aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/framework/model.cc
blob: 250b006641d43cf7691313eeefad8d9e2f37e454 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/framework/model.h"

namespace tensorflow {
namespace data {
namespace model {

// TODO(jsimsa): Use `Node` subclassing instead of types and node statements.
void Node::CollectKnobs(std::vector<Node::Knob>* knobs) {
  mutex_lock l(mu_);
  switch (type_) {
    case Type::PARALLEL_INTERLEAVE_V2: {
      for (auto input : inputs_) {
        input->CollectKnobs(knobs);
      }
      int64 processing_time = static_cast<int64>(
          static_cast<double>(ProcessingTimeLocked() -
                              inputs_.front()->ProcessingTime()) /
          static_cast<double>(inputs_.size() - 1));
      knobs->emplace_back(
          Node::Knob{this, processing_time, metadata_["parallelism"]});
      return;
    }
    case Type::MAP_AND_BATCH:
    case Type::PARALLEL_MAP: {
      for (auto input : inputs_) {
        input->CollectKnobs(knobs);
      }
      knobs->emplace_back(
          Node::Knob{this, NanosPerElementLocked(), metadata_["parallelism"]});
      return;
    }
    case Type::BATCH:
    case Type::CACHE:
    case Type::CONCATENATE:
    case Type::FILTER:
    case Type::FLAT_MAP:
    case Type::INTERLEAVE:
    case Type::MAP:
    case Type::PADDED_BATCH:
    case Type::PARALLEL_INTERLEAVE:
    case Type::PREFETCH:
    case Type::REPEAT:
    case Type::SHUFFLE:
    case Type::SKIP:
    case Type::TAKE:
    case Type::ZIP: {
      for (auto input : inputs_) {
        input->CollectKnobs(knobs);
      }
      return;
    }
    default:
      return;
  }
}

int64 Node::ProcessingTimeLocked() {
  switch (type_) {
    case Type::BATCH:
    case Type::MAP_AND_BATCH:
    case Type::PADDED_BATCH: {
      int64 batch_size = metadata_["batch_size"];
      return NanosPerElementLocked() + batch_size * ProcessingTimeForInputs();
    }
    case Type::FILTER: {
      std::shared_ptr<Node> input = inputs_.front();
      double ratio = static_cast<double>(input->num_elements()) /
                     static_cast<double>(num_elements_);
      return NanosPerElementLocked() +
             static_cast<int64>(ratio *
                                static_cast<double>(ProcessingTimeForInputs()));
    }
    case Type::FLAT_MAP:
    case Type::INTERLEAVE:
    case Type::PARALLEL_INTERLEAVE:
    case Type::PARALLEL_INTERLEAVE_V2: {
      // TODO(jsimsa): model the first input
      // TODO(jsimsa): use processing time history as a prior for future inputs
      if (inputs_.size() <= 1) {
        return NanosPerElementLocked();
      }
      int64 processing_time =
          ProcessingTimeForInputs() - inputs_.front()->ProcessingTime();
      return NanosPerElementLocked() +
             static_cast<double>(processing_time) /
                 static_cast<double>(inputs_.size() - 1);
    }
    case Type::CACHE:
    case Type::CONCATENATE:
    case Type::MAP:
    case Type::PARALLEL_MAP:
    case Type::PREFETCH:
      // TODO(jsimsa): use processing time history as a prior for future inputs
    case Type::REPEAT:
    case Type::SHUFFLE:
    case Type::SKIP:
    case Type::TAKE:
    case Type::ZIP: {
      return NanosPerElementLocked() + ProcessingTimeForInputs();
    }
    default:
      return NanosPerElementLocked();
  }
}

int64 Node::OutputTimeLocked(std::vector<int64>* input_times) {
  switch (type_) {
    case Type::BATCH:
    case Type::PADDED_BATCH: {
      double batch_size = metadata_["batch_size"];
      int64 old_value = (*input_times)[input_times->size() - 1];
      (*input_times)[input_times->size() - 1] = static_cast<int64>(
          static_cast<double>(old_value + NanosPerElementLocked()) /
          batch_size);
      auto cleanup = gtl::MakeCleanup([input_times, old_value]() {
        (*input_times)[input_times->size() - 1] = old_value;
      });
      return NanosPerElementLocked() +
             batch_size * OutputTimeForInputs(input_times);
    }
    case Type::FILTER: {
      std::shared_ptr<Node> input = inputs_.front();
      int64 old_value = (*input_times)[input_times->size() - 1];
      double ratio = static_cast<double>(input->num_elements()) /
                     static_cast<double>(num_elements_);
      (*input_times)[input_times->size() - 1] = static_cast<int64>(
          static_cast<double>(old_value + NanosPerElementLocked()) / ratio);
      auto cleanup = gtl::MakeCleanup([input_times, old_value]() {
        (*input_times)[input_times->size() - 1] = old_value;
      });
      return NanosPerElementLocked() +
             static_cast<int64>(
                 static_cast<double>(OutputTimeForInputs(input_times)) * ratio);
    }
    case Type::FLAT_MAP:
    case Type::INTERLEAVE: {
      // TODO(jsimsa): model the first input
      // TODO(jsimsa): use cycle length metadata instead of `inputs_.size() - 1`
      if (inputs_.size() <= 1) {
        return NanosPerElementLocked();
      }
      int64 delta =
          static_cast<int64>(static_cast<double>(NanosPerElementLocked()) *
                             static_cast<double>(inputs_.size() - 1));
      (*input_times)[input_times->size() - 1] += delta;
      auto cleanup = gtl::MakeCleanup([input_times, delta]() {
        (*input_times)[input_times->size() - 1] -= delta;
      });
      int64 output_time = OutputTimeForInputs(input_times) -
                          inputs_.front()->OutputTime(input_times);
      return NanosPerElementLocked() +
             static_cast<double>(output_time) /
                 static_cast<double>(inputs_.size() - 1);
    }
    case Type::MAP_AND_BATCH: {
      double batch_size = metadata_["batch_size"];
      double parallelism = metadata_["parallelism"];
      int64 delta =
          static_cast<int64>(static_cast<double>(NanosPerElementLocked()) /
                             (batch_size * parallelism));
      input_times->push_back(delta);
      auto cleanup =
          gtl::MakeCleanup([input_times]() { input_times->pop_back(); });
      int64 output_time = static_cast<int64>(
          static_cast<double>(NanosPerElementLocked()) / parallelism +
          batch_size * OutputTimeForInputs(input_times));
      return std::max(0LL,
                      output_time - input_times->at(input_times->size() - 2));
    }
    case Type::PARALLEL_INTERLEAVE:
    case Type::PARALLEL_INTERLEAVE_V2: {
      // TODO(jsimsa): model the first input
      if (inputs_.size() <= 1) {
        return NanosPerElementLocked();
      }
      int64 delta =
          static_cast<int64>(static_cast<double>(NanosPerElementLocked()) *
                             static_cast<double>(inputs_.size() - 1));
      input_times->push_back(delta);
      auto cleanup =
          gtl::MakeCleanup([input_times]() { input_times->pop_back(); });
      int64 inputs_output_time = OutputTimeForInputs(input_times) -
                                 inputs_.front()->OutputTime(input_times);
      double parallelism = std::min(port::NumSchedulableCPUs(),
                                    static_cast<int>(metadata_["parallelism"]));
      int64 output_time =
          NanosPerElementLocked() + ((static_cast<double>(inputs_output_time) /
                                      static_cast<double>(inputs_.size() - 1)) /
                                     parallelism);
      return std::max(0LL,
                      output_time - input_times->at(input_times->size() - 2));
    }
    case Type::PARALLEL_MAP: {
      double parallelism = std::min(port::NumSchedulableCPUs(),
                                    static_cast<int>(metadata_["parallelism"]));
      int64 delta = static_cast<int64>(
          static_cast<double>(NanosPerElementLocked()) / parallelism);
      input_times->push_back(delta);
      auto cleanup =
          gtl::MakeCleanup([input_times]() { input_times->pop_back(); });
      int64 output_time =
          static_cast<double>(NanosPerElementLocked()) / parallelism +
          OutputTimeForInputs(input_times);
      return std::max(0LL,
                      output_time - input_times->at(input_times->size() - 2));
    }
    case Type::PREFETCH: {
      int64 delta = NanosPerElementLocked();
      input_times->push_back(delta);
      auto cleanup =
          gtl::MakeCleanup([input_times]() { input_times->pop_back(); });
      return std::max(0LL, NanosPerElementLocked() +
                               OutputTimeForInputs(input_times) -
                               input_times->at(input_times->size() - 2));
    }
    case Type::CACHE:
    case Type::CONCATENATE:
    case Type::MAP:
    case Type::REPEAT:
    case Type::SHUFFLE:
    case Type::SKIP:
    case Type::TAKE:
    case Type::ZIP: {
      int64 delta = NanosPerElementLocked();
      (*input_times)[input_times->size() - 1] += delta;
      auto cleanup = gtl::MakeCleanup([input_times, delta]() {
        (*input_times)[input_times->size() - 1] -= delta;
      });
      return NanosPerElementLocked() + OutputTimeForInputs(input_times);
    }
    default:
      return NanosPerElementLocked();
  }
}

Model::Model(const proto::Model& model_proto) {
  id_counter_ = model_proto.id_counter();
  std::map<int64, std::shared_ptr<Node>> lookup_table;
  for (auto node_proto : model_proto.node()) {
    std::shared_ptr<Node> node(new Node(node_proto));
    lookup_table[node_proto.id()] = node;
  }
  for (auto node_proto : model_proto.node()) {
    std::shared_ptr<Node> node = lookup_table[node_proto.id()];
    for (int64 id : node_proto.input()) {
      node->add_input(lookup_table[id]);
    }
    node->set_output(lookup_table[node_proto.output()]);
  }
  output_ = lookup_table[model_proto.output()];
}

std::shared_ptr<Node> Model::AddNode(const string& name,
                                     const string& output_name) {
  mutex_lock l(mu_);
  std::shared_ptr<Node> output;
  auto it = lookup_table_.find(output_name);
  if (it != lookup_table_.end()) {
    output = it->second;
  }
  std::shared_ptr<Node> node(new Node(id_counter_++, output));
  if (!output_) {
    output_ = node;
  }
  if (output) {
    output->add_input(node);
  }
  lookup_table_.insert(std::make_pair(name, node));
  return node;
}

std::shared_ptr<Node> Model::LookupNode(const string& name) {
  tf_shared_lock l(mu_);
  std::shared_ptr<Node> result;
  auto it = lookup_table_.find(name);
  if (it != lookup_table_.end()) {
    result = it->second;
  }
  return result;
}

void Model::Optimize() {
  mutex_lock l(mu_);
  int64 processing_time = ProcessingTime();
  int64 num_cpus = port::NumSchedulableCPUs();
  std::vector<Node::Knob> knobs = CollectKnobs();
  // The optimization algorithm starts by setting all parallelism knobs to 1. It
  // then repeatedly identifies the knob that, when turned up by 1, decreases
  // the output time the most. This process is repeated until all knobs reach
  // the number of schedulable CPUs or the projected output time is less than or
  // equal to the processing time needed to produce an element divided by the
  // number of schedulable CPUs.
  for (auto& knob : knobs) {
    LOG(INFO) << knob.node->name() << " " << knob.processing_time;
    knob.value = 1;
    knob.node->set_metadata("parallelism", knob.value);
  }
  while (true) {
    int64 output_time = OutputTime();
    bool all_knobs = true;
    for (auto knob : knobs) {
      if (knob.value < num_cpus) {
        all_knobs = false;
        break;
      }
    }
    if (output_time < processing_time / num_cpus || all_knobs) {
      break;
    }
    int64 best_delta = -1;
    int best_knob = -1;
    for (int i = 0; i < knobs.size(); ++i) {
      if (knobs[i].value == num_cpus) {
        continue;
      }
      knobs[i].node->set_metadata("parallelism", knobs[i].value + 1);
      int64 delta = output_time - OutputTime();
      if (delta > best_delta) {
        best_delta = delta;
        best_knob = i;
      }
      knobs[i].node->set_metadata("parallelism", knobs[i].value);
    }
    knobs[best_knob].value++;
    knobs[best_knob].node->set_metadata("parallelism", knobs[best_knob].value);
  }
  for (auto knob : knobs) {
    LOG(INFO) << knob.node->name() << " " << knob.value;
  }
  LOG(INFO) << "output time: " << OutputTime();
  LOG(INFO) << "processing time: " << ProcessingTime();
}

void Model::OutputToFile() {
  proto::Model model_proto;
  ToProto(&model_proto);
  string filename;
  Env::Default()->LocalTempFilename(&filename);
  TF_CHECK_OK(WriteStringToFile(Env::Default(), filename,
                                model_proto.SerializeAsString()));
  LOG(INFO) << filename;
}

void Model::RemoveNode(const string& prefix) {
  mutex_lock l(mu_);
  lookup_table_.erase(prefix);
}

void Model::ToProto(proto::Model* model_proto) {
  mutex_lock l(mu_);
  model_proto->set_id_counter(id_counter_);
  model_proto->set_output(output_->id());
  AddNodeToProto(output_, model_proto);
}

// static
void Model::AddNodeToProto(const std::shared_ptr<Node>& node,
                           proto::Model* model_proto) {
  proto::Node* node_proto = model_proto->add_node();
  node->ToProto(node_proto);
  for (const std::shared_ptr<Node>& input : node->inputs()) {
    AddNodeToProto(input, model_proto);
  }
}

std::vector<Node::Knob> Model::CollectKnobs() {
  std::vector<Node::Knob> knobs;
  output_->CollectKnobs(&knobs);
  return knobs;
}

int64 Model::OutputTime() {
  std::vector<int64> input_times(1, 0);
  return output_->OutputTime(&input_times);
}

int64 Model::ProcessingTime() { return output_->ProcessingTime(); }

}  // namespace model
}  // namespace data
}  // namespace tensorflow