge(recv_node, 0, e->dst(), e->dst_input());
      } else {
        CHECK_EQ(Graph::kControlSlot, e->src_output());
        g->AddControlEdge(recv_node, e->dst());
      }
      g->RemoveEdge(e);
    }
  }
  return Status::OK();
}

// Augment "*g" by adding special "fetch" nodes that connect to the
// tensor outputs specified in "fetch_outputs" to retrieve the output
// of the tensors.  The new nodes added are set up to execute on
// "client_device_name", and are returned in "*fetch_nodes".
//
// Return true on success.  On error, return false and sets *error to
// an appropriate error message (and *g is left in an indeterminate
// state).
static Status FetchOutputs(Graph* g, const DeviceAttributes& device_info,
                           const gtl::ArraySlice<string>& fetch_outputs,
                           NameIndex* name_index,
                           std::vector<Node*>* fetch_nodes) {
  fetch_nodes->clear();
  for (const string& t : fetch_outputs) {
    // Parse t into node_name and output_index.
    TensorId id(ParseTensorName(t));

    // Find node in graph with that name.
    auto iter = name_index->find(id.first);
    if (iter == name_index->end()) {
      return errors::NotFound("FetchOutputs node ", t, ": not found");
    }
    Node* n = iter->second;
    DCHECK_EQ(n->name(), id.first);
    VLOG(2) << "Found fetch node for " << t;

    // Validate output_index
    if (id.second >= n->num_outputs()) {
      return errors::InvalidArgument("FetchOutputs ", t,
                                     ": output index too large, must be < ",
                                     n->num_outputs());
    }

    // Create the fetch Node and connect it up
    Node* send_node;
    TF_RETURN_IF_ERROR(
        NodeBuilder(strings::StrCat("_send_", id.first, "_", id.second),
                    "_Send")
            .Input(n, id.second)
            .Attr("tensor_name", t)
            .Attr("send_device", device_info.name())
            .Attr("recv_device", device_info.name())
            .Attr("send_device_incarnation",
                  static_cast<int64>(device_info.incarnation()))
            .Attr("client_terminated", true)
            .Finalize(g, &send_node));
    send_node->set_assigned_device_name(device_info.name());
    VLOG(1) << "Created fetch node: " << SummarizeNodeDef(send_node->def());

    // Update the index.
    (*name_index)[send_node->name()] = send_node;

    g->AddControlEdge(send_node, g->sink_node());
    fetch_nodes->push_back(send_node);
  }

  return Status::OK();
}

static bool AddNodeToTargets(const string& node_or_tensor_name,
                             const NameIndex& name_index,
                             std::unordered_set<const Node*>* targets) {
  TensorId id = ParseTensorName(node_or_tensor_name);
  auto iter = name_index.find(id.first);
  if (iter == name_index.end()) {
    return false;
  }
  const Node* n = iter->second;
  if (n->name() != node_or_tensor_name) {
    return false;
  }

  targets->insert(n);
  return true;
}

static Status PruneForTargets(Graph* g, const NameIndex& name_index,
                              const std::vector<Node*>& fetch_nodes,
                              const gtl::ArraySlice<string>& target_nodes) {
  string not_found;
  std::unordered_set<const Node*> targets;
  for (Node* n : fetch_nodes) {
    if (!AddNodeToTargets(n->name(), name_index, &targets)) {
      strings::StrAppend(&not_found, n->name(), " ");
    }
  }
  for (const string& s : target_nodes) {
    if (!AddNodeToTargets(s, name_index, &targets)) {
      strings::StrAppend(&not_found, s, " ");
    }
  }
  if (!not_found.empty()) {
    return errors::NotFound("PruneForTargets: Some target nodes not found: ",
                            not_found);
  }
  PruneForReverseReachability(g, targets);

  return Status::OK();
}

}  // namespace

namespace subgraph {

Status RewriteGraphForExecution(
    Graph* g, const gtl::ArraySlice<string>& fed_outputs,
    const gtl::ArraySlice<string>& fetch_outputs,
    const gtl::ArraySlice<string>& target_node_names,
    const DeviceAttributes& device_info) {
  std::unordered_set<string> endpoints(fed_outputs.begin(), fed_outputs.end());
  for (const auto& fetch : fetch_outputs) {
    if (endpoints.count(fetch) > 0) {
      return errors::InvalidArgument(fetch, " is both fed and fetched.");
    }
  }

  // A separate index mapping name to Node*, for use by FeedInputs,
  // FetchOutputs, and PruneForTargets
  NameIndex name_index;
  for (Node* n : g->nodes()) {
    name_index[n->name()] = n;
  }

  // Add the feeds.  This may replace nodes in the graph, including the nodes
  // currently listed in "fetch_nodes".  We pass "name_index" so the index is
  // kept up to date.
  if (!fed_outputs.empty()) {
    TF_RETURN_IF_ERROR(FeedInputs(g, device_info, fed_outputs, &name_index));
  }

  // Add the fetch nodes, also updating "name_index".
  std::vector<Node*> fetch_nodes;
  if (!fetch_outputs.empty()) {
    TF_RETURN_IF_ERROR(
        FetchOutputs(g, device_info, fetch_outputs, &name_index, &fetch_nodes));
  }

  // Prune the graph to only compute what is needed for the fetch nodes and the
  // targets nodes.
  if (!fetch_nodes.empty() || !target_node_names.empty()) {
    TF_RETURN_IF_ERROR(
        PruneForTargets(g, name_index, fetch_nodes, target_node_names));
  }

  return Status::OK();
}

}  // namespace subgraph

}  // namespace tensorflow