aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/framework/op_kernel.h
blob: 46c21dcef01df0f3a1b471e96659b7f1fdb1e935 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_FRAMEWORK_OP_KERNEL_H_
#define TENSORFLOW_FRAMEWORK_OP_KERNEL_H_

#include <functional>

#include <utility>
#include <vector>
#include "tensorflow/core/framework/allocator.h"
#include "tensorflow/core/framework/cancellation.h"
#include "tensorflow/core/framework/control_flow.h"
#include "tensorflow/core/framework/device_base.h"
#include "tensorflow/core/framework/kernel_def_builder.h"
#include "tensorflow/core/framework/node_def_util.h"
#include "tensorflow/core/framework/op.h"  // TODO(b/62899350): Remove
#include "tensorflow/core/framework/rendezvous.h"
#include "tensorflow/core/framework/selective_registration.h"
#include "tensorflow/core/framework/session_state.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_shape.pb.h"  // TODO(b/62899350): Remove
#include "tensorflow/core/framework/tracking_allocator.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/framework/types.pb.h"
#include "tensorflow/core/framework/unique_tensor_references.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/lib/gtl/manual_constructor.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/core/platform/types.h"

namespace Eigen {
struct ThreadPoolDevice;
struct GpuDevice;
struct SyclDevice;
}  // end namespace Eigen

namespace tensorflow {

namespace checkpoint {
class TensorSliceReaderCacheWrapper;
}  // namespace checkpoint

class AsyncOpKernel;
class FunctionCallFrame;
class FunctionLibraryRuntime;
class OpKernelConstruction;  // declared below
class OpKernelContext;       // declared below
class OpRegistryInterface;
class ResourceMgr;
class ScopedStepContainer;
class StepStatsCollector;

class OpKernel {
 public:
  // OpKernel won't be instantiated by the scheduler, so you may perform
  // expensive initialization in the descendant's constructor.
  explicit OpKernel(OpKernelConstruction* context);
  virtual ~OpKernel();

  // An OpKernel's computation can be either synchronous or
  // asynchronous. All OpKernel Compute() methods must be thread-safe as they
  // may be called concurrently (e.g. by multiple executions of the same graph
  // concurrently).
  //
  // Most OpKernels should compute synchronously.  They should
  // subclass OpKernel and override the Compute() method and have it
  // return after completing the supplied work.
  //
  // A few special kernels might need to be asynchronous to bound the
  // number of threads (e.g., network receive operations). These
  // kernels must subclass AsyncOpKernel and override
  // AsyncOpKernel::ComputeAsync().
  //
  // In both cases, implementations of Compute() and ComputeAsync()
  // get inputs and write outputs through the given OpKernelContext
  // and returns a status via context->SetStatus(). They must be
  // thread-safe.

  // Synchronous compute.
  //
  // "context" is guaranteed to be alive until Compute() returns.
  virtual void Compute(OpKernelContext* context) = 0;

  // Returns nullptr iff this op kernel is synchronous.
  virtual AsyncOpKernel* AsAsync() { return nullptr; }

  // Returns true iff this op kernel is considered "expensive". The
  // runtime may use this flag to optimize graph execution for example
  // to "inline" inexpensive kernels.
  virtual bool IsExpensive() { return expensive_; }

  // Accessors.
  const NodeDef& def() const { return *def_; }
  const string& name() const;              // Same as def().name()
  const string& type_string() const;       // Same as def().op()
  const string& requested_device() const;  // Same as def().device()
  bool is_internal() const { return is_internal_; }

  int num_inputs() const { return input_types_.size(); }
  DataType input_type(int i) const { return input_types_[i]; }
  const DataTypeVector& input_types() const { return input_types_; }
  const MemoryTypeVector& input_memory_types() const {
    return input_memory_types_;
  }
  const string& requested_input(int i) const;  // Same as def().input(i)

  int num_outputs() const { return output_types_.size(); }
  DataType output_type(int o) const { return output_types_[o]; }
  const DataTypeVector& output_types() const { return output_types_; }
  const MemoryTypeVector& output_memory_types() const {
    return output_memory_types_;
  }

  Status InputRange(StringPiece input_name, int* start, int* stop) const;
  Status OutputRange(StringPiece output_name, int* start, int* stop) const;

  // We allow legacy scalars within Google up until GraphDef version 6.
  // TODO(irving): Remove when we can drop support for GraphDef version 5.
  bool allow_legacy_scalars() const {
#if defined(PLATFORM_GOOGLE) || defined(PLATFORM_GOOGLE_ANDROID)
    return graph_def_version_ < 6;
#else
    return false;
#endif
  }

  // Allow either scalars or (if allowing legacy scalars) shape (1,).
  bool IsLegacyScalar(const TensorShape& shape) const {
    return shape.dims() == 0 || (allow_legacy_scalars() && shape.dims() == 1 &&
                                 shape.dim_size(0) == 1);
  }

  // Allow rank 1 or (if allowing legacy scalars) rank 0.
  bool IsLegacyVector(const TensorShape& shape) const {
    return shape.dims() == 1 || (allow_legacy_scalars() && shape.dims() == 0);
  }

  // Turn a shape Tensor into a TensorShape
  // TODO(irving): Move to TensorShapeUtils once !allow_legacy_scalars
  Status MakeShape(const Tensor& shape, TensorShape* out) const;

 private:
  const std::unique_ptr<const NodeDef> def_;
  const DataTypeVector input_types_;
  const MemoryTypeVector input_memory_types_;
  const DataTypeVector output_types_;
  const MemoryTypeVector output_memory_types_;
  const int graph_def_version_;
  const bool is_internal_;  // True if this is an internal operation
  NameRangeMap input_name_map_;
  NameRangeMap output_name_map_;
  bool expensive_;

  TF_DISALLOW_COPY_AND_ASSIGN(OpKernel);
};

class AsyncOpKernel : public OpKernel {
 public:
  using OpKernel::OpKernel;  // Lift OpKernel constructors.

  // Asynchronous compute.
  //
  // Implementations of ComputeAsync() must run "done" to signal the
  // completion of the computation. "context" is guaranteed to be
  // alive until the "done" callback starts.
  typedef std::function<void()> DoneCallback;
  virtual void ComputeAsync(OpKernelContext* context, DoneCallback done) = 0;

  AsyncOpKernel* AsAsync() final { return this; }

  void Compute(OpKernelContext* context) final;

  bool IsExpensive() override { return true; }
};

// Wraps a tensor that is held by an Op across calls to Compute(). For
// memory safety when using asynchronous devices like GPUs, the system
// must be notified when a Tensor is used inside an Op execution. The
// wrapper ensures that all uses of the Tensor are tracked, because in
// order to retrieve the Tensor the caller must use AccessTensor which
// notifies the context.
class PersistentTensor {
 public:
  PersistentTensor() {}
  explicit PersistentTensor(const Tensor& tensor) : tensor_(tensor) {}

  // Caller does not own the returned Tensor*.
  Tensor* AccessTensor(OpKernelConstruction* context);
  // Caller does not own the returned Tensor*.
  Tensor* AccessTensor(OpKernelContext* context);

  // The check for initialization does not need to access the
  // underlying tensor buffer.
  bool IsInitialized() const { return tensor_.IsInitialized(); }

  int64 NumElements() const { return tensor_.NumElements(); }

  int64 AllocatedBytes() const { return tensor_.AllocatedBytes(); }

 private:
  Tensor tensor_;
};

class OpKernelConstruction {
 public:
  OpKernelConstruction(DeviceType device_type, DeviceBase* device,
                       Allocator* allocator, const NodeDef* node_def,
                       const OpDef* op_def, FunctionLibraryRuntime* flib,
                       const DataTypeSlice& input_types,
                       const MemoryTypeSlice& input_memory_types,
                       const DataTypeSlice& output_types,
                       const MemoryTypeSlice& output_memory_types,
                       int graph_def_version, Status* status);

  Env* env() const { return device_->env(); }

  // Allocation of tensors during kernel construction:
  //
  // It is legal to temporarily allocate scratch tensor storage during
  // Op kernel construction. Scratch tensors should be allocated using
  // allocate_temp below. Some kernels need to keep tensors in between
  // invocations. If such a Tensor is allocated during kernel
  // construction this must be done using allocate_persistent, and the
  // Op may only store the returned PersistentTensor object. When the
  // Tensor is needed in a subsequent invocation, it can be retrieved
  // from the PersistentTensor using the AccessTensor method. This
  // ensures that the system is made aware of any use of the tensor's
  // allocated memory, which is needed for correctness on asynchronous
  // devices such as GPUs.

  // Allocates a temporary Tensor of the specified type and shape. The
  // Tensor must not be used after kernel construction is
  // complete. See comment above.
  Status allocate_temp(DataType type, const TensorShape& shape,
                       Tensor* out_temp);

  // Allocates a Tensor of the specified type and shape which the Op
  // plans to maintain as persistent state. out_persistent holds the
  // PersistentTensor which is the object the caller should store. For
  // convenience, if out_tensor is non-null then it will be filled in
  // with a Tensor* pointing to the newly-allocated tensor which the
  // caller can use instead of calling
  // out_persistent->AccessTensor. The caller does not own out_tensor
  // and should not keep a copy of it. See comment above.
  Status allocate_persistent(DataType type, const TensorShape& shape,
                             PersistentTensor* out_persistent,
                             Tensor** out_tensor);

  // User-supplied configuration of this operation.
  const NodeDef& def() const { return *def_; }

  // For inspecting the inputs to this operation.
  int num_inputs() const { return input_types_.size(); }
  DataType input_type(int i) const { return input_types_[i]; }
  const DataTypeSlice& input_types() const { return input_types_; }
  const MemoryTypeSlice& input_memory_types() const {
    return input_memory_types_;
  }

  // For inspecting the outputs expected from this operation.
  int num_outputs() const { return output_types_.size(); }
  DataType output_type(int i) const { return output_types_[i]; }
  const DataTypeSlice& output_types() const { return output_types_; }
  const MemoryTypeSlice& output_memory_types() const {
    return output_memory_types_;
  }

  // If expected_inputs == inputs() and expected_outputs == output_types(),
  // returns OK, else returns INVALID_ARGUMENT with an error message.
  // Recommended for Ops with dynamic signatures.
  Status MatchSignature(const DataTypeSlice expected_inputs,
                        const DataTypeSlice expected_outputs);

  // For recording configuration errors during construction.
  void SetStatus(const Status& status);
  const Status& status() const { return *status_; }

  // Look up the attr with name attr_name and set *value to its value.  If no
  // attr with attr_name is found in def(), or the attr does not have
  // a matching type, a non-ok status will be returned.
  template <class T>
  Status GetAttr(StringPiece attr_name, T* value) const;

  // Return the device type.
  const DeviceType& device_type() const { return device_type_; }

  // If not nullptr, the kernel can instantiate functions defined in
  // the library. E.g.,
  // CHECK_NOTNULL(function_library())->Instantiate("Foo", ...).
  FunctionLibraryRuntime* function_library() const { return flib_; }

  // The GraphDef version whose behavior we should follow.
  const int graph_def_version() const { return graph_def_version_; }

  // Helper routines for the OP_REQUIRES macros
  void CtxFailure(Status s);
  void CtxFailureWithWarning(Status s);

  // Unrecommended functions: these are functions that have some
  // current uses but are not recommended for use, and may go away at
  // some future major version release.

  // May be used, e.g., to get GPU handles, etc.
  //
  // Currently only used to call MakeTensorFromProto() for
  // implementing ConstantOp for every device.  See comments
  // on Device::MakeTensorFromProto for longer-term replacement
  // ideas.
  DeviceBase* device() const { return device_; }

 private:
  const DeviceType device_type_;
  DeviceBase* const device_;
  Allocator* allocator_;
  const NodeDef* def_;
  const OpDef* op_def_;
  FunctionLibraryRuntime* flib_;
  DataTypeSlice input_types_;
  MemoryTypeSlice input_memory_types_;
  DataTypeSlice output_types_;
  MemoryTypeSlice output_memory_types_;
  const int graph_def_version_;
  Status* status_;

  // Allow op_def_ across from OpKernel, but not from subclasses.
  // TODO(irving): Remove protos from this header entirely.
  friend class OpKernel;

  TF_DISALLOW_COPY_AND_ASSIGN(OpKernelConstruction);
};

// TODO(mrry): Consider converting to a random_access_iterator, and upgrading
// tensorflow::gtl::iterator_range to make the below container classes
// unnecessary.
template <typename ListType, typename ElementType>
class OpArgIterator {
 public:
  typedef OpArgIterator<ListType, ElementType> ME;
  OpArgIterator(const ListType* list, int i) : list_(list), i_(i) {}
  bool operator==(const ME& rhs) {
    DCHECK(list_ == rhs.list_);
    return i_ == rhs.i_;
  }
  bool operator!=(const ME& rhs) {
    DCHECK(list_ == rhs.list_);
    return i_ != rhs.i_;
  }
  void operator++() { ++i_; }
  ElementType& operator*() { return (*list_)[i_]; }

 private:
  const ListType* const list_;
  int i_;
};

// Utility class for representing a list of immutable input tensors
// that are passed to the op as a single named argument.
class OpInputList {
 public:
  typedef OpArgIterator<OpInputList, const Tensor&> Iterator;
  OpInputList() : ctx_(nullptr), start_(0), stop_(0) {}
  OpInputList(OpKernelContext* ctx, int start, int stop)
      : ctx_(ctx), start_(start), stop_(stop) {}
  OpInputList& operator=(const OpInputList& other) = default;
  const Tensor& operator[](int i) const;
  int size() const { return stop_ - start_; }
  Iterator begin() const { return Iterator(this, 0); }
  Iterator end() const { return Iterator(this, size()); }

 private:
  OpKernelContext* ctx_;  // not owned
  int start_;
  int stop_;
};

// Utility class for representing a list of mutable ("ref") input tensors
// that are passed to the op as a single named argument.
class OpMutableInputList {
 public:
  typedef OpArgIterator<OpMutableInputList, Tensor*> Iterator;
  OpMutableInputList(OpKernelContext* ctx, int start, int stop)
      : ctx_(ctx), start_(start), stop_(stop) {}
  OpMutableInputList() : ctx_(nullptr), start_(0), stop_(0) {}
  OpMutableInputList& operator=(const OpMutableInputList& other) = default;
  Tensor at(int i, bool lock_held);
  mutex* ref_mutex(int i);
  int size() const { return stop_ - start_; }
  Iterator begin() const { return Iterator(this, 0); }
  Iterator end() const { return Iterator(this, size()); }

 private:
  OpKernelContext* ctx_;  // not owned
  int start_;
  int stop_;
};

// Utility class for representing a list of output tensors that are
// grouped as a single named output.
class OpOutputList {
 public:
  typedef OpArgIterator<OpOutputList, const Tensor*> Iterator;
  OpOutputList() : ctx_(nullptr), start_(0), stop_(0) {}
  OpOutputList(OpKernelContext* ctx, int start, int stop)
      : ctx_(ctx), start_(start), stop_(stop) {}
  OpOutputList& operator=(const OpOutputList& other) = default;
  Tensor* operator[](int i);
  bool required(int i) const;
  DataType expected_output_dtype(int i) const;
  Status allocate(int i, const TensorShape& shape, Tensor** output);
  void set(int i, const Tensor& tensor);
  void set_ref(int i, mutex* mu, Tensor* tensor_for_ref);
  int size() const { return stop_ - start_; }
  Iterator begin() const { return Iterator(this, 0); }
  Iterator end() const { return Iterator(this, size()); }

 private:
  OpKernelContext* ctx_;  // not owned
  int start_;
  int stop_;
};

// Holds a tensor or tensor reference. For tensor references, we need
// a mutex to prevent concurrent access to the tensor.
struct TensorValue {
  TensorValue() : mutex_if_ref(nullptr), tensor(nullptr) {}
  TensorValue(Tensor* t)  // NOLINT(runtime/explicit)
      : mutex_if_ref(nullptr), tensor(t) {}
  TensorValue(mutex* mu, Tensor* t) : mutex_if_ref(mu), tensor(t) {}
  Tensor* operator->() const { return tensor; }
  bool is_ref() const { return mutex_if_ref != nullptr; }

  mutex* mutex_if_ref;  // nullptr if not a ref, != nullptr if a ref
  Tensor* tensor;
};

class OpKernelContext {
 public:
  // The first element of a WrappedAllocator is a "base" Allocator and
  // the second element is that Allocator wrapped by a
  // TrackingAllocator
  typedef std::pair<Allocator*, TrackingAllocator*> WrappedAllocator;

  // TODO(zhifengc): Do some cleanup of Params.
  // The Params struct is passed in to initialize an OpKernelContext,
  // and must outlive the OpKernelContext.
  struct Params {
    ~Params() { delete eigen_gpu_device; }

    // The step being executed.
    int64 step_id = 0;

    // The op kernel being computed.
    OpKernel* op_kernel = nullptr;

    // The device on which the kernel is running.
    DeviceBase* device = nullptr;

    // The Eigen GPU device wrapper, which may include a per-op
    // wrapped allocator. The concrete type of this object depends on
    // the type of this->device, so eigen_gpu_device can't be an
    // inline member and must be heap allocated. However, we don't
    // want to allocate a new eigen_gpu_device for every Op that is
    // executed. Instead this member is allocated on first use using
    // ensure_eigen_gpu_device, and then if the Params structure is
    // re-used for subsequent Ops, the eigen_gpu_device is
    // ReInitialized in the OpKernelContext constructor. Unlike the
    // other pointers in Params, this one is owned by Params.
    PerOpGpuDevice* eigen_gpu_device = nullptr;

    inline void ensure_eigen_gpu_device() {
      DCHECK(device);
      if (nullptr == eigen_gpu_device) {
        // Surprisingly, MakeGpuDevice will return nullptr if the
        // device is not a GPU device. This is ok, since those devices
        // will never use eigen_gpu_device. It seems better to have
        // ensure_eigen_gpu_device fall through and regenerate the
        // nullptr every time an OpKernelContext is instantiated, than
        // to do an unnecessary allocation of a dummy eigen GPU
        // device for CPU device Ops.
        eigen_gpu_device = device->MakeGpuDevice();
      }
    }

    bool track_allocations = false;
    bool log_memory = false;
    bool record_tensor_accesses = false;

    // Array indexed by output number for this node
    const AllocatorAttributes* output_attr_array = nullptr;

    // Shared resources accessible by this op kernel invocation.
    ResourceMgr* resource_manager = nullptr;

    // Per-step resources accessible by this op kernel invocation should be
    // stored in this container..
    ScopedStepContainer* step_container = nullptr;

    // Mechanism used by this op kernel invocation to communicate with
    // computations running on other devices.
    Rendezvous* rendezvous = nullptr;

    // The session state for this op.
    SessionState* session_state = nullptr;

    // The tensor store for this op.
    TensorStore* tensor_store = nullptr;

    // Mechanism used by this op kernel invocation to register a callback
    // for its cancellation.
    CancellationManager* cancellation_manager = nullptr;

    // Inputs to this op kernel.
    const gtl::InlinedVector<TensorValue, 4>* inputs = nullptr;
    bool is_input_dead = false;

    const gtl::InlinedVector<AllocatorAttributes, 4>* input_alloc_attrs =
        nullptr;

    // Device contexts.
    const gtl::InlinedVector<DeviceContext*, 4>* input_device_contexts =
        nullptr;
    DeviceContext* op_device_context = nullptr;

    // Control-flow op supports.
    FrameAndIter frame_iter;

    // Function call supports.
    FunctionCallFrame* call_frame = nullptr;
    FunctionLibraryRuntime* function_library = nullptr;
    std::function<void(std::function<void()>)>* runner = nullptr;
    StepStatsCollector* stats_collector = nullptr;

    // TensorSliceReaderCache support.
    checkpoint::TensorSliceReaderCacheWrapper* slice_reader_cache = nullptr;
  };

  // params must outlive the OpKernelContext.
  explicit OpKernelContext(Params* params);
  OpKernelContext(Params* params, int noutputs);
  ~OpKernelContext();

  Env* env() const { return params_->device->env(); }

  int64 step_id() const { return params_->step_id; }

  const OpKernel& op_kernel() const { return *params_->op_kernel; }

  // Input/output signature.

  int num_inputs() const { return params_->inputs->size(); }
  DataType input_dtype(int index) const;
  Status input_dtype(StringPiece name, DataType* dtype) const;
  MemoryType input_memory_type(int index) const;

  int num_outputs() const { return outputs_.size(); }
  DataType expected_output_dtype(int index) const;
  MemoryType output_memory_type(int index) const;

  // Input

  // Returns an immutable input tensor. May only be used for non-Ref
  // inputs. For Ref inputs use mutable_input below.
  // REQUIRES: !IsRefType(input_dtype(index))
  // TODO(mrry): Convert this to return Status.
  const Tensor& input(int index);

  // Returns the named immutable input tensor in "tensor", as defined
  // in the OpDef. May only be used for non-Ref inputs. For Ref inputs
  // use mutable_input below.
  // REQUIRES: !IsRefType(input_dtype(index))
  // REQUIRES: the named input must not be a list.
  Status input(StringPiece name, const Tensor** tensor);

  // Returns the named list-valued immutable input in "list", as
  // defined in the OpDef.  If the named output is not list-valued,
  // returns a one-element list. May only be used for non-Ref
  // inputs. For Ref inputs use mutable_input below.
  // REQUIRES: !IsRefType(input_dtype(index))
  Status input_list(StringPiece name, OpInputList* list);

  // For mutable inputs, use the following together to make sure there
  // is no concurrent access to mutable_input(), e.g.:
  // {
  //   Tensor& t = context->mutable_input(index);
  //   mutex_lock lock(*context->input_ref_mutex(index));
  //   // modify the values in t
  // }
  // REQUIRES: IsRefType(input_dtype(index))
  Status input_ref_mutex(StringPiece name, mutex** out_mutex);

  // Returns a mutable input tensor. Must be used to access Ref
  // inputs.  REQUIRES: IsRefType(input_dtype(index)). The caller may
  // modify the values stored in the Tensor buffer, and modifications
  // will be visible to other Ops reading the same ref tensor. If
  // !lock_held the input mutex will be acquired before returning the
  // Tensor.
  // TODO(mrry): Convert this to return Status.
  Tensor mutable_input(int index, bool lock_held);

  // Returns the named mutable input tensor in "tensor", as defined in
  // the OpDef. Must be used to access Ref inputs. The values stored
  // in the Tensor buffer may be modified, and modifications will be
  // visible to other Ops reading the same ref tensor. If !lock_held
  // the input mutex will be acquired before returning the Tensor.
  // REQUIRES: the named input must not be a list.
  // REQUIRES: the named input must be a ref tensor.
  Status mutable_input(StringPiece name, Tensor* tensor, bool lock_held);

  // Returns the named list-valued mutable input in "list", as defined
  // in the OpDef.  If the named input is not list-valued, returns a
  // one-element list. Must be used to access Ref inputs. The values
  // stored in the Tensor buffer may be modified, and modifications
  // will be visible to other Ops reading the same ref tensor.
  // REQUIRES: the named input must be a ref tensor.
  Status mutable_input_list(StringPiece name, OpMutableInputList* list);

  // Replace the corresponding Ref Input to use the storage buffer
  // used by tensor. If !lock_held the input mutex will be acquired
  // before returning the Tensor.
  // REQUIRES: IsRefType(input_dtype(index)).
  void replace_ref_input(int index, const Tensor& tensor, bool lock_held);

  // Replace the corresponding named Ref Input to use the storage
  // buffer used by tensor. If !lock_held the input mutex will be
  // acquired before returning the Tensor.
  // REQUIRES: IsRefType(input_dtype(index)).
  Status replace_ref_input(StringPiece name, const Tensor& tensor,
                           bool lock_held);

  // Deletes the Tensor object used as the Ref Input at
  // input_index. This is not usually necessary and should be used
  // with caution. If !lock_held the input mutex will be acquired
  // before returning the Tensor.
  // REQUIRES: IsRefType(input_dtype(input_index)).
  void delete_ref_input(int input_index, bool lock_held);

  // Return true if there is input at the given index. An operator has no
  // input at index if its tensor is null. This is primarily used by the
  // merge operator.
  // TODO(mrry): Convert this to return Status.
  bool has_input(int index) const;

  // Returns true if all inputs are the same shape, otherwise sets the
  // status to a non-OK value and returns false.
  // Usage: if (!context->ValidateInputsAreSameShape(this)) return;
  bool ValidateInputsAreSameShape(OpKernel* op);

  // Input to output forwarding.

  // Set the output Ref Tensor at output_index to be an alias of the
  // input Ref Tensor at input_index.
  // REQUIRES: IsRefType(input_dtype(input_index)).
  // REQUIRES: IsRefType(output_dtype(output_index)).
  void forward_ref_input_to_ref_output(int input_index, int output_index);

  // Returns true when an alias to input[input_index], reshaped to output_shape,
  // which is safe to use for in-place computation was written to *output.
  // Returns false if input[input_index] has a refcount greater than one, or if
  // its type does not match the expected output type of output[output_index],
  // or the number of elements in input[input_index] does not equal the number
  // of elements in output_shape.
  bool forward_input_to_output_with_shape(int input_index, int output_index,
                                          const TensorShape& output_shape,
                                          Tensor** output) TF_MUST_USE_RESULT;
  Status forward_input_to_output_with_shape(StringPiece input_name,
                                            StringPiece output_name,
                                            const TensorShape& output_shape,
                                            Tensor** output) TF_MUST_USE_RESULT;

  // Returns a pointer to a Tensor aliasing the underlying buffer backing
  // input[input_index] iff
  //   * input[input_index] is not a ref,
  //   * the data type, shape, memory type, and allocator attributes of
  //     input[input_index] are compatible with those given in dtype, shape,
  //     memory_type, and attr,
  //   * refcount on the underlying buffer is one.
  // Otherwise returns nullptr.
  // NOTE: For Cuda kernels that read inputs using the __ldg() intrinsic,
  // forwarding is only safe if there are no reads via __ldg() after writes
  // to the same address.
  std::unique_ptr<Tensor> forward_input(
      int input_index, DataType dtype, const TensorShape& shape,
      MemoryType memory_type,
      const AllocatorAttributes& attr) TF_MUST_USE_RESULT;

  // Tries to forward one of the inputs given in input_indices to
  // output[output_index]. If none of the given inputs can be forwarded, calls
  // allocate_output() to allocate a new output buffer.
  Status forward_input_or_allocate_output(
      gtl::ArraySlice<int> candidate_input_indices, int output_index,
      const TensorShape& output_shape, Tensor** output) TF_MUST_USE_RESULT;
  Status forward_input_or_allocate_output(
      gtl::ArraySlice<StringPiece> candidate_input_names,
      StringPiece output_name, const TensorShape& output_shape,
      Tensor** output) TF_MUST_USE_RESULT;

  // Tries to reuse one of the inputs given in input_indices as a temporary.
  // If none of the given inputs can be forwarded, calls
  // allocate_temp() to allocate a new temporary buffer.
  Status forward_input_or_allocate_temp(
      gtl::ArraySlice<int> candidate_input_indices, DataType type,
      const TensorShape& shape, const AllocatorAttributes& allocator_attr,
      Tensor* out_temp) TF_MUST_USE_RESULT;

  Status forward_input_or_allocate_temp(
      gtl::ArraySlice<int> candidate_input_indices, DataType type,
      const TensorShape& shape, Tensor* out_temp) TF_MUST_USE_RESULT {
    return forward_input_or_allocate_temp(candidate_input_indices, type, shape,
                                          AllocatorAttributes(), out_temp);
  }

  // Output

  // Returns the named list-valued output in "list", as defined in the OpDef.
  // If the named output is not list-valued, returns a one-element list.
  Status output_list(StringPiece name, OpOutputList* list);

  // If output_required(index) returns true, the OpKernel's Compute() method
  // should call allocate_output(index, ...), set_output(index, ...),
  // set_output_ref(index, ...), or set the status to a non-ok value.
  // If it returns false, it may output, but is not required to do so.
  // TODO(mrry): Convert this to return Status, and implement a string
  // name version.
  bool output_required(int index) const {
    return true;  // TODO(josh11b): implement
  }

  // Allocation of tensors during kernel execution inside the Compute
  // method:
  //
  // There are three methods to allocate Tensors when an Op kernel
  // executes.
  //
  // 1) allocate_persistent. This is only needed for Tensors that will
  // be stored by the Op between invocations, and it *must* be used
  // for those Tensors. The call returns a PersistentTensor, and that
  // is the only object the Op is allowed to hold on to between
  // invocations. When the Tensor is needed in a subsequent
  // invocation, it can be retrieved from the PersistentTensor using
  // the AccessTensor method. This ensures that the system is made
  // aware of any use of the tensor's allocated memory, which is
  // needed for correctness on asynchronous devices such as GPUs.
  //
  // 2) allocate_output. This should be used to allocate any tensor
  // that is going to be used as an output from the Op at the end of
  // the current execution. The caller indicates which output the
  // Tensor will be assigned to, and the call returns the
  // newly-allocated Tensor. The Tensor can subsequently be assigned
  // to during kernel execution, and will be used as the designated
  // output when the kernel execution completes.
  //
  // 3) allocate_temp. This should be used to allocate any scratch
  // storage that is needed while the kernel is executing, and will
  // not be retained by the Op.
  //
  // In some cases a Tensor needs to be used as an output even though
  // it was previously allocated elsewhere. The Tensor may have been
  // passed as an input, or stored in a PersistentTensor during a
  // previous kernel execution, or allocated earlier in the kernel
  // execution at a time when it was not known which output it would
  // be assigned to. In this case the kernel can use set_output or
  // set_output_ref to indicate that the tensor should be used as the
  // designated output. It is legal to use any previously-allocated
  // Tensor as an argument to set_output or set_output_ref, including
  // Tensors allocated via allocate_temp. There may be a performance
  // penalty to using a Tensor that was not allocated using
  // allocate_output. This is because allocate_output uses the
  // AllocatorAttributes stored in output_attr_array for the
  // designated output. In some cases, using the wrong attributes may
  // cause an extra copy of the Tensor's buffer.

  // Allocates output for the specified output index with shape.
  // OpKernelContext retains ownership of the returned pointer. See
  // comment above.
  //
  // If memory allocation fails, returns an error status.
  //
  // REQUIRES: !IsRefType(expected_output_dtype(index))
  Status allocate_output(int index, const TensorShape& shape,
                         Tensor** tensor) TF_MUST_USE_RESULT;
  Status allocate_output(StringPiece name, const TensorShape& shape,
                         Tensor** tensor) TF_MUST_USE_RESULT;
  // The following methods use the supplied attributes instead of
  // those in output_attr_array. The caller is responsible for
  // ensuring that the attributes are "compatible" with the
  // output_attr_array, e.g. the tensor is allocated on the correct
  // device. See comment above.
  Status allocate_output(int index, const TensorShape& shape, Tensor** tensor,
                         AllocatorAttributes attr) TF_MUST_USE_RESULT;
  Status allocate_output(StringPiece name, const TensorShape& shape,
                         Tensor** tensor,
                         AllocatorAttributes attr) TF_MUST_USE_RESULT;

  // Allocates a temporary Tensor of the specified type and
  // shape. Devices such as GPUs that enqueue Ops for lazy execution
  // may retain references to the temporary tensors after the Op's
  // Compute method has run. See comment above.
  Status allocate_temp(DataType type, const TensorShape& shape,
                       Tensor* out_temp, AllocatorAttributes allocator_attr,
                       const AllocationAttributes& allocation_attr);
  Status allocate_temp(DataType type, const TensorShape& shape,
                       Tensor* out_temp, AllocatorAttributes allocator_attr) {
    return allocate_temp(type, shape, out_temp, allocator_attr,
                         AllocationAttributes());
  }
  Status allocate_temp(DataType type, const TensorShape& shape,
                       Tensor* out_temp) {
    return allocate_temp(type, shape, out_temp, AllocatorAttributes());
  }

  // Allocates a Tensor of the specified type and shape which the Op
  // plans to maintain as persistent state. out_persistent holds the
  // PersistentTensor which is the object the caller should store. For
  // convenience, if out_tensor is non-null then it will be filled in
  // with a Tensor* pointing to the newly-allocated tensor which the
  // caller can use instead of calling
  // out_persistent->AccessTensor. The caller does not own out_tensor
  // and should not keep a copy of it. See comment above.
  Status allocate_persistent(DataType type, const TensorShape& shape,
                             PersistentTensor* out_persistent,
                             Tensor** out_tensor, AllocatorAttributes attr);
  Status allocate_persistent(DataType type, const TensorShape& shape,
                             PersistentTensor* out_persistent,
                             Tensor** out_tensor) {
    return allocate_persistent(type, shape, out_persistent, out_tensor,
                               AllocatorAttributes());
  }

  // Copies a tensor (allocated by the caller) to the specified output
  // index.  REQUIRES: !IsRefType(expected_output_dtype(index))
  // REQUIRES: 'tensor' must have the same MemoryType as
  // output_memory_types[index]. See comment above.
  Status set_output(StringPiece name, const Tensor& tensor);

  // To output a reference.  Caller retains ownership of mu and tensor_for_ref,
  // and they must outlive all uses within the step. See comment above.
  // REQUIRES: IsRefType(expected_output_dtype(index))
  Status set_output_ref(StringPiece name, mutex* mu, Tensor* tensor_for_ref);

  // Returns nullptr if allocate_output() or set_output() have not been called.
  Status mutable_output(StringPiece name, Tensor** tensor);

  // Transfers ownership of an output tensor to the caller.
  // NOTE: For non-reference outputs, the caller takes responsibility
  // for deletion. For reference outputs, the caller does NOT take
  // responsibility for deletion.
  Status release_output(StringPiece name, TensorValue* value);

  // Records device specific state about how the input tensors were
  // computed.
  //
  // If using the templated function, the type must be a subclass
  // of DeviceContext.
  //
  // Get the DeviceContext used for the index input.  Returns nullptr
  // if no DeviceContext was provided.
  template <typename T>
  T* input_device_context(int index);
  DeviceContext* input_device_context(int index);

  // Return the DeviceContext that should be used for this Op.
  //
  // If using the templated function, the type must be a subclass
  // of DeviceContext.
  //
  // Returns nullptr if the device did not provide one.
  template <typename T>
  T* op_device_context();
  DeviceContext* op_device_context() {
    DeviceContext* ret = params_->op_device_context;
    if (ret == nullptr) {
      auto* dev_info = device()->tensorflow_gpu_device_info();
      if (dev_info) ret = dev_info->default_context;
    }
    return ret;
  }

  AllocatorAttributes input_alloc_attr(int index) const {
    DCHECK_GE(index, 0);
    DCHECK_LT(index, params_->input_alloc_attrs->size());
    return (*params_->input_alloc_attrs)[index];
  }

  AllocatorAttributes output_alloc_attr(int index) const {
    return params_->output_attr_array[index];
  }

  gtl::InlinedVector<WrappedAllocator, 4> wrapped_allocators() const {
    mutex_lock lock(mu_);
    gtl::InlinedVector<WrappedAllocator, 4> retrieved = wrapped_allocators_;
    return retrieved;
  }

  // Communication.
  //
  // An op kernel communicates with outside environment through
  // Rendezvous Send() and Recv().
  Rendezvous* rendezvous() const { return params_->rendezvous; }

  // An op kernel can access the session state it belongs to.
  SessionState* session_state() const { return params_->session_state; }

  // An op kernel can access the tensor store of the run it belongs to.
  TensorStore* tensor_store() const { return params_->tensor_store; }

  // Function call support.
  //
  // If this kernel invocation is within a function execution,
  // call_frame() returns the call frame for the function call.
  FunctionCallFrame* call_frame() const { return params_->call_frame; }

  // If not nullptr, the kernel invoke functions defined in the
  // library. E.g., CHECK_NOTNULL(function_library())->Run("Foo", ...).
  FunctionLibraryRuntime* function_library() const {
    return params_->function_library;
  }

  std::function<void(std::function<void()>)>* runner() const {
    return params_->runner;
  }
  StepStatsCollector* stats_collector() const {
    return params_->stats_collector;
  }

  // Shared resources accessible to this kernel.
  ResourceMgr* resource_manager() const { return params_->resource_manager; }

  checkpoint::TensorSliceReaderCacheWrapper* slice_reader_cache() const {
    return params_->slice_reader_cache;
  }

  // Execution.
  //
  // OpKernels can use these eigen devices to carry out their
  // numerical computation.
  const Eigen::ThreadPoolDevice& eigen_cpu_device() const {
    return *device()->eigen_cpu_device();
  }
  const Eigen::GpuDevice& eigen_gpu_device() const {
    return params_->eigen_gpu_device->device();
  }
#ifdef TENSORFLOW_USE_SYCL
  const Eigen::SyclDevice& eigen_sycl_device() const {
    return *device()->eigen_sycl_device();
  }
#endif
  template <typename EigenDeviceType>
  const EigenDeviceType& eigen_device() const;

  // Error handling.

  // If expected_inputs == inputs() and expected_outputs == output_types(),
  // returns OK, else returns INVALID_ARGUMENT with an error message.
  // Recommended for Ops with dynamic signatures, where validation can only
  // be performed at runtime.
  Status MatchSignature(const DataTypeSlice expected_inputs,
                        const DataTypeSlice expected_outputs);

  // An OpKernel should call SetStatus() if Compute() encounters an
  // error.
  void SetStatus(const Status& status);
  const Status& status() const { return status_; }

  // Cancellation.
  //
  // EXPERIMENTAL. See the implementation in tensorflow::TensorQueue for an
  // example of how to use this API.
  CancellationManager* cancellation_manager() const {
    return params_->cancellation_manager;
  }

  // Other accessors.

  // For control flow.
  FrameAndIter frame_iter() const { return params_->frame_iter; }
  bool is_input_dead() const { return params_->is_input_dead; }
  bool* is_output_dead() { return &is_output_dead_; }

  // May be used, e.g., to get GPU handles, etc.
  // TODO(tucker): Add example usage.
  DeviceBase* device() const { return params_->device; }

  // Retrieve list of referenced tensors in out_vector. Once this is
  // called, it is not legal to reference any more tensors.  Should
  // not be called from Op kernels.
  void retrieve_accessed_tensors(TensorReferenceVector* out_vector);

  // Per-step container for use by white-listed internal ops.
  ScopedStepContainer* step_container() const {
    return params_->step_container;
  }

  // Helper routines for the OP_REQUIRES macros
  void CtxFailure(Status s);
  void CtxFailureWithWarning(Status s);

  // Unrecommended functions: these are functions that have some
  // current uses but are not recommended for use, and may go away at
  // some future major version release.
  //
  // The following functions all have versions that return Status
  // to capture error conditions, and are strongly preferred.
  Tensor* mutable_output(int index);
  void set_output(int index, const Tensor& tensor);
  mutex* input_ref_mutex(int index);
  void set_output_ref(int index, mutex* mu, Tensor* tensor_for_ref);
  TensorValue release_output(int index);

  bool track_allocations() const { return params_->track_allocations; }
  bool allocate_on_host(AllocatorAttributes alloc_attr) const;

  // Records temporary memory sizes.
  void record_host_temp_memory_size(int64 size) {
    host_temp_memory_size_ += size;
  }
  void record_device_temp_memory_size(int64 size) {
    device_temp_memory_size_ += size;
  }

  // Returns recorded size of temporary memory;
  int64 host_temp_memory_size() const { return host_temp_memory_size_; }
  int64 device_temp_memory_size() const { return device_temp_memory_size_; }

  // Records persistent memory allocation, size can be negative indicating
  // deallocation.
  void record_host_persistent_memory_allocation(int64 size,
                                                int64 alloc_id = -1);
  void record_device_persistent_memory_allocation(int64 size,
                                                  int64 alloc_id = -1);

  // Returns recorded size and ids of persistent memory.
  int64 host_persistent_memory_allocated() const {
    return host_persistent_memory_allocated_;
  }
  int64 device_persistent_memory_allocated() const {
    return device_persistent_memory_allocated_;
  }
  std::vector<int64> host_persistent_alloc_ids() const;
  std::vector<int64> device_persistent_alloc_ids() const;

  bool input_is_ref(int index) const;

 private:
  Allocator* get_allocator(AllocatorAttributes attr);

  // Internal method to add a tensor's buffer to the list of buffers
  // referenced during the execution of the Op, so that GPUs may
  // accurately track the memory that may not be reused until the Op
  // execution completes.
  void record_tensor_reference(const Tensor& tensor);
  void really_record_tensor_reference(const Tensor& tensor);

  // Internal common method used when allocating tensor memory
  Status allocate_tensor(DataType type, const TensorShape& shape,
                         Tensor* out_tensor,
                         AllocatorAttributes allocator_attr) {
    return allocate_tensor(type, shape, out_tensor, allocator_attr,
                           AllocationAttributes());
  }

  Status allocate_tensor(DataType type, const TensorShape& shape,
                         Tensor* out_tensor, AllocatorAttributes allocator_attr,
                         const AllocationAttributes& allocation_attr);

  // This is called by PersistentTensor::AccessTensor whenever the
  // wrapped tensor is retrieved, to ensure the runtime knows that the
  // Tensor is being accessed within an Op. This is necessary for
  // memory safety of devices like GPUs that queue Ops for
  // asynchronous execution after the Compute() method completes.
  friend class PersistentTensor;
  void NotifyUseOfPersistentTensor(const Tensor& tensor);

  Status status_;
  Params* params_;    // not owned
  mutable mutex mu_;  // mutable so const accessors can acquire the lock
  gtl::InlinedVector<WrappedAllocator, 4> wrapped_allocators_ GUARDED_BY(mu_);
  gtl::InlinedVector<TensorValue, 4> outputs_;

  // Constructed only if <params->record_tensor_accesses>.
  ManualConstructor<UniqueTensorReferences> referenced_tensors_ GUARDED_BY(mu_);

  bool is_output_dead_ = false;

  int64 host_temp_memory_size_;
  int64 device_temp_memory_size_;
  gtl::InlinedVector<int64, 2> host_persistent_alloc_ids_;
  gtl::InlinedVector<int64, 2> device_persistent_alloc_ids_;
  int64 host_persistent_memory_allocated_;
  int64 device_persistent_memory_allocated_;

  TF_DISALLOW_COPY_AND_ASSIGN(OpKernelContext);
};

// Register your OpKernel by specifying the Op's name, the device the
// kernel runs on, any type attr constraints for this kernel, any
// host-memory args, and the class to instantiate.  Examples:
//
//  // A kernel that supports all types.
//  REGISTER_KERNEL_BUILDER(Name("Save").Device(DEVICE_CPU), SaveOp);
//
//  // The following are equivalent ways of specifying that the kernel only
//  // works if the "T" type attr is set to DT_FLOAT.
//  REGISTER_KERNEL_BUILDER(
//      Name("Sub").Device(DEVICE_CPU).TypeConstraint<float>("T"),
//      SubOp<float>);
//  // (You would then repeat this for every type supported by "Sub".)
//
//  // This form allows you to specify a list of types as the constraint.
//  REGISTER_KERNEL_BUILDER(Name("Sub")
//                              .Device(DEVICE_CPU)
//                              .TypeConstraint("T", {DT_FLOAT}),
//                          SubOp<float>);
//
//  // A kernel that expects one of the input tensors in host memory.
//  REGISTER_KERNEL_BUILDER(
//      Name("Reshape").Device(DEVICE_GPU).HostMemory("shape"), ReshapeOp);
//
// See kernel_def_builder for details.

// Instantiate an OpKernel that has been registered.  Returns nullptr
// if no operation for that type of device / input signature combination
// (and a NOT_FOUND *status), or there is an error in construction (and
// an INVALID_ARGUMENT *status).  Otherwise, the caller takes ownership
// of the returned pointer.
// EXPECTED USAGE: unique_ptr<OpKernel> op = CreateOpKernel(...);
// REQUIRES: def has all attrs specified (e.g. using AddDefaultsToNodeDef()).
std::unique_ptr<OpKernel> CreateOpKernel(DeviceType device_type,
                                         DeviceBase* device,
                                         Allocator* allocator,
                                         const NodeDef& def,
                                         int graph_def_version, Status* status);
Status CreateOpKernel(DeviceType device_type, DeviceBase* device,
                      Allocator* allocator, FunctionLibraryRuntime* flib,
                      const NodeDef& def, int graph_def_version,
                      OpKernel** kernel);

// Returns into 'device_types' the subset of prioritized_types that this
// binary has registered for the given NodeDef.
//
// REQUIRES: * 'device_types' is not nullptr.
//           * def has all attrs specified (e.g. using AddDefaultsToNodeDef()).
Status SupportedDeviceTypesForNode(
    const std::vector<DeviceType>& prioritized_types, const NodeDef& def,
    DeviceTypeVector* device_types);

// Returns a message with a description of the kernels registered for op
// `op_name`.
string KernelsRegisteredForOp(StringPiece op_name);

// Call once after Op registration has completed.
Status ValidateKernelRegistrations(const OpRegistryInterface& op_registry);

// -----------------------------------------------------------------------------
// OpKernel registration implementation follows, please ignore.

// Allow the REGISTER_KERNEL_BUILDER(Name("op_name").Device(...)...) syntax.
namespace register_kernel {

class Name : public KernelDefBuilder {
 public:
  // With selective registration, kernels whose implementation class is not used
  // by any kernel are disabled with the SHOULD_REGISTER_OP_KERNEL call in
  // REGISTER_KERNEL_BUILDER_UNIQ. However, an unused kernel that shares an
  // implementation class with a used kernel would get through that mechanism.
  //
  // This mechanism stops that registration by changing the name of the kernel
  // for the unused op to one that is ignored by
  // OpKernelRegistrar::InitInternal.  Note that this method alone is
  // not sufficient - the compiler can't evaluate the entire KernelDefBuilder at
  // compilation time, so this method doesn't actually reduce code size.
  explicit Name(const char* op)
      : KernelDefBuilder(SHOULD_REGISTER_OP(op) ? op : "_no_register") {}
};

namespace system {

class Name : public KernelDefBuilder {
 public:
  // For system kernels, we ignore selective registration and
  // unconditionally register the kernel.
  explicit Name(const char* op) : KernelDefBuilder(op) {}
};

}  // namespace system

}  // namespace register_kernel

#define REGISTER_KERNEL_BUILDER(kernel_builder, ...) \
  REGISTER_KERNEL_BUILDER_UNIQ_HELPER(__COUNTER__, kernel_builder, __VA_ARGS__)

#define REGISTER_KERNEL_BUILDER_UNIQ_HELPER(ctr, kernel_builder, ...) \
  REGISTER_KERNEL_BUILDER_UNIQ(ctr, kernel_builder, __VA_ARGS__)

#define REGISTER_KERNEL_BUILDER_UNIQ(ctr, kernel_builder, ...)        \
  constexpr bool should_register_##ctr##__flag =                      \
      SHOULD_REGISTER_OP_KERNEL(#__VA_ARGS__);                        \
  static ::tensorflow::kernel_factory::OpKernelRegistrar              \
      registrar__body__##ctr##__object(                               \
          should_register_##ctr##__flag                               \
              ? ::tensorflow::register_kernel::kernel_builder.Build() \
              : nullptr,                                              \
          #__VA_ARGS__,                                               \
          [](::tensorflow::OpKernelConstruction* context)             \
              -> ::tensorflow::OpKernel* {                            \
            return new __VA_ARGS__(context);                          \
          });

// The `REGISTER_SYSTEM_KERNEL_BUILDER()` macro acts as
// `REGISTER_KERNEL_BUILDER()` except that the kernel is registered
// unconditionally even when selective registration is used.
#define REGISTER_SYSTEM_KERNEL_BUILDER(kernel_builder, ...)               \
  REGISTER_SYSTEM_KERNEL_BUILDER_UNIQ_HELPER(__COUNTER__, kernel_builder, \
                                             __VA_ARGS__)

#define REGISTER_SYSTEM_KERNEL_BUILDER_UNIQ_HELPER(ctr, kernel_builder, ...) \
  REGISTER_SYSTEM_KERNEL_BUILDER_UNIQ(ctr, kernel_builder, __VA_ARGS__)

#define REGISTER_SYSTEM_KERNEL_BUILDER_UNIQ(ctr, kernel_builder, ...)    \
  static ::tensorflow::kernel_factory::OpKernelRegistrar                 \
      registrar__body__##ctr##__object(                                  \
          ::tensorflow::register_kernel::system::kernel_builder.Build(), \
          #__VA_ARGS__,                                                  \
          [](::tensorflow::OpKernelConstruction* context)                \
              -> ::tensorflow::OpKernel* {                               \
            return new __VA_ARGS__(context);                             \
          });

void* GlobalKernelRegistry();

// If node_def has a corresponding kernel registered on device_type,
// returns OK and fill in the kernel def and kernel_class_name. <def> and
// <kernel_class_name> may be null.
Status FindKernelDef(const DeviceType& device_type, const NodeDef& node_def,
                     const KernelDef** def, string* kernel_class_name);

// Writes a list of all registered kernels to LOG(INFO), to help users debug
// missing kernel errors.
void LogAllRegisteredKernels();

namespace kernel_factory {

class OpKernelRegistrar {
 public:
  typedef OpKernel* (*Factory)(OpKernelConstruction*);

  OpKernelRegistrar(const KernelDef* kernel_def, StringPiece kernel_class_name,
                    Factory factory) {
    // Perform the check in the header to allow compile-time optimization
    // to a no-op, allowing the linker to remove the kernel symbols.
    if (kernel_def != nullptr) {
      InitInternal(kernel_def, kernel_class_name, factory);
    }
  }

 private:
  void InitInternal(const KernelDef* kernel_def, StringPiece kernel_class_name,
                    Factory factory);
};

}  // namespace kernel_factory

// -----------------------------------------------------------------------------
// Template and inline method implementations, please ignore

template <class T>
Status OpKernelConstruction::GetAttr(StringPiece attr_name, T* value) const {
  return GetNodeAttr(def(), attr_name, value);
}

inline DataType OpKernelContext::input_dtype(int index) const {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, num_inputs());
  const TensorValue& value((*params_->inputs)[index]);
  if (value.is_ref()) {
    return MakeRefType(value->dtype());
  } else {
    return value->dtype();
  }
}

inline MemoryType OpKernelContext::input_memory_type(int index) const {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, num_inputs());
  return op_kernel().input_memory_types()[index];
}

inline DataType OpKernelContext::expected_output_dtype(int index) const {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, num_outputs());
  return params_->op_kernel->output_type(index);
}

inline MemoryType OpKernelContext::output_memory_type(int index) const {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, num_outputs());
  return op_kernel().output_memory_types()[index];
}

inline bool OpKernelContext::input_is_ref(int index) const {
  const TensorValue& value((*params_->inputs)[index]);
  return value.is_ref();
}

inline void OpKernelContext::record_tensor_reference(const Tensor& tensor) {
  DCHECK_EQ(params_->device->RequiresRecordingAccessedTensors(),
            params_->record_tensor_accesses);
  if (params_->record_tensor_accesses) {
    really_record_tensor_reference(tensor);
  }
}

inline void OpKernelContext::retrieve_accessed_tensors(
    TensorReferenceVector* out_vector) {
  if (params_->record_tensor_accesses) {
    mutex_lock l(mu_);
    referenced_tensors_->FreezeAndReturnReferences(out_vector);
  }
}

// no input if tensor == nullptr.
inline bool OpKernelContext::has_input(int index) const {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, num_inputs());
  return (*params_->inputs)[index].tensor != nullptr;
}

inline mutex* OpKernelContext::input_ref_mutex(int index) {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, num_inputs());
  DCHECK(input_is_ref(index));
  return (*params_->inputs)[index].mutex_if_ref;
}

inline void OpKernelContext::NotifyUseOfPersistentTensor(const Tensor& t) {
  if (t.IsInitialized()) {
    record_tensor_reference(t);
  }
}

inline Tensor* OpKernelContext::mutable_output(int index) {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, num_outputs());
  // No need to record_tensor_reference since the output must already
  // have been set by a call that did so.
  return outputs_[index].tensor;
}

inline TensorValue OpKernelContext::release_output(int index) {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, num_outputs());
  TensorValue value = outputs_[index];
  outputs_[index] = TensorValue();
  return value;
}

inline Status OpKernelContext::forward_input_or_allocate_output(
    gtl::ArraySlice<int> candidate_input_indices, int output_index,
    const TensorShape& output_shape, Tensor** output) {
  for (int input_index : candidate_input_indices) {
    if (forward_input_to_output_with_shape(input_index, output_index,
                                           output_shape, output)) {
      return Status::OK();
    }
  }
  return allocate_output(output_index, output_shape, output);
}

inline Status OpKernelContext::forward_input_or_allocate_output(
    gtl::ArraySlice<StringPiece> candidate_input_names, StringPiece output_name,
    const TensorShape& output_shape, Tensor** output) {
  for (const StringPiece& input_name : candidate_input_names) {
    if (forward_input_to_output_with_shape(input_name, output_name,
                                           output_shape, output)
            .ok()) {
      return Status::OK();
    }
  }
  return allocate_output(output_name, output_shape, output);
}

template <typename T>
T* OpKernelContext::op_device_context() {
  static_assert(std::is_base_of<DeviceContext, T>::value,
                "T is not a subclass of DeviceContext");
  return static_cast<T*>(op_device_context());
}

template <typename T>
T* OpKernelContext::input_device_context(int index) {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, params_->input_device_contexts->size());
  static_assert(std::is_base_of<DeviceContext, T>::value,
                "T is not a subclass of DeviceContext");
  return static_cast<T*>((*params_->input_device_contexts)[index]);
}

inline DeviceContext* OpKernelContext::input_device_context(int index) {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, params_->input_device_contexts->size());
  return (*params_->input_device_contexts)[index];
}

inline const Tensor& OpInputList::operator[](int i) const {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, stop_ - start_);
  return ctx_->input(start_ + i);
}

inline mutex* OpMutableInputList::ref_mutex(int i) {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, stop_ - start_);
  return ctx_->input_ref_mutex(start_ + i);
}

inline Tensor OpMutableInputList::at(int i, bool lock_held) {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, stop_ - start_);
  return ctx_->mutable_input(start_ + i, lock_held);
}

inline Tensor* OpOutputList::operator[](int i) {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, stop_ - start_);
  return ctx_->mutable_output(start_ + i);
}

inline bool OpOutputList::required(int i) const {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, stop_ - start_);
  return ctx_->output_required(start_ + i);
}

inline DataType OpOutputList::expected_output_dtype(int i) const {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, stop_ - start_);
  return ctx_->expected_output_dtype(start_ + i);
}

inline Status OpOutputList::allocate(int i, const TensorShape& shape,
                                     Tensor** output) {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, stop_ - start_);
  return ctx_->allocate_output(start_ + i, shape, output);
}

inline void OpOutputList::set(int i, const Tensor& tensor) {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, stop_ - start_);
  ctx_->set_output(start_ + i, tensor);
}

inline void OpOutputList::set_ref(int i, mutex* mu, Tensor* tensor_for_ref) {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, stop_ - start_);
  ctx_->set_output_ref(i, mu, tensor_for_ref);
}

// Convenience macros for asserting and handling exceptional conditions.
// Analogous to the CHECK* macros provided by logging.h.
//
// Example use:
// void Compute(OperationContext* context) {
//   OP_REQUIRES(context, context->num_inputs() == 2,
//               errors::InvalidArgument("FooOp requires 2 arguments"));
//   ...
//   Status status = SomeUncertainMethod();
//   OP_REQUIRES_OK(context, status);
//   ...
// }

#define OP_REQUIRES(CTX, EXP, STATUS) \
  if (!TF_PREDICT_TRUE(EXP)) {        \
    (CTX)->CtxFailure((STATUS));      \
    return;                           \
  }

#define OP_REQUIRES_OK(CTX, STATUS)     \
  do {                                  \
    ::tensorflow::Status _s(STATUS);    \
    if (!TF_PREDICT_TRUE(_s.ok())) {    \
      (CTX)->CtxFailureWithWarning(_s); \
      return;                           \
    }                                   \
  } while (0)

#define OP_REQUIRES_ASYNC(CTX, EXP, STATUS, CALLBACK) \
  if (!TF_PREDICT_TRUE(EXP)) {                        \
    (CTX)->CtxFailure((STATUS));                      \
    (CALLBACK)();                                     \
    return;                                           \
  }

#define OP_REQUIRES_OK_ASYNC(CTX, STATUS, CALLBACK) \
  do {                                              \
    ::tensorflow::Status _s(STATUS);                \
    if (!TF_PREDICT_TRUE(_s.ok())) {                \
      (CTX)->CtxFailureWithWarning(_s);             \
      (CALLBACK)();                                 \
      return;                                       \
    }                                               \
  } while (0)

}  // namespace tensorflow

#endif  // TENSORFLOW_FRAMEWORK_OP_KERNEL_H_