aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/graph/quantize_training.cc
blob: 3b6e8cc2339a42285a68c6898c99b1ec4b585917 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <algorithm>
#include <atomic>
#include <set>
#include <unordered_map>
#include <vector>

#include "tensorflow/core/graph/quantize_training.h"

#include "tensorflow/core/common_runtime/executor.h"
#include "tensorflow/core/common_runtime/function.h"
#include "tensorflow/core/common_runtime/memory_types.h"
#include "tensorflow/core/framework/log_memory.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/graph/algorithm.h"
#include "tensorflow/core/graph/graph_constructor.h"
#include "tensorflow/core/graph/node_builder.h"
#include "tensorflow/core/graph/subgraph.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/public/session_options.h"

namespace tensorflow {
namespace {

// TODO(suharshs): If desired, make these values configurable.
const uint32 kAllowedInputs = 2;
const float kEMADecay = 0.999;

// Node types to rewrite. Insert quantize_and_dequantize op for their inputs.
const auto* nodes_to_rewrite =
    new std::unordered_set<string, StringPieceHasher>{"MatMul", "Conv2D"};

// Contains necessary parameters to convert an edge.
struct EdgeToConvert {
  // edge is not owned here.
  const Edge* edge;
  int32 num_bits;
  bool signed_input;
  bool range_given;
  float input_min;
  float input_max;

  EdgeToConvert(const Edge* e, int32 bits, bool sign, bool range, float min,
                float max)
      : edge(e),
        num_bits(bits),
        signed_input(sign),
        range_given(range),
        input_min(min),
        input_max(max) {}
};

// Decide if a node is in backward pass by checking if its name is led by
// "gradients".
// TODO(jmchen): Make this check more robust as it is not guaranteed that the
// forward node will not be named with a leading "gradients".
inline bool IsGradientNode(const Graph* graph, const Node* node) {
  static const string tag = "gradients";
  return (node->name().compare(0, tag.size(), tag) == 0);
}

// Find the type of the input to set the parameters for the
// quantize_and_dequantize op.
// Returns true if the root tensor op type is known, false otherwise.
bool FindType(const Graph* graph, const Node* node, bool* signed_input,
              bool* range_given, float* input_min, float* input_max) {
  const string& src_op = node->type_string();
  if (src_op == "Const" || src_op == "Variable" || src_op == "VariableV2") {
    *signed_input = true;
    *range_given = false;
  } else if (src_op == "Relu") {
    // Range is not given for Relu.
    *signed_input = false;
    *range_given = false;
  } else if (src_op == "Relu6") {
    // TODO(suharshs): Also the theoretical min and max is 0 and 6, if the
    // actual activations are somewhere in within this range, we can quantize
    // this even further. This is true for other activations like Sigmoid6 too.
    *signed_input = false;
    *range_given = true;
    *input_min = 0;
    *input_max = 6;
  } else if (src_op == "Sigmoid") {
    *signed_input = false;
    *range_given = true;
    *input_min = 0;
    *input_max = 1;
  } else if (src_op == "Tanh") {
    *signed_input = true;
    *range_given = true;
    *input_min = -1;
    *input_max = 1;
  } else if (src_op == "Reshape" || src_op == "ConcatV2") {
    // Reshape has 2 inputs and the first one is the tensor.
    // ConcatV2 has many inputs but they should all have the same activation
    // function (i.e. Inception). So we just recurse on the first input.
    for (const Edge* edge : node->in_edges()) {
      if (edge->src_output() != Graph::kControlSlot && edge->dst_input() == 0) {
        FindType(graph, edge->src(), signed_input, range_given, input_min,
                 input_max);
      }
    }
  } else if (src_op == "Identity" || src_op == "MaxPool" ||
             src_op == "AvgPool" || src_op == "MaxPool3D" ||
             src_op == "AvgPool3D") {
    // All these Ops only have 1 data input.
    for (const Edge* edge : node->in_edges()) {
      if (edge->src_output() != Graph::kControlSlot) {
        FindType(graph, edge->src(), signed_input, range_given, input_min,
                 input_max);
      }
    }
  } else {
    // Unknown type, could be the model input examples.
    // TODO(jmchen): Set the params for input with user's hint.
    *signed_input = true;
    *range_given = false;
    return false;
  }

  return true;
}

// Find the Save op and inputs.
Status FindSaveOp(const Graph* graph, Node** save_op,
                  std::vector<const Edge*>* in_edges, bool* found) {
  *found = false;
  for (Node* node : graph->op_nodes()) {
    if (node->type_string() == "SaveV2") {
      // We found multiple save ops.
      if (*found) {
        return errors::InvalidArgument("Input graph has multiple SaveV2 ops.");
      }
      *save_op = node;
      *found = true;
      TF_RETURN_IF_ERROR(node->input_edges(in_edges));
    }
  }
  return Status::OK();
}

Node* FindRestoreAllOp(const Graph* graph, StringPiece save_prefix) {
  for (Node* node : graph->op_nodes()) {
    // The restore_all op should have the same prefix of the save_op.
    if (node->name() == strings::StrCat(save_prefix, "/restore_all")) {
      return node;
    }
  }
  return nullptr;
}

// Strips the last "/suffix" from a name.
// We use this to construct the name of restore ops in the same way they are
// constructed by the Saver.
StringPiece GetNodeNamePrefix(const Node* node) {
  StringPiece name = node->name();
  return name.substr(0, name.rfind('/'));
}

void FillStringTensor(Tensor* dst, const Tensor& src) {
  auto dst_flat = dst->flat<string>();
  auto src_flat = src.flat<string>();
  for (int i = 0; i < src.NumElements(); i++) {
    dst_flat(i) = src_flat(i);
  }
}

// Add the added_variables as an inputs to the Save op.
// We change the inputs of the SaveV2 op to include the names of the added
// variables. We also add the variables as inputs to the save op.
Status ConnectVariablesToSaveOp(Graph* graph, Node* save_op,
                                const std::vector<const Edge*>& in_edges,
                                const std::vector<Node*>& added_variables) {
  Node* tensor_names_op = in_edges[1]->src();
  Node* shape_and_slices_op = in_edges[2]->src();

  // Get the tensor_names and shape_and_slices tensors from the const op.
  Tensor tensor_names;
  Tensor shape_and_slices;
  TF_RETURN_IF_ERROR(
      GetNodeAttr(tensor_names_op->attrs(), "value", &tensor_names));
  TF_RETURN_IF_ERROR(
      GetNodeAttr(shape_and_slices_op->attrs(), "value", &shape_and_slices));

  int tn_size = tensor_names.NumElements();
  int var_size = added_variables.size();

  // Create a new save_op that has inputs to all the new variables.
  NodeBuilder save_op_builder =
      NodeBuilder(save_op->name(), save_op->type_string());
  // The first three inputs are prefix, tensor_names, and shapes_and_slices.
  for (int i = 0; i < 3; i++) {
    save_op_builder = save_op_builder.Input(in_edges[i]->src());
  }
  std::vector<NodeBuilder::NodeOut> var_nodeouts;
  var_nodeouts.reserve(tn_size + var_size);
  // The rest of the inputs need to be used the construct the tensor list arg.
  for (int i = 3; i < in_edges.size(); i++) {
    var_nodeouts.emplace_back(in_edges[i]->src());
  }

  // Add the new values to the tensors and the op input.
  Tensor new_tensor_names(DT_STRING, TensorShape({tn_size + var_size}));
  Tensor new_shape_and_slices(DT_STRING, TensorShape({tn_size + var_size}));
  FillStringTensor(&new_tensor_names, tensor_names);
  FillStringTensor(&new_shape_and_slices, shape_and_slices);
  for (int i = 0; i < var_size; i++) {
    Node* var = added_variables[i];
    new_tensor_names.flat<string>()(tn_size + i) = var->name();
    new_shape_and_slices.flat<string>()(tn_size + i) = "";
    var_nodeouts.emplace_back(var);
  }
  save_op_builder = save_op_builder.Input(var_nodeouts);

  // Update the attrs.
  tensor_names_op->AddAttr("value", new_tensor_names);
  shape_and_slices_op->AddAttr("value", new_shape_and_slices);

  // Remove the old save_op and add the new one.
  Node* new_save_op;
  TF_RETURN_IF_ERROR(save_op_builder.Finalize(graph, &new_save_op));
  // Add outputs to the new_save_op, all outputs are control edges.
  for (const Edge* edge : save_op->out_edges()) {
    graph->AddControlEdge(new_save_op, edge->dst());
  }
  graph->RemoveNode(save_op);

  return Status::OK();
}

// Add a restore subgraph for each variable and connect to the restore_all op.
// For each variable we add the following subgraph:
//           Assign----restore_all
//          |      |
//   RestoreV2    Variable
Status AddRestoreVariableSubgraphs(Graph* graph, Node* save_op,
                                   const std::vector<const Edge*>& in_edges,
                                   const std::vector<Node*>& variables) {
  Node* prefix_op = in_edges[0]->src();
  StringPiece name_prefix = GetNodeNamePrefix(save_op);
  Node* restore_all = FindRestoreAllOp(graph, name_prefix);
  if (restore_all == nullptr) {
    return errors::InvalidArgument("graph has SaveOp, but no restore_all NoOp");
  }
  const string restore_op_name = strings::StrCat(name_prefix, "/RestoreV2");
  const string assign_op_name = strings::StrCat(name_prefix, "/Assign");
  for (Node* var : variables) {
    // Add an extra prefix after calling graph->NewName because the "unique"
    // name may conflict with names generated for Send nodes.
    // TODO(b/77547936): fix this more generally and get rid of the extra prefix
    // here.
    string new_restore_op_name =
        strings::StrCat(graph->NewName(restore_op_name), "_qt");
    string new_assign_op_name =
        strings::StrCat(graph->NewName(assign_op_name), "_qt");
    string tensor_names_op_name =
        strings::StrCat(new_restore_op_name, "/tensor_names");
    string shape_and_slices_op_name =
        strings::StrCat(new_restore_op_name, "/shape_and_slices");

    // Construct the tensor_names input with the variable name.
    Node* tensor_names;
    Tensor tensor_names_val(DT_STRING, TensorShape({1}));
    tensor_names_val.flat<string>()(0) = var->name();
    TF_RETURN_IF_ERROR(NodeBuilder(tensor_names_op_name, "Const")
                           .Attr("dtype", DT_STRING)
                           .Attr("value", tensor_names_val)
                           .Finalize(graph, &tensor_names));

    // Construct the shape_and_slices input with empty string.
    Node* shape_and_slices;
    Tensor shape_and_slices_val(DT_STRING, TensorShape({1}));
    shape_and_slices_val.flat<string>()(0) = "";
    TF_RETURN_IF_ERROR(NodeBuilder(shape_and_slices_op_name, "Const")
                           .Attr("dtype", DT_STRING)
                           .Attr("value", shape_and_slices_val)
                           .Finalize(graph, &shape_and_slices));

    // Build the new Restore op for this variable.
    Node* restore_op;
    TF_RETURN_IF_ERROR(NodeBuilder(new_restore_op_name, "RestoreV2")
                           .Input(prefix_op)
                           .Input(tensor_names)
                           .Input(shape_and_slices)
                           .Attr("dtypes", {DT_FLOAT})
                           .Finalize(graph, &restore_op));

    // Create Assign op, attaching the variable and Restore op to it.
    Node* assign_op;
    TF_RETURN_IF_ERROR(NodeBuilder(new_assign_op_name, "Assign")
                           .Input(var)
                           .Input(restore_op)
                           .Finalize(graph, &assign_op));

    // Add a control edge from the assign op to restore_all op.
    graph->AddControlEdge(assign_op, restore_all);
  }
  return Status::OK();
}

// Adds new variables to save and restore ops matching the Save and Restore
// graphs created in tensorflow/python/training/saver.py.
Status AddSaveAndRestore(Graph* graph, const std::vector<Node*>& variables) {
  Node* save_op = nullptr;
  std::vector<const Edge*> in_edges;
  bool found = false;
  TF_RETURN_IF_ERROR(FindSaveOp(graph, &save_op, &in_edges, &found));
  if (found) {
    TF_RETURN_IF_ERROR(
        AddRestoreVariableSubgraphs(graph, save_op, in_edges, variables));
    TF_RETURN_IF_ERROR(
        ConnectVariablesToSaveOp(graph, save_op, in_edges, variables));
  }
  return Status::OK();
}

// Sets output to the Node that computes reduction axes corresponding to all
// dimensions of input and return.
Status MakeReductionAxes(Graph* graph, string name_prefix, Node* input,
                         Node** output) {
  name_prefix = strings::StrCat(name_prefix, "/ReductionAxes");
  Node* start;
  Tensor zero_tensor(DT_INT32, TensorShape());
  zero_tensor.flat<int32>()(0) = 0;
  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name_prefix, "/RangeStart"), "Const")
          .Attr("dtype", DT_INT32)
          .Attr("value", zero_tensor)
          .Finalize(graph, &start));
  Node* delta;
  Tensor one_tensor(DT_INT32, TensorShape());
  one_tensor.flat<int32>()(0) = 1;
  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name_prefix, "/RangeDelta"), "Const")
          .Attr("dtype", DT_INT32)
          .Attr("value", one_tensor)
          .Finalize(graph, &delta));
  Node* rank;
  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name_prefix, "/InputRank"), "Rank")
          .Input(input)
          .Finalize(graph, &rank));
  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name_prefix, "/ReductionAxes"), "Range")
          .Input(start)
          .Input(rank)
          .Input(delta)
          .Finalize(graph, output));
  return Status::OK();
}

// Computes the exponential moving average of input, updated in update_variable.
Status MakeExponentialMovingAverage(Graph* graph, string name_prefix,
                                    const NodeBuilder::NodeOut& input,
                                    Node* decay, Node* update_variable,
                                    Node** assign_value) {
  // variable_t+1 = variable_t - [(variable_t - value) * (1 - decay)]
  name_prefix = strings::StrCat(name_prefix, "/EMA");
  Node* one;
  Tensor one_tensor(DT_FLOAT, TensorShape());
  one_tensor.flat<float>()(0) = 1.0;
  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name_prefix, "/OneConst"), "Const")
          .Attr("dtype", DT_FLOAT)
          .Attr("value", one_tensor)
          .Finalize(graph, &one));
  Node* decay_complement;
  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name_prefix, "/DecayComplement"), "Sub")
          .Input(one)
          .Input(decay)
          .Finalize(graph, &decay_complement));

  Node* value_diff;
  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name_prefix, "/ValueDiff"), "Sub")
          .Input(update_variable)
          .Input(input)
          .Finalize(graph, &value_diff));
  Node* update_value;
  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name_prefix, "/UpdateValue"), "Mul")
          .Input(value_diff)
          .Input(decay_complement)
          .Finalize(graph, &update_value));

  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name_prefix, "/EMAValue"), "Sub")
          .Input(update_variable)
          .Input(update_value)
          .Finalize(graph, assign_value));
  return Status::OK();
}

// Creates an automatically initialized exponential moving average variable.
// This uses a switch op to assign a value to the variable on the first run,
// and update with the moving average for all other runs:
//                   init_val
//                      |
//      var--is_init--switch
//       |      true /      \ false
//       |          |        |
//       |         EMA    init_val
//       |           \      /
//       +----------- assign
Status MakeInitializedEMAVariable(Graph* graph, const string& name, Node* decay,
                                  Node* init_val,
                                  std::vector<Node*>* added_variables,
                                  Node** var) {
  // TODO(suharshs): Update this to use ResourceVariables when they are ready.
  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name, "/Variable"), "VariableV2")
          .Attr("shape", TensorShape())
          .Attr("dtype", DT_FLOAT)
          .Finalize(graph, var));
  added_variables->push_back(*var);

  Node* is_initialized;
  TF_RETURN_IF_ERROR(NodeBuilder(strings::StrCat(name, "/IsInitialized"),
                                 "IsVariableInitialized")
                         .Input(*var)
                         .Finalize(graph, &is_initialized));
  Node* switch_node;
  TF_RETURN_IF_ERROR(NodeBuilder(strings::StrCat(name, "/Switch"), "Switch")
                         .Input(init_val)
                         .Input(is_initialized)
                         .Finalize(graph, &switch_node));
  NodeBuilder::NodeOut output_false = NodeBuilder::NodeOut(switch_node, 0);
  NodeBuilder::NodeOut output_true = NodeBuilder::NodeOut(switch_node, 1);

  Node* ema_value;
  TF_RETURN_IF_ERROR(MakeExponentialMovingAverage(graph, name, output_true,
                                                  decay, *var, &ema_value));

  Node* assign_value;
  TF_RETURN_IF_ERROR(NodeBuilder(strings::StrCat(name, "/Merge"), "Merge")
                         .Input({output_false, ema_value})
                         .Finalize(graph, &assign_value));

  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name, "/AssignValue"), "Assign")
          .Input(*var)
          .Input(assign_value)
          .Finalize(graph, var));
  return Status::OK();
}

// Computes the min and max EMA of input and stores them in min_var and max_var.
Status MakeEMAMinMaxVars(Graph* graph, const string& name_prefix, Node* input,
                         std::vector<Node*>* added_variables, Node** min_var,
                         Node** max_var) {
  // TODO(suharshs): The decay will be constant, so we could make only one for
  // all quantize_and_dequantize ops to share, this would have to live outside
  // this function.
  Tensor decay_tensor(DT_FLOAT, TensorShape());
  decay_tensor.flat<float>()(0) = kEMADecay;
  Node* decay;
  TF_RETURN_IF_ERROR(
      NodeBuilder(strings::StrCat(name_prefix, "/Decay"), "Const")
          .Attr("dtype", DT_FLOAT)
          .Attr("value", decay_tensor)
          .Finalize(graph, &decay));

  Node* reduction_axes;
  TF_RETURN_IF_ERROR(
      MakeReductionAxes(graph, name_prefix, input, &reduction_axes));
  Node* min;
  string min_name = strings::StrCat(name_prefix, "/Min");
  TF_RETURN_IF_ERROR(NodeBuilder(min_name, "Min")
                         .Input(input)
                         .Input(reduction_axes)
                         .Finalize(graph, &min));
  Node* max;
  string max_name = strings::StrCat(name_prefix, "/Max");
  TF_RETURN_IF_ERROR(NodeBuilder(max_name, "Max")
                         .Input(input)
                         .Input(reduction_axes)
                         .Finalize(graph, &max));
  TF_RETURN_IF_ERROR(MakeInitializedEMAVariable(graph, min_name, decay, min,
                                                added_variables, min_var));
  TF_RETURN_IF_ERROR(MakeInitializedEMAVariable(graph, max_name, decay, max,
                                                added_variables, max_var));
  return Status::OK();
}

// Makes an input min and max constant if the range is given. Otherwise, makes
// min and max variables that are updated by an EMA.
Status MakeInputMinMax(Graph* graph, const string& name_prefix,
                       const EdgeToConvert& edge,
                       std::vector<Node*>* added_variables, Node** input_min,
                       Node** input_max) {
  if (edge.range_given) {
    // Make constant nodes for the input_min and input_max if the range is
    // provided.
    Tensor input_min_tensor(DT_FLOAT, TensorShape());
    input_min_tensor.flat<float>()(0) = edge.input_min;
    TF_RETURN_IF_ERROR(
        NodeBuilder(strings::StrCat(name_prefix, "/InputMin"), "Const")
            .Attr("dtype", DT_FLOAT)
            .Attr("value", input_min_tensor)
            .Finalize(graph, input_min));
    Tensor input_max_tensor(DT_FLOAT, TensorShape());
    input_max_tensor.flat<float>()(0) = edge.input_max;
    TF_RETURN_IF_ERROR(
        NodeBuilder(strings::StrCat(name_prefix, "/InputMax"), "Const")
            .Attr("dtype", DT_FLOAT)
            .Attr("value", input_max_tensor)
            .Finalize(graph, input_max));
  } else {
    // If the range is not given, estimate the range with EMA variables.
    TF_RETURN_IF_ERROR(MakeEMAMinMaxVars(graph, name_prefix, edge.edge->src(),
                                         added_variables, input_min,
                                         input_max));
  }

  return Status::OK();
}

// Adds a QuantizeAndDequantizeV2 or FakeQuantizeWithMinMaxVars op
// (and required input nodes) based on edge.
// The result is stored in convert_node.
Status MakeQuantizeOp(Graph* graph, const string& name_prefix,
                      const string& quant_op_type, const EdgeToConvert& edge,
                      std::vector<Node*>* added_variables,
                      Node** convert_node) {
  Node* input_min;
  Node* input_max;
  TF_RETURN_IF_ERROR(MakeInputMinMax(graph, name_prefix, edge, added_variables,
                                     &input_min, &input_max));
  string quant_name = strings::StrCat(name_prefix, "/", quant_op_type);
  if (quant_op_type == "QuantizeAndDequantizeV2") {
    TF_RETURN_IF_ERROR(NodeBuilder(quant_name, quant_op_type)
                           .Input(edge.edge->src())
                           .Input(input_min)
                           .Input(input_max)
                           .Attr("signed_input", edge.signed_input)
                           .Attr("num_bits", edge.num_bits)
                           .Attr("range_given", true)
                           .Finalize(graph, convert_node));
  } else if (quant_op_type == "FakeQuantWithMinMaxVars") {
    TF_RETURN_IF_ERROR(NodeBuilder(quant_name, quant_op_type)
                           .Input(edge.edge->src())
                           .Input(input_min)
                           .Input(input_max)
                           .Attr("num_bits", edge.num_bits)
                           .Finalize(graph, convert_node));
  } else {
    return errors::InvalidArgument("Unknown quant op type: ", quant_op_type);
  }
  return Status::OK();
}

// Insert conversion op, connect it to the graph and remove the old edge.
Status ProcessTargetEdges(Graph* graph, const string& quant_op_type,
                          const std::vector<EdgeToConvert>& target_edges) {
  // Remember previously converted ops to avoid duplicated conversion on the
  // same input.
  std::unordered_map<string, Node*, StringPieceHasher> name_index;
  std::vector<Node*> added_variables;
  for (const EdgeToConvert edge : target_edges) {
    Node* convert_node;
    string name_prefix = edge.edge->src()->name();

    auto iter = name_index.find(name_prefix);
    if (iter == name_index.end()) {
      TF_RETURN_IF_ERROR(MakeQuantizeOp(graph, name_prefix, quant_op_type, edge,
                                        &added_variables, &convert_node));
      name_index[name_prefix] = convert_node;
    } else {
      convert_node = iter->second;
    }

    graph->AddEdge(convert_node, 0, edge.edge->dst(), edge.edge->dst_input());
    graph->RemoveEdge(edge.edge);
  }

  TF_RETURN_IF_ERROR(AddSaveAndRestore(graph, added_variables));

  return Status::OK();
}

}  // namespace

Status DoQuantizeTraining(int32 num_bits, const string& quant_op_type,
                          Graph* graph) {
  if (graph == nullptr) {
    return errors::InvalidArgument("Cannot accept empty graph pointer.");
  }

  if (num_bits < 1 || num_bits > 63) {
    return errors::OutOfRange("num_bits should be in range [1, 63] but is: ",
                              num_bits);
  }
  int potential_input = 0;
  std::vector<EdgeToConvert> target_edges;
  for (Node* node : graph->nodes()) {
    if (nodes_to_rewrite->find(node->type_string()) !=
            nodes_to_rewrite->end() &&
        !IsGradientNode(graph, node)) {
      // Find out which types are the inputs and convert them accordingly.
      // 1. Const/Variable OP: This is quantized as signed tensors with no given
      // range.
      // 2. Activation OP: Set the range accordingly for different types of
      // activations. Currently we handle {Relu, Relu6, Sigmoid, Tanh}
      // 3. Identity OP: The quantization parameters depend on its input.
      // 4. Pooling OPs: various pooling ops. Also depends on its input.
      // 5. Reshape OP: Also depends on the first input to this op.
      // 6. Not-Listed-Above OP: If there is only 1 such op, consider it as the
      // model input. However, if there are >1 unknown ops, then returns an
      // error for now to avoid unexpected bahavior.
      // Note: The list above might not be a complete list. Please let us
      // know if you see the error so we can handle your case.
      for (const Edge* edge : node->in_edges()) {
        if (edge->src_output() == Graph::kControlSlot) {
          // Skip the control dependency input.
          continue;
        } else {
          bool signed_input = false;
          bool range_given = false;
          float input_min = 0;
          float input_max = 0;
          bool known_op = FindType(graph, edge->src(), &signed_input,
                                   &range_given, &input_min, &input_max);
          if (!known_op) {
            // Unknown op is considered as input.
            potential_input++;
            if (potential_input > kAllowedInputs) {
              return errors::Unimplemented(
                  "Found an unknown op: ", edge->src()->name(),
                  " with type: ", edge->src()->type_string(),
                  "; Unknown ops are considered as model input for now and "
                  "only ",
                  kAllowedInputs, " inputs are supported currently.");
            }
          }

          target_edges.emplace_back(EdgeToConvert(
              edge, num_bits, signed_input, range_given, input_min, input_max));
        }
      }
    }
  }

  TF_RETURN_IF_ERROR(ProcessTargetEdges(graph, quant_op_type, target_edges));

  return Status::OK();
}

Status DoQuantizeTrainingOnGraphDef(const GraphDef& input_graphdef,
                                    int32 num_bits, const string& quant_op_type,
                                    GraphDef* result_graphdef) {
  Graph graph(OpRegistry::Global());
  GraphConstructorOptions opts;
  TF_RETURN_IF_ERROR(ConvertGraphDefToGraph(opts, input_graphdef, &graph));

  // Call the rewriter on the graph.
  TF_RETURN_IF_ERROR(DoQuantizeTraining(num_bits, quant_op_type, &graph));

  // Convert the result graph back to a GraphDef.
  graph.ToGraphDef(result_graphdef);
  return Status::OK();
}

Status DoQuantizeTrainingOnSerializedGraphDef(const string& input_graph_string,
                                              int32 num_bits,
                                              const string& quant_op_type,
                                              string* result_graph_string) {
  // First create the graph from the GraphDef.
  GraphDef input_graphdef;
  if (!ParseProtoUnlimited(&input_graphdef, input_graph_string)) {
    return errors::InvalidArgument(
        "input_graph_string is not a serialized GraphDef protocol buffer");
  }
  GraphDef output_graphdef;
  TF_RETURN_IF_ERROR(DoQuantizeTrainingOnGraphDef(
      input_graphdef, num_bits, quant_op_type, &output_graphdef));

  if (!output_graphdef.SerializeToString(result_graph_string)) {
    return errors::Internal(
        "quantize training transformation resulted in invalid GraphDef");
  }
  return Status::OK();
}

}  // namespace tensorflow