aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/framework/tensor_testutil.h
blob: 53d6da0fb291cb7974e31f91b3674db6ff2a48fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#ifndef TENSORFLOW_FRAMEWORK_TENSOR_TESTUTIL_H_
#define TENSORFLOW_FRAMEWORK_TENSOR_TESTUTIL_H_

#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/public/tensor.h"
#include <gtest/gtest.h>

namespace tensorflow {
namespace test {

// Constructs a scalar tensor with 'val'.
template <typename T>
Tensor AsScalar(const T& val) {
  Tensor ret(DataTypeToEnum<T>::value, {});
  ret.scalar<T>()() = val;
  return ret;
}

// Constructs a flat tensor with 'vals'.
template <typename T>
Tensor AsTensor(gtl::ArraySlice<T> vals) {
  Tensor ret(DataTypeToEnum<T>::value, {static_cast<int64>(vals.size())});
  std::copy_n(vals.data(), vals.size(), ret.flat<T>().data());
  return ret;
}

// Constructs a tensor of "shape" with values "vals".
template <typename T>
Tensor AsTensor(gtl::ArraySlice<T> vals, const TensorShape& shape) {
  Tensor ret;
  CHECK(ret.CopyFrom(AsTensor(vals), shape));
  return ret;
}

// Fills in '*tensor' with 'vals'. E.g.,
//   Tensor x(&alloc, DT_FLOAT, TensorShape({2, 2}));
//   test::FillValues<float>(&x, {11, 21, 21, 22});
template <typename T>
void FillValues(Tensor* tensor, gtl::ArraySlice<T> vals) {
  auto flat = tensor->flat<T>();
  CHECK_EQ(flat.size(), vals.size());
  if (flat.size() > 0) {
    std::copy_n(vals.data(), vals.size(), flat.data());
  }
}

// Fills in '*tensor' with a sequence of value of val, val+1, val+2, ...
//   Tensor x(&alloc, DT_FLOAT, TensorShape({2, 2}));
//   test::FillIota<float>(&x, 1.0);
template <typename T>
void FillIota(Tensor* tensor, const T& val) {
  auto flat = tensor->flat<T>();
  std::iota(flat.data(), flat.data() + flat.size(), val);
}

// Fills in '*tensor' with a sequence of value of fn(0), fn(1), ...
//   Tensor x(&alloc, DT_FLOAT, TensorShape({2, 2}));
//   test::FillFn<float>(&x, [](int i)->float { return i*i; });
template <typename T>
void FillFn(Tensor* tensor, std::function<T(int)> fn) {
  auto flat = tensor->flat<T>();
  for (int i = 0; i < flat.size(); ++i) flat(i) = fn(i);
}

// Expects "x" and "y" are tensors of the same type, same shape, and
// identical values.
template <typename T>
void ExpectTensorEqual(const Tensor& x, const Tensor& y);

// Expects "x" and "y" are tensors of the same type, same shape, and
// approxmiate equal values, each within "abs_err".
template <typename T>
void ExpectTensorNear(const Tensor& x, const Tensor& y, const T& abs_err);

// Expects "x" and "y" are tensors of the same type (float or double),
// same shape and element-wise difference between x and y is no more
// than atol + rtol * abs(x).
void ExpectClose(const Tensor& x, const Tensor& y, double atol = 1e-6,
                 double rtol = 1e-6);

// Implementation details.

namespace internal {

template <typename T>
struct is_floating_point_type {
  static const bool value = std::is_same<T, float>::value ||
                            std::is_same<T, double>::value ||
                            std::is_same<T, std::complex<float> >::value ||
                            std::is_same<T, std::complex<double> >::value;
};

template <typename T>
static void ExpectEqual(const T& a, const T& b) {
  EXPECT_EQ(a, b);
}

template <>
void ExpectEqual<float>(const float& a, const float& b) {
  EXPECT_FLOAT_EQ(a, b);
}

template <>
void ExpectEqual<double>(const double& a, const double& b) {
  EXPECT_DOUBLE_EQ(a, b);
}

template <>
void ExpectEqual<complex64>(const complex64& a, const complex64& b) {
  EXPECT_FLOAT_EQ(a.real(), b.real()) << a << " vs. " << b;
  EXPECT_FLOAT_EQ(a.imag(), b.imag()) << a << " vs. " << b;
}

inline void AssertSameTypeDims(const Tensor& x, const Tensor& y) {
  ASSERT_EQ(x.dtype(), y.dtype());
  ASSERT_TRUE(x.IsSameSize(y))
      << "x.shape [" << x.shape().DebugString() << "] vs "
      << "y.shape [ " << y.shape().DebugString() << "]";
}

template <typename T, bool is_fp = is_floating_point_type<T>::value>
struct Expector;

template <typename T>
struct Expector<T, false> {
  static void Equal(const T& a, const T& b) { ExpectEqual(a, b); }

  static void Equal(const Tensor& x, const Tensor& y) {
    ASSERT_EQ(x.dtype(), DataTypeToEnum<T>::v());
    AssertSameTypeDims(x, y);
    auto a = x.flat<T>();
    auto b = y.flat<T>();
    for (int i = 0; i < a.size(); ++i) {
      ExpectEqual(a(i), b(i));
    }
  }
};

// Partial specialization for float and double.
template <typename T>
struct Expector<T, true> {
  static void Equal(const T& a, const T& b) { ExpectEqual(a, b); }

  static void Equal(const Tensor& x, const Tensor& y) {
    ASSERT_EQ(x.dtype(), DataTypeToEnum<T>::v());
    AssertSameTypeDims(x, y);
    auto a = x.flat<T>();
    auto b = y.flat<T>();
    for (int i = 0; i < a.size(); ++i) {
      ExpectEqual(a(i), b(i));
    }
  }

  static void Near(const T& a, const T& b, const double abs_err) {
    if (a != b) {  // Takes care of inf.
      EXPECT_LE(std::abs(a - b), abs_err) << "a = " << a << " b = " << b;
    }
  }

  static void Near(const Tensor& x, const Tensor& y, const double abs_err) {
    ASSERT_EQ(x.dtype(), DataTypeToEnum<T>::v());
    AssertSameTypeDims(x, y);
    auto a = x.flat<T>();
    auto b = y.flat<T>();
    for (int i = 0; i < a.size(); ++i) {
      Near(a(i), b(i), abs_err);
    }
  }
};

}  // namespace internal

template <typename T>
void ExpectTensorEqual(const Tensor& x, const Tensor& y) {
  internal::Expector<T>::Equal(x, y);
}

template <typename T>
void ExpectTensorNear(const Tensor& x, const Tensor& y, const double abs_err) {
  static_assert(internal::is_floating_point_type<T>::value,
                "T is not a floating point types.");
  internal::Expector<T>::Near(x, y, abs_err);
}

}  // namespace test
}  // namespace tensorflow

#endif  // TENSORFLOW_FRAMEWORK_TENSOR_TESTUTIL_H_