aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/framework/op_kernel.cc
blob: eb83d393f0e29684ece385918337ac8aa544a2b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
#include "tensorflow/core/framework/op_kernel.h"

#include <unordered_map>

#include "tensorflow/core/framework/attr_value_util.h"
#include "tensorflow/core/framework/node_def_util.h"
#include "tensorflow/core/framework/op_def_util.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/notification.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/gtl/map_util.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/port.h"

namespace tensorflow {

namespace {

Status MatchSignatureHelper(const DataTypeSlice expected_inputs,
                            const DataTypeSlice expected_outputs,
                            const DataTypeSlice inputs,
                            const DataTypeSlice outputs) {
  bool signature_mismatch = false;

  if (inputs.size() != expected_inputs.size()) signature_mismatch = true;
  for (size_t i = 0; !signature_mismatch && i < inputs.size(); ++i) {
    if (!TypesCompatible(expected_inputs[i], inputs[i])) {
      signature_mismatch = true;
    }
  }

  if (outputs.size() != expected_outputs.size()) signature_mismatch = true;
  for (size_t i = 0; !signature_mismatch && i < outputs.size(); ++i) {
    if (!TypesCompatible(expected_outputs[i], outputs[i])) {
      signature_mismatch = true;
    }
  }

  if (signature_mismatch) {
    return errors::InvalidArgument("Signature mismatch, have: ",
                                   DataTypeSliceString(inputs), "->",
                                   DataTypeSliceString(outputs), " expected: ",
                                   DataTypeSliceString(expected_inputs), "->",
                                   DataTypeSliceString(expected_outputs));
  }
  return Status::OK();
}

// Check HostMemory backward compatibility.
bool CheckHostMemoryCompatibility(const DeviceType device_type,
                                  const OpKernel* kernel) {
  if (device_type == DEVICE_GPU) {
    for (int i = 0; i < kernel->num_inputs(); ++i) {
      if (kernel->input_type(i) == DT_INT32 &&
          kernel->input_memory_types()[i] != HOST_MEMORY) {
        return false;
      }
    }
    for (int i = 0; i < kernel->num_outputs(); ++i) {
      if (kernel->output_type(i) == DT_INT32 &&
          kernel->output_memory_types()[i] != HOST_MEMORY) {
        return false;
      }
    }
  }
  return true;
}

}  // namespace

// OpKernel ------------------------------------------------------------------

OpKernel::OpKernel(OpKernelConstruction* context)
    : def_(context->def()),
      input_types_(context->input_types().begin(),
                   context->input_types().end()),
      output_types_(context->output_types().begin(),
                    context->output_types().end()),
      input_name_map_(context->num_inputs()),
      output_name_map_(context->num_outputs()) {
  OP_REQUIRES_OK(context,
                 NameRangesForNode(def_, context->op_def(), &input_name_map_,
                                   &output_name_map_));

  // By default, the input and output memory types are always in device memory,
  // but can be overridden by individual implementations of OpKernels in their
  // constructor.
  input_memory_types_ = MemoryTypeVector(input_types_.size(), DEVICE_MEMORY);
  output_memory_types_ = MemoryTypeVector(output_types_.size(), DEVICE_MEMORY);
  // TODO(yuanbyu): For now we assume the memory types of function
  // inputs/outputs to be DEVICE_MEMORY.
  auto lib = context->function_library();
  if (lib == nullptr || !lib->IsDefined(def_.op())) {
    OP_REQUIRES_OK(context, MemoryTypesForNode(
                                context->device_type(), def_, context->op_def(),
                                input_name_map_, output_name_map_,
                                &input_memory_types_, &output_memory_types_));
    // Log all the uses of int32 on GPU.
    // TODO(yunabyu): Remove once everyone transitions to HostMemory.
    if (VLOG_IS_ON(2)) {
      if (!CheckHostMemoryCompatibility(context->device_type(), this)) {
        VLOG(2) << "Using int32 on GPU at node: " << SummarizeNodeDef(def());
      }
    }
  }
}

Status OpKernel::InputRange(const string& input_name, int* start,
                            int* stop) const {
  const auto result = input_name_map_.find(input_name);
  if (result == input_name_map_.end()) {
    return errors::InvalidArgument("Unknown input name: ", input_name);
  } else {
    *start = result->second.first;
    *stop = result->second.second;
    return Status::OK();
  }
}

Status OpKernel::OutputRange(const string& output_name, int* start,
                             int* stop) const {
  const auto result = output_name_map_.find(output_name);
  if (result == output_name_map_.end()) {
    return errors::InvalidArgument("Unknown output name: ", output_name);
  } else {
    *start = result->second.first;
    *stop = result->second.second;
    return Status::OK();
  }
}

void AsyncOpKernel::Compute(OpKernelContext* context) {
  Notification n;
  ComputeAsync(context, [&n]() { n.Notify(); });
  n.WaitForNotification();
}

// PersistentTensor ----------------------------------------------------------

Tensor* PersistentTensor::AccessTensor(OpKernelConstruction* context) {
  // the caller has to have a valid context
  CHECK(context);
  return &tensor_;
}

Tensor* PersistentTensor::AccessTensor(OpKernelContext* context) {
  context->NotifyUseOfPersistentTensor(tensor_);
  return &tensor_;
}

// OpKernelConstruction ------------------------------------------------------

Status OpKernelConstruction::MatchSignature(
    const DataTypeSlice expected_inputs, const DataTypeSlice expected_outputs) {
  return MatchSignatureHelper(expected_inputs, expected_outputs, input_types_,
                              output_types_);
}

Status OpKernelConstruction::allocate_temp(DataType type,
                                           const TensorShape& shape,
                                           Tensor* out_temp) {
  Tensor new_temp(allocator_, type, shape);

  if (!new_temp.IsInitialized() && shape.num_elements() > 0) {
    return errors::ResourceExhausted(
        "OOM when allocating temporary tensor with shape", shape.DebugString());
  }
  *out_temp = new_temp;
  return Status::OK();
}

Status OpKernelConstruction::allocate_persistent(
    DataType type, const TensorShape& shape, PersistentTensor* out_persistent,
    Tensor** out_tensor) {
  // for now just do the same thing as allocate_temp
  // TODO(misard) add specific memory tracking for persistent tensors
  Tensor persistent;
  Status s = allocate_temp(type, shape, &persistent);
  if (!s.ok()) {
    return s;
  }
  *out_persistent = PersistentTensor(persistent);
  Tensor* allocated = out_persistent->AccessTensor(this);
  if (out_tensor) {
    *out_tensor = allocated;
  }
  return s;
}

// OpKernelContext -----------------------------------------------------------

OpKernelContext::OpKernelContext(const Params& params)
    : params_(params),
      outputs_(params.op_kernel->output_types().size()),
      output_allocation_types_(params.op_kernel->output_types().size()) {
  Allocator* eigen_gpu_allocator = get_allocator(AllocatorAttributes());
  eigen_gpu_device_ = params_.device->MakeGpuDevice(params_.op_device_context,
                                                    eigen_gpu_allocator);
}

OpKernelContext::~OpKernelContext() {
  for (TensorValue& value : outputs_) {
    if (!value.is_ref()) {
      delete value.tensor;
    }
  }
  for (Tensor* t : temp_tensors_) delete t;
  delete eigen_gpu_device_;
}

Status OpKernelContext::input(const string& name, const Tensor** tensor) const {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->InputRange(name, &start, &stop));
  if (stop != start + 1) {
    return errors::InvalidArgument("OpKernel used list-valued input name '",
                                   name,
                                   "' when single-valued input was "
                                   "expected");
  }
  if ((*params_.inputs)[start].is_ref()) {
    return errors::InvalidArgument("OpKernel used ref input name '", name,
                                   "' when immutable input was expected");
  }
  *tensor = (*params_.inputs)[start].tensor;
  return Status::OK();
}

Status OpKernelContext::input_ref_mutex(const string& name, mutex** out_mutex) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->InputRange(name, &start, &stop));
  if (stop != start + 1) {
    return errors::InvalidArgument("OpKernel used list-valued input name '",
                                   name,
                                   "' when single-valued input was expected");
  }
  *out_mutex = input_ref_mutex(start);
  return Status::OK();
}

Status OpKernelContext::mutable_input(const string& name, Tensor* tensor,
                                      bool lock_held) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->InputRange(name, &start, &stop));
  if (stop != start + 1) {
    return errors::InvalidArgument("OpKernel used list-valued input name '",
                                   name,
                                   "' when single-valued input was expected");
  }
  if (!(*params_.inputs)[start].is_ref()) {
    return errors::InvalidArgument("OpKernel used immutable input name '", name,
                                   "' when ref input was expected");
  }
  // return a copy of the Ref acquired while holding the mutex
  if (lock_held) {
    *tensor = *(*params_.inputs)[start].tensor;
  } else {
    mutex_lock l(*input_ref_mutex(start));
    *tensor = *(*params_.inputs)[start].tensor;
  }
  return Status::OK();
}

Status OpKernelContext::replace_ref_input(const string& name,
                                          const Tensor& tensor,
                                          bool lock_held) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->InputRange(name, &start, &stop));
  if (stop != start + 1) {
    return errors::InvalidArgument("OpKernel used list-valued input name '",
                                   name,
                                   "' when single-valued input was expected");
  }
  if (!(*params_.inputs)[start].is_ref()) {
    return errors::InvalidArgument("OpKernel used immutable input name '", name,
                                   "' when ref input was expected");
  }
  replace_ref_input(start, tensor, lock_held);
  return Status::OK();
}

Status OpKernelContext::input_list(const string& name,
                                   OpInputList* list) const {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->InputRange(name, &start, &stop));
  *list = OpInputList(this, start, stop);
  return Status::OK();
}

Status OpKernelContext::mutable_input_list(const string& name,
                                           OpMutableInputList* list) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->InputRange(name, &start, &stop));
  *list = OpMutableInputList(this, start, stop);
  return Status::OK();
}

Status OpKernelContext::output_list(const string& name, OpOutputList* list) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->OutputRange(name, &start, &stop));
  *list = OpOutputList(this, start, stop);
  return Status::OK();
}

Status OpKernelContext::allocate_output(const string& name,
                                        const TensorShape& shape,
                                        Tensor** tensor) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->OutputRange(name, &start, &stop));
  if (stop != start + 1) {
    return errors::InvalidArgument("OpKernel used list-valued output name '",
                                   name,
                                   "' when single-valued output was "
                                   "expected");
  }
  return allocate_output(start, shape, tensor);
}

Status OpKernelContext::allocate_output(const string& name,
                                        const TensorShape& shape,
                                        Tensor** tensor,
                                        AllocatorAttributes attr) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->OutputRange(name, &start, &stop));
  if (stop != start + 1) {
    return errors::InvalidArgument("OpKernel used list-valued output name '",
                                   name,
                                   "' when single-valued output was "
                                   "expected");
  }
  return allocate_output(start, shape, tensor, attr);
}

Status OpKernelContext::set_output(const string& name, const Tensor& tensor) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->OutputRange(name, &start, &stop));
  if (stop != start + 1) {
    return errors::InvalidArgument("OpKernel used list-valued output name '",
                                   name,
                                   "' when single-valued output was "
                                   "expected");
  }
  set_output(start, tensor);
  return Status::OK();
}

Status OpKernelContext::set_output_ref(const string& name, mutex* mu,
                                       Tensor* tensor_for_ref) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->OutputRange(name, &start, &stop));
  if (stop != start + 1) {
    return errors::InvalidArgument("OpKernel used list-valued output name '",
                                   name,
                                   "' when single-valued output was "
                                   "expected");
  }
  set_output_ref(start, mu, tensor_for_ref);
  return Status::OK();
}

Status OpKernelContext::mutable_output(const string& name, Tensor** tensor) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->OutputRange(name, &start, &stop));
  if (stop != start + 1) {
    return errors::InvalidArgument("OpKernel used list-valued output name '",
                                   name,
                                   "' when single-valued output was "
                                   "expected");
  }
  *tensor = mutable_output(start);
  return Status::OK();
}

Status OpKernelContext::release_output(const string& name, TensorValue* value) {
  int start, stop;
  TF_RETURN_IF_ERROR(params_.op_kernel->OutputRange(name, &start, &stop));
  if (stop != start + 1) {
    return errors::InvalidArgument("OpKernel used list-valued output name '",
                                   name,
                                   "' when single-valued output was "
                                   "expected");
  }
  *value = release_output(start);
  return Status::OK();
}

bool OpKernelContext::ValidateInputsAreSameShape(OpKernel* op) {
  const auto& inputs = *params_.inputs;
  for (size_t i = 1; i < inputs.size(); ++i) {
    if (!inputs[0]->IsSameSize(*(inputs[i].tensor))) {
      SetStatus(errors::InvalidArgument(
          "Inputs to operation ", op->name(), " of type ", op->type_string(),
          " must have the same size and shape.  Input 0: ",
          inputs[0]->shape().DebugString(), " != input ", i, ": ",
          inputs[i]->shape().DebugString()));
      return false;
    }
  }
  return true;
}

Status OpKernelContext::MatchSignature(const DataTypeSlice expected_inputs,
                                       const DataTypeSlice expected_outputs) {
  DataTypeVector inputs;
  for (const TensorValue& t : *params_.inputs) {
    inputs.push_back(t.is_ref() ? MakeRefType(t->dtype()) : t->dtype());
  }
  DataTypeVector outputs = params_.op_kernel->output_types();
  return MatchSignatureHelper(expected_inputs, expected_outputs, inputs,
                              outputs);
}

// OpKernel registration ------------------------------------------------------

struct KernelRegistration {
  KernelRegistration(const KernelDef& d,
                     kernel_factory::OpKernelRegistrar::Factory f)
      : def(d), factory(f) {}
  const KernelDef def;
  const kernel_factory::OpKernelRegistrar::Factory factory;
};

// This maps from 'op_type' + DeviceType to the set of KernelDefs and
// factory functions for instantiating the OpKernel that matches the
// KernelDef.
typedef std::unordered_multimap<string, KernelRegistration> KernelRegistry;

static KernelRegistry* GlobalKernelRegistry() {
  static KernelRegistry* global_kernel_registry = new KernelRegistry;
  return global_kernel_registry;
}

static string Key(const string& op_type, DeviceType device_type,
                  const string& label) {
  return strings::StrCat(op_type, ":", DeviceTypeString(device_type), ":",
                         label);
}

namespace kernel_factory {

OpKernelRegistrar::OpKernelRegistrar(const KernelDef* kernel_def,
                                     Factory factory) {
  const string key =
      Key(kernel_def->op(), DeviceType(kernel_def->device_type()),
          kernel_def->label());
  GlobalKernelRegistry()->insert(
      std::make_pair(key, KernelRegistration(*kernel_def, factory)));
  delete kernel_def;
}

}  // namespace kernel_factory

namespace {

// Helper for AttrsMatch().
bool InTypeList(DataType dt, const AttrValue& type_list) {
  for (int in_list : type_list.list().type()) {
    if (dt == in_list) return true;
  }
  return false;
}

// Returns whether the attrs in the NodeDef satisfy the constraints in
// the kernel_def.  Returns an error if attrs in kernel_def are not
// found, or have a mismatching type.
Status AttrsMatch(const NodeDef& node_def, const KernelDef& kernel_def,
                  bool* match) {
  *match = false;
  AttrSlice attrs(node_def);
  for (const auto& constraint : kernel_def.constraint()) {
    if (constraint.allowed_values().list().type_size() == 0) {
      return errors::Unimplemented(
          "KernelDef '", kernel_def.ShortDebugString(),
          " has constraint on attr '", constraint.name(),
          "' with unsupported type: ",
          SummarizeAttrValue(constraint.allowed_values()));
    }

    const AttrValue* found = attrs.Find(constraint.name());
    if (found) {
      if (found->type() != DT_INVALID) {
        if (!InTypeList(found->type(), constraint.allowed_values())) {
          return Status::OK();
        }
      } else {
        if (!AttrValueHasType(*found, "list(type)").ok()) {
          return errors::InvalidArgument(
              "KernelDef '", kernel_def.ShortDebugString(),
              "' has constraint on attr '", constraint.name(),
              "' that has value '", SummarizeAttrValue(*found),
              "' that does not have type 'type' or 'list(type)' in NodeDef '",
              SummarizeNodeDef(node_def), "'");
        }

        for (int t : found->list().type()) {
          if (!InTypeList(static_cast<DataType>(t),
                          constraint.allowed_values())) {
            return Status::OK();
          }
        }
      }
    } else {
      return errors::InvalidArgument(
          "OpKernel '", kernel_def.op(), "' has constraint on attr '",
          constraint.name(), "' not in NodeDef '", SummarizeNodeDef(node_def),
          "', KernelDef: '", kernel_def.ShortDebugString(), "'");
    }
  }
  *match = true;
  return Status::OK();
}

Status FindKernelRegistration(DeviceType device_type, const NodeDef& node_def,
                              const KernelRegistration** reg) {
  *reg = nullptr;
  string label;  // Label defaults to empty if not found in NodeDef.
  GetNodeAttr(node_def, "_kernel", &label);
  const string key = Key(node_def.op(), device_type, label);
  auto regs = GlobalKernelRegistry()->equal_range(key);
  for (auto iter = regs.first; iter != regs.second; ++iter) {
    // If there is a kernel registered for the op and device_type,
    // check that the attrs match.
    bool match;
    TF_RETURN_IF_ERROR(AttrsMatch(node_def, iter->second.def, &match));
    if (match) {
      if (*reg != nullptr) {
        return errors::InvalidArgument(
            "Multiple OpKernel registrations match NodeDef '",
            SummarizeNodeDef(node_def), "': '", (*reg)->def.ShortDebugString(),
            "' and '", iter->second.def.ShortDebugString(), "'");
      }
      *reg = &iter->second;
    }
  }
  return Status::OK();
}

}  // namespace

Status SupportedDeviceTypesForNode(
    const std::vector<DeviceType>& prioritized_types, const NodeDef& def,
    DeviceTypeVector* device_types) {
  // TODO(zhifengc): Changes the callers (SimplePlacer and
  // DynamicPlacer) to consider the possibility that 'def' is call to
  // a user-defined function and only calls this
  // SupportedDeviceTypesForNode for primitive ops.
  Status s;
  const OpDef* op_def = OpRegistry::Global()->LookUp(def.op(), &s);
  if (op_def) {
    for (const DeviceType& device_type : prioritized_types) {
      const KernelRegistration* reg = nullptr;
      TF_RETURN_IF_ERROR(FindKernelRegistration(device_type, def, &reg));
      if (reg != nullptr) device_types->push_back(device_type);
    }
  } else {
    // Assumes that all device types support this node.
    for (const DeviceType& device_type : prioritized_types) {
      device_types->push_back(device_type);
    }
  }
  return Status::OK();
}

std::unique_ptr<OpKernel> CreateOpKernel(DeviceType device_type,
                                         DeviceBase* device,
                                         Allocator* allocator,
                                         const NodeDef& node_def,
                                         Status* status) {
  OpKernel* kernel = nullptr;
  *status = CreateOpKernel(device_type, device, allocator, nullptr, node_def,
                           &kernel);
  return std::unique_ptr<OpKernel>(kernel);
}

Status CreateOpKernel(DeviceType device_type, DeviceBase* device,
                      Allocator* allocator, FunctionLibraryRuntime* flib,
                      const NodeDef& node_def, OpKernel** kernel) {
  VLOG(1) << "Instantiating kernel for node: " << SummarizeNodeDef(node_def);

  // Look up the Op registered for this op name.
  Status s;
  const OpDef* op_def = OpRegistry::Global()->LookUp(node_def.op(), &s);
  if (op_def == nullptr) return s;

  // Validate node_def against OpDef.
  s = ValidateNodeDef(node_def, *op_def);
  if (!s.ok()) return s;

  // Look up kernel registration.
  const KernelRegistration* registration;
  s = FindKernelRegistration(device_type, node_def, &registration);
  if (!s.ok()) {
    errors::AppendToMessage(&s, " when instantiating ", node_def.op());
    return s;
  }
  if (registration == nullptr) {
    s.Update(errors::NotFound("No registered '", node_def.op(),
                              "' OpKernel for ", DeviceTypeString(device_type),
                              " devices compatible with node ",
                              SummarizeNodeDef(node_def)));
    return s;
  }

  // Get signature from the OpDef & NodeDef
  DataTypeVector inputs;
  DataTypeVector outputs;
  s.Update(InOutTypesForNode(node_def, *op_def, &inputs, &outputs));
  if (!s.ok()) {
    errors::AppendToMessage(&s, " for node: ", SummarizeNodeDef(node_def));
    return s;
  }

  // Everything needed for OpKernel construction.
  OpKernelConstruction context(device_type, device, allocator, &node_def,
                               op_def, flib, inputs, outputs, &s);
  *kernel = (*registration->factory)(&context);
  if (!s.ok()) {
    delete *kernel;
    *kernel = nullptr;
  }
  return s;
}

namespace {  // Helper for MemoryTypesForNode.
// Fills memory_types for either input or output, setting everything
// to DEVICE_MEMORY except those args in host_memory_args.  Removes
// elements of host_memory_args that were used.
void MemoryTypesHelper(const NameRangeMap& name_map,
                       std::vector<string>* host_memory_args,
                       MemoryTypeVector* memory_types) {
  // Set total to the largest endpoint of anything in the name_map.
  int total = 0;
  for (const auto& item : name_map) {
    total = std::max(total, item.second.second);
  }

  // Now that we know the size, fill with the default 'DEVICE_MEMORY'.
  memory_types->clear();
  memory_types->resize(total, DEVICE_MEMORY);

  // Update args that have been marked as in "HOST_MEMORY".
  size_t keep = 0;
  for (size_t i = 0; i < host_memory_args->size(); ++i) {
    auto iter = name_map.find((*host_memory_args)[i]);
    if (iter != name_map.end()) {
      for (int j = iter->second.first; j < iter->second.second; ++j) {
        (*memory_types)[j] = HOST_MEMORY;
      }
    } else {
      // (*host_memory_args)[i] not found, save it for the next pass.
      if (i > keep) (*host_memory_args)[keep] = (*host_memory_args)[i];
      ++keep;
    }
  }
  host_memory_args->resize(keep);
}
}  // namespace

Status MemoryTypesForNode(DeviceType device_type, const NodeDef& ndef,
                          const OpDef& op_def,
                          const NameRangeMap& input_name_map,
                          const NameRangeMap& output_name_map,
                          MemoryTypeVector* input_memory_types,
                          MemoryTypeVector* output_memory_types) {
  Status status;
  const KernelRegistration* registration;
  TF_RETURN_IF_ERROR(FindKernelRegistration(device_type, ndef, &registration));

  if (registration != nullptr) {
    const auto& from_proto = registration->def.host_memory_arg();
    std::vector<string> host_memory_args(from_proto.begin(), from_proto.end());
    MemoryTypesHelper(input_name_map, &host_memory_args, input_memory_types);
    MemoryTypesHelper(output_name_map, &host_memory_args, output_memory_types);
    if (!host_memory_args.empty()) {
      return errors::InvalidArgument(
          "HostMemory args '", str_util::Join(host_memory_args, "', '"),
          "' not found in OpDef: ", SummarizeOpDef(op_def));
    }
  }
  return status;
}

Status MemoryTypesForNode(const OpRegistryInterface* op_registry,
                          DeviceType device_type, const NodeDef& ndef,
                          MemoryTypeVector* input_memory_types,
                          MemoryTypeVector* output_memory_types) {
  // Look up the Op registered for this op name.
  Status status;
  const OpDef* op_def = op_registry->LookUp(ndef.op(), &status);
  if (op_def == nullptr) return status;

  NameRangeMap inputs, outputs;
  status = NameRangesForNode(ndef, *op_def, &inputs, &outputs);
  if (!status.ok()) return status;

  return MemoryTypesForNode(device_type, ndef, *op_def, inputs, outputs,
                            input_memory_types, output_memory_types);
}

namespace {

bool FindArgInOp(const string& arg_name,
                 const protobuf::RepeatedPtrField<OpDef::ArgDef>& args) {
  for (const auto& arg : args) {
    if (arg_name == arg.name()) {
      return true;
    }
  }
  return false;
}

}  // namespace

Status ValidateKernelRegistrations(const OpRegistryInterface* op_registry) {
  Status unused_status;
  for (const auto& key_registration : *GlobalKernelRegistry()) {
    const KernelDef& kernel_def(key_registration.second.def);
    const OpDef* op_def = op_registry->LookUp(kernel_def.op(), &unused_status);
    if (op_def == nullptr) {
      // TODO(josh11b): Make this a hard error.
      LOG(ERROR) << "OpKernel ('" << kernel_def.ShortDebugString()
                 << "') for unknown op: " << kernel_def.op();
      continue;
    }
    for (const auto& host_memory_arg : kernel_def.host_memory_arg()) {
      if (!FindArgInOp(host_memory_arg, op_def->input_arg()) &&
          !FindArgInOp(host_memory_arg, op_def->output_arg())) {
        return errors::InvalidArgument("HostMemory arg '", host_memory_arg,
                                       "' not found in OpDef: ",
                                       SummarizeOpDef(*op_def));
      }
    }
  }
  return Status::OK();
}

template <>
const Eigen::ThreadPoolDevice& OpKernelContext::eigen_device() const {
  return eigen_cpu_device();
}

template <>
const Eigen::GpuDevice& OpKernelContext::eigen_device() const {
  return eigen_gpu_device();
}

}  // namespace tensorflow