aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/framework/tensor.cc
blob: 4a1b65db97d407754362b52c281b2d97c1dd904e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
// Implementation notes:
//
// Tensor.cc uses a few templated classes and structs to facilitate
// implementation of the Tensor class.
//
// * Buffer<T>: provides the implementation for a typed array T[n].
//   The array is allocated by the given allocator. It runs T's
//   default constructors and destructors when T is not a simple type
//   (e.g., string.), and skips them otherwise.
//
// * Helper<T>: provides various routines given type T.  The routines
//   includes running the constructor and destructor of T[], encoding
//   an decoding T[] into/from a Cord, etc.

#include "tensorflow/core/public/tensor.h"

#include "tensorflow/core/framework/tensor.pb.h"
#include "tensorflow/core/framework/type_traits.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/lib/core/coding.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/stl_util.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/port.h"
#include "tensorflow/core/platform/protobuf.h"
#include "tensorflow/core/platform/tensor_coding.h"

namespace tensorflow {
namespace {

// Typed ref-counted buffer: T[n].
template <typename T>
class Buffer : public TensorBuffer {
 public:
  Buffer(Allocator* a, int64 n);

  void* data() const override { return data_; }
  size_t size() const override { return sizeof(T) * elem_; }
  TensorBuffer* root_buffer() override { return this; }
  void FillAllocationDescription(AllocationDescription* proto) const override {
    int64 rb = size();
    proto->set_requested_bytes(rb);
    proto->set_allocator_name(alloc_->Name());
    if (alloc_->TracksAllocationSizes()) {
      int64 ab = alloc_->AllocatedSize(data_);
      proto->set_allocated_bytes(ab);
    }
  }

 private:
  Allocator* alloc_;
  T* data_;
  int64 elem_;

  ~Buffer() override;

  TF_DISALLOW_COPY_AND_ASSIGN(Buffer);
};

// is_simple<T>::value if T[] can be safely constructed and destructed
// without running T() and ~T().  We do not use std::is_trivial<T>
// directly because std::complex<float> is not trival but its array
// can be constructed and destructed without running its default ctor
// and dtor.
template <typename T>
struct is_simple {
  static const bool value = std::is_trivial<T>::value ||
                            std::is_same<T, complex64>::value ||
                            is_quantized<T>::value;
};

template <>
struct is_simple<bfloat16> {
  static const bool value = true;
};

// A set of helper functions depending on T.
template <typename T>
struct Helper {
  // By default, we assume T is a simple type (float, int32, etc.)
  static_assert(is_simple<T>::value, "T is not a simple type.");
  typedef protobuf::RepeatedField<T> RepeatedFieldType;

  // No constructor to run.
  static void RunCtor(T* p, int n) {}

  // No destructor to run.
  static void RunDtor(T* p, int n) {}

  // Encoder of simple type T to a string.  We do a copy.
  template <typename Destination>
  static void Encode(TensorBuffer* in, int64 n, Destination* out) {
    DCHECK_EQ(in->size(), sizeof(T) * n);
    port::AssignRefCounted(StringPiece(in->base<const char>(), in->size()), in,
                           out);
  }

  // Decoder of simple type T. Copy the bytes from "in" into the
  // tensor buffer.
  template <typename Source>
  static TensorBuffer* Decode(Allocator* a, const Source& in, int64 n) {
    if (in.size() != sizeof(T) * n) {
      LOG(ERROR) << "Input size was " << in.size() << " and expected "
                 << sizeof(T) * n;
      return nullptr;
    }
    Buffer<T>* buf = new Buffer<T>(a, n);
    port::CopyToArray(in, buf->template base<char>());
    return buf;
  }

  // Memory usage.
  static int64 TotalBytes(TensorBuffer* in, int64 n) {
    DCHECK_EQ(in->size(), sizeof(T) * n);
    return in->size();
  }
};

// Helper specialization for string (the only non-simple type we
// support).
template <>
struct Helper<string> {
  // Proto message uses RepeatedFieldType to hold repeated T.
  typedef protobuf::RepeatedPtrField<string> RepeatedFieldType;

  // Runs string's default constructor for  p[0], p[1], ..., p[n-1].
  static void RunCtor(string* p, int n) {
    for (int i = 0; i < n; ++p, ++i) new (p) string();
  }

  // Runs T's default destructor for  p[0], p[1], ..., p[n-1].
  static void RunDtor(string* p, int n) {
    for (int i = 0; i < n; ++p, ++i) p->~string();
  }

  // Encodes "n" elements of type string stored in "in" into Cord
  // "out", which is usually the TensorProto::tensor_content.
  template <typename Destination>
  static void Encode(TensorBuffer* in, int64 n, Destination* out) {
    port::EncodeStringList(in->base<const string>(), n, out);
  }

  // Decodes "n" elements of type string from "in" and constructs a
  // buffer out of it. Returns nullptr if the decoding fails. "in" is
  // usually the TensorProto::tensor_content.
  template <typename Source>
  static TensorBuffer* Decode(Allocator* a, const Source& in, int64 n) {
    Buffer<string>* buf = new Buffer<string>(a, n);
    string* strings = buf->template base<string>();
    if (port::DecodeStringList(in, strings, n)) {
      return buf;
    } else {
      buf->Unref();
      return nullptr;
    }
  }

  // Returns the estimated memory usage of "n" elements of type T
  // stored in buffer "in".
  static int64 TotalBytes(TensorBuffer* in, int n) {
    int64 tot = in->size();
    DCHECK_EQ(tot, sizeof(string) * n);
    const string* p = in->base<const string>();
    for (int i = 0; i < n; ++i, ++p) tot += p->size();
    return tot;
  }
};

template <typename T>
struct ProtoHelper {};

// For a C++ type "T" (float, double, int32, etc.), the repeated field
// "N"_val (float_val, int_val, label_val, etc.) of type "F" (float,
// int32, string, etc) in the TensorProto is used for serializing the
// tensor of type "T".
#define PROTO_TRAITS(T, F, N)                                          \
  template <>                                                          \
  struct ProtoHelper<T> {                                              \
    typedef Helper<F>::RepeatedFieldType FieldType;                    \
    static FieldType::const_iterator Begin(const TensorProto& proto) { \
      return proto.N##_val().begin();                                  \
    }                                                                  \
    static size_t NumElements(const TensorProto& proto) {              \
      return proto.N##_val().size();                                   \
    }                                                                  \
    static void Fill(const T* data, size_t n, TensorProto* proto) {    \
      typename ProtoHelper<T>::FieldType copy(data, data + n);         \
      proto->mutable_##N##_val()->Swap(&copy);                         \
    }                                                                  \
  };
PROTO_TRAITS(float, float, float);
PROTO_TRAITS(double, double, double);
PROTO_TRAITS(int32, int32, int);
PROTO_TRAITS(uint8, int32, int);
PROTO_TRAITS(int16, int32, int);
PROTO_TRAITS(int8, int32, int);
PROTO_TRAITS(int64, int64, int64);
PROTO_TRAITS(bool, bool, bool);
PROTO_TRAITS(string, string, string);
PROTO_TRAITS(qint8, int32, int);
PROTO_TRAITS(quint8, int32, int);
#undef PROTO_TRAITS

template <>
struct ProtoHelper<complex64> {
  typedef Helper<float>::RepeatedFieldType FieldType;
  static const complex64* Begin(const TensorProto& proto) {
    return reinterpret_cast<const complex64*>(proto.scomplex_val().data());
  }
  static size_t NumElements(const TensorProto& proto) {
    return proto.scomplex_val().size() / 2;
  }
  static void Fill(const complex64* data, size_t n, TensorProto* proto) {
    const float* p = reinterpret_cast<const float*>(data);
    FieldType copy(p, p + n * 2);
    proto->mutable_scomplex_val()->Swap(&copy);
  }
};

template <>
struct ProtoHelper<qint32> {
  typedef Helper<int32>::RepeatedFieldType FieldType;
  static const qint32* Begin(const TensorProto& proto) {
    return reinterpret_cast<const qint32*>(proto.int_val().data());
  }
  static size_t NumElements(const TensorProto& proto) {
    return proto.int_val().size();
  }
  static void Fill(const qint32* data, size_t n, TensorProto* proto) {
    const int32* p = reinterpret_cast<const int32*>(data);
    FieldType copy(p, p + n);
    proto->mutable_int_val()->Swap(&copy);
  }
};

template <>
struct ProtoHelper<bfloat16> {
  typedef Helper<float>::RepeatedFieldType FieldType;
  static const bfloat16* Begin(const TensorProto& proto) {
    return reinterpret_cast<const bfloat16*>(proto.int_val().data());
  }
  static size_t NumElements(const TensorProto& proto) {
    return proto.int_val().size();
  }
  static void Fill(const bfloat16* data, size_t n, TensorProto* proto) {
    proto->mutable_int_val()->Reserve(n);
    for (size_t i = 0; i < n; ++i) {
      proto->mutable_int_val()->AddAlreadyReserved(data[i].value);
    }
  }
};

template <typename T>
Buffer<T>::Buffer(Allocator* a, int64 n)
    : alloc_(a), data_(a->Allocate<T>(n)), elem_(n) {
  if (data_) Helper<T>::RunCtor(data_, elem_);
}

template <typename T>
Buffer<T>::~Buffer() {
  if (data_) {
    Helper<T>::RunDtor(data_, elem_);
    alloc_->Deallocate<T>(data_);
  }
}

// Allocates a T[n] buffer. Fills in the buffer with repeated values
// in "in".  If "in" has less values than "n", fills the rest of T[n]
// with the last value. If "in" has no values, fills T[n] with the
// default value for T.
//
// This routine is using the typed fields (float_val, etc.) in the
// tenor proto as opposed to the untyped binary representation
// (tensor_content). This is used when we expect the TensorProto is
// used by a client program which may not know how to encode a tensor
// in the compact binary representation.
template <typename T>
TensorBuffer* FromProtoField(Allocator* a, const TensorProto& in, int64 n) {
  CHECK_GT(n, 0);
  Buffer<T>* buf = new Buffer<T>(a, n);
  T* data = buf->template base<T>();
  const int64 in_n = ProtoHelper<T>::NumElements(in);
  auto begin = ProtoHelper<T>::Begin(in);
  if (n <= in_n) {
    std::copy_n(begin, n, data);
  } else if (in_n > 0) {
    std::copy_n(begin, in_n, data);
    const T& last = *(data + in_n - 1);
    std::fill_n(data + in_n, n - in_n, last);
  } else {
    std::fill_n(data, n, T());
  }
  return buf;
}

// Copies T[n] stored in the buffer "in" into the repeated field in
// "out" corresponding to type T.
template <typename T>
void ToProtoField(const TensorBuffer& in, int64 n, TensorProto* out) {
  const T* data = in.base<const T>();
  // NOTE: T may not the same as
  // ProtoHelper<T>::FieldType::value_type.  E.g., T==int16,
  // ProtoHelper<T>::FieldType::value_type==int32.  If performance is
  // critical, we can specialize T=float and do memcpy directly.
  ProtoHelper<T>::Fill(data, n, out);
}

void RefIfNonNull(core::RefCounted* buf) {
  if (buf) buf->Ref();
}

void UnrefIfNonNull(core::RefCounted* buf) {
  if (buf) buf->Unref();
}

}  // end namespace

Tensor::Tensor() : Tensor(DT_FLOAT) {}

Tensor::Tensor(DataType type) : type_(type), shape_({0}), buf_(nullptr) {}

Tensor::Tensor(const Tensor& other)
    : type_(other.dtype()), shape_(other.shape()), buf_(other.buf_) {
  RefIfNonNull(buf_);
}

Tensor::Tensor(DataType type, const TensorShape& shape, TensorBuffer* buf)
    : type_(type), shape_(shape), buf_(buf) {
  RefIfNonNull(buf);
}

bool Tensor::IsInitialized() const {
  return buf_ != nullptr && buf_->data() != nullptr;
}

Tensor::~Tensor() { UnrefIfNonNull(buf_); }

void Tensor::CopyFromInternal(const Tensor& other, const TensorShape& shape) {
  CHECK_EQ(shape.num_elements(), other.NumElements());
  type_ = other.dtype();
  shape_ = shape;
  if (buf_ != other.buf_) {
    UnrefIfNonNull(buf_);
    buf_ = other.buf_;
    RefIfNonNull(buf_);
  }
}

// The macro CASES() expands to a switch statement conditioned on
// TYPE_ENUM. Each case expands the STMTS after a typedef for T.
#define SINGLE_ARG(...) __VA_ARGS__
#define CASE(TYPE, STMTS)             \
  case DataTypeToEnum<TYPE>::value: { \
    typedef TYPE T;                   \
    STMTS;                            \
    break;                            \
  }
#define CASES(TYPE_ENUM, STMTS)                       \
  switch (TYPE_ENUM) {                                \
    CASE(float, SINGLE_ARG(STMTS))                    \
    CASE(double, SINGLE_ARG(STMTS))                   \
    CASE(int32, SINGLE_ARG(STMTS))                    \
    CASE(uint8, SINGLE_ARG(STMTS))                    \
    CASE(int16, SINGLE_ARG(STMTS))                    \
    CASE(int8, SINGLE_ARG(STMTS))                     \
    CASE(string, SINGLE_ARG(STMTS))                   \
    CASE(complex64, SINGLE_ARG(STMTS))                \
    CASE(int64, SINGLE_ARG(STMTS))                    \
    CASE(bool, SINGLE_ARG(STMTS))                     \
    CASE(qint32, SINGLE_ARG(STMTS))                   \
    CASE(quint8, SINGLE_ARG(STMTS))                   \
    CASE(qint8, SINGLE_ARG(STMTS))                    \
    CASE(bfloat16, SINGLE_ARG(STMTS))                 \
    case DT_INVALID:                                  \
      LOG(FATAL) << "Type not set";                   \
      break;                                          \
    default:                                          \
      LOG(FATAL) << "Unexpected type: " << TYPE_ENUM; \
      break;                                          \
  }

Tensor::Tensor(Allocator* a, DataType type, const TensorShape& shape)
    : type_(type), shape_(shape), buf_(nullptr) {
  CHECK_NOTNULL(a);
  if (shape_.num_elements() > 0) {
    CASES(type, buf_ = new Buffer<T>(a, shape.num_elements()));
  }
}

Tensor::Tensor(DataType type, const TensorShape& shape)
    : Tensor(cpu_allocator(), type, shape) {}

template <typename T>
class SubBuffer : public TensorBuffer {
 public:
  // This buffer is an alias to buf[delta, delta + n).
  SubBuffer(TensorBuffer* buf, int64 delta, int64 n)
      : root_(buf->root_buffer()), data_(buf->base<T>() + delta), elem_(n) {
    // Sanity check. The caller should ensure the sub buffer is valid.
    CHECK_LE(root_->base<T>(), this->base<T>());
    T* root_limit = root_->base<T>() + root_->size() / sizeof(T);
    CHECK_LE(this->base<T>(), root_limit);
    CHECK_LE(this->base<T>() + n, root_limit);
    // Hold a ref of the underlying root buffer.
    // NOTE: 'buf' is a sub-buffer inside the 'root_' buffer.
    root_->Ref();
  }

  void* data() const override { return data_; }
  size_t size() const override { return sizeof(T) * elem_; }
  TensorBuffer* root_buffer() override { return root_; }
  void FillAllocationDescription(AllocationDescription* proto) const override {
    root_->FillAllocationDescription(proto);
  }

 private:
  TensorBuffer* root_;
  T* data_;
  int64 elem_;

  ~SubBuffer() override { root_->Unref(); }

  TF_DISALLOW_COPY_AND_ASSIGN(SubBuffer);
};

Tensor Tensor::Slice(int64 start, int64 limit) const {
  CHECK_GE(dims(), 1);
  CHECK_LE(0, start);
  CHECK_LE(start, limit);
  int64 dim0_size = shape_.dim_size(0);
  CHECK_LE(limit, dim0_size);
  if ((start == 0) && (limit == dim0_size)) {
    return *this;
  }
  Tensor ret;
  ret.type_ = type_;
  ret.shape_ = shape_;
  ret.buf_ = nullptr;
  if (dim0_size > 0) {
    const int64 elems_per_dim0 = NumElements() / dim0_size;
    const int64 delta = start * elems_per_dim0;
    dim0_size = limit - start;
    ret.shape_.set_dim(0, dim0_size);
    const int64 num_elems = dim0_size * elems_per_dim0;
    if (buf_) {
      CASES(type_, ret.buf_ = new SubBuffer<T>(buf_, delta, num_elems));
    }
  }
  return ret;
}

bool Tensor::FromProto(const TensorProto& proto) {
  return FromProto(cpu_allocator(), proto);
}

bool Tensor::FromProto(Allocator* a, const TensorProto& proto) {
  CHECK_NOTNULL(a);
  TensorBuffer* p = nullptr;
  if (!TensorShape::IsValid(proto.tensor_shape())) return false;
  if (proto.dtype() == DT_INVALID) return false;
  TensorShape shape(proto.tensor_shape());
  const int64 N = shape.num_elements();
  if (N > 0 && proto.dtype()) {
    if (!proto.tensor_content().empty()) {
      const auto& content = proto.tensor_content();
      CASES(proto.dtype(), p = Helper<T>::Decode(a, content, N));
    } else {
      CASES(proto.dtype(), p = FromProtoField<T>(a, proto, N));
    }
    if (p == nullptr) return false;
  }
  type_ = proto.dtype();
  shape_ = shape;
  UnrefIfNonNull(buf_);
  buf_ = p;
  return true;
}

void Tensor::AsProtoField(TensorProto* proto) const {
  proto->Clear();
  proto->set_dtype(dtype());
  shape_.AsProto(proto->mutable_tensor_shape());
  if (buf_) {
    CASES(dtype(), ToProtoField<T>(*buf_, shape_.num_elements(), proto));
  }
}

void Tensor::AsProtoTensorContent(TensorProto* proto) const {
  proto->Clear();
  proto->set_dtype(type_);
  shape_.AsProto(proto->mutable_tensor_shape());
  if (buf_) {
    CASES(dtype(), Helper<T>::Encode(buf_, shape_.num_elements(),
                                     proto->mutable_tensor_content()));
  }
}

size_t Tensor::TotalBytes() const {
  if (shape_.num_elements() == 0) return 0;
  CHECK(buf_) << "null buf_ with non-zero shape size " << shape_.num_elements();
  CASES(dtype(), return Helper<T>::TotalBytes(buf_, shape_.num_elements()));
  return 0;  // Makes compiler happy.
}

bool Tensor::CanUseDMA() const {
  CASES(dtype(), return is_simple<T>::value);
  return false;  // Makes compiler happy.
}

#undef CASES
#undef CASE

string Tensor::SummarizeValue(int64 max_entries) const {
  string ret;
  for (int64 i = 0; i < std::min(max_entries, NumElements()); ++i) {
    if (i > 0) strings::StrAppend(&ret, " ");
    switch (dtype()) {
      case DT_STRING:
        strings::StrAppend(&ret, str_util::CEscape(flat<string>()(i)));
        break;
      case DT_BOOL:
        strings::StrAppend(&ret, flat<bool>()(i) ? "True" : "False");
        break;

#define CASE(DT_ENUM)                                                   \
  case DT_ENUM:                                                         \
    strings::StrAppend(&ret, flat<EnumToDataType<DT_ENUM>::Type>()(i)); \
    break

        CASE(DT_FLOAT);
        CASE(DT_DOUBLE);
        CASE(DT_INT32);
        CASE(DT_UINT8);
        CASE(DT_INT16);
        CASE(DT_INT8);
        CASE(DT_INT64);

#undef CASE
      default:
        // TODO(zhifengc, josh11b): Pretty-print other types (bool,
        // complex64, quantized, bfloat16).
        strings::StrAppend(&ret, " ?");
    }
  }
  if (max_entries < NumElements()) strings::StrAppend(&ret, "...");

  return ret;
}

StringPiece Tensor::tensor_data() const {
  if (buf_ == nullptr) return StringPiece();  // Don't die for empty tensors
  return StringPiece(static_cast<char*>(buf_->data()), TotalBytes());
}

string Tensor::DebugString() const {
  return strings::StrCat("Tensor<type: ", DataTypeString(dtype()), " shape: ",
                         shape().ShortDebugString(), " values: ",
                         SummarizeValue(3), ">");
}

void Tensor::FillDescription(TensorDescription* description) const {
  description->set_dtype(dtype());
  shape().AsProto(description->mutable_shape());
  buf_->FillAllocationDescription(
      description->mutable_allocation_description());
}

}  // namespace tensorflow