aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/debug/debug_graph_utils.cc
blob: 5fc95a8f20d2b3f1b37a660e17d0efee17aacb94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/debug/debug_graph_utils.h"

#include "tensorflow/core/common_runtime/memory_types.h"
#include "tensorflow/core/framework/kernel_def.pb.h"
#include "tensorflow/core/framework/node_def_builder.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/graph/node_builder.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/protobuf/debug.pb.h"

namespace tensorflow {

namespace {

// TODO(cais): Switch to safe_strtob when available.
Status ParseBoolString(const string& bool_str, bool* bool_val) {
  const string lower_bool_str = str_util::Lowercase(bool_str);
  if (lower_bool_str == "false" || lower_bool_str == "f" ||
      lower_bool_str == "0") {
    *bool_val = false;
  } else if (lower_bool_str == "true" || lower_bool_str == "t" ||
             lower_bool_str == "1") {
    *bool_val = true;
  } else {
    return errors::InvalidArgument("Invalid string for bool value: ", bool_str);
  }
  return Status::OK();
}

}  // namespace

// static
Status DebugNodeInserter::InsertNodes(
    const protobuf::RepeatedPtrField<DebugTensorWatch>& watches, Graph* graph,
    Device* device) {
  // TODO(cais): This method is getting too large in size.
  // Refactor it with helpers.

  if (watches.empty()) {
    // Nothing to do: Return OK right away.
    return Status::OK();
  }

  // A map from tensor name (e.g., "node_a:0") to list of debug op names
  // (e.g., {"DebugIdentity", "DebugNanCount"})
  std::unordered_map<string, std::vector<string>> tensor_watches;
  // A map from tensor name to debug_url.
  std::unordered_map<string, std::vector<string>> tensor_watch_urls;
  std::unordered_map<string, bool> tensor_tolerate_failures;

  // Cache the proto content for fast lookup later
  for (const DebugTensorWatch& watch : watches) {
    if (watch.output_slot() < 0) {
      // The semantics of output_slot == -1 is that the node is watched only
      // for completion, but not for output tensor values (see
      // NodeCompletionCallback in debug_gateway.h).
      continue;
    }
    if (watch.debug_ops().empty()) {
      continue;
    }

    string tensor_name =
        strings::StrCat(watch.node_name(), ":", watch.output_slot());

    std::vector<string> debug_ops;
    for (const string& debug_op : watch.debug_ops()) {
      debug_ops.push_back(debug_op);
    }

    tensor_watches[tensor_name] = debug_ops;
    tensor_tolerate_failures[tensor_name] =
        watch.tolerate_debug_op_creation_failures();

    std::vector<string> urls;
    for (const string& url : watch.debug_urls()) {
      urls.push_back(url);
    }
    tensor_watch_urls[tensor_name] = urls;
  }

  if (tensor_watches.empty()) {
    return Status::OK();
  }

  DeviceType device_type = DeviceType{device->device_type()};

  // Keep track of all edges to be removed.
  std::vector<const Edge*> edges_to_remove;

  for (Node* src_node : graph->nodes()) {
    // Make a map from output slot to outgoing edges from the slot.
    std::unordered_map<int, std::vector<const Edge*>> output_slot_to_edges;
    for (const Edge* edge : src_node->out_edges()) {
      const int src_output = edge->src_output();
      if (output_slot_to_edges.find(src_output) == output_slot_to_edges.end()) {
        output_slot_to_edges[src_output] = {edge};
      } else {
        output_slot_to_edges[src_output].push_back(edge);
      }
    }

    // Iterate through all output slots of the node.
    for (int src_output_slot = 0; src_output_slot < src_node->num_outputs();
         ++src_output_slot) {
      const string tensor_name =
          strings::StrCat(src_node->name(), ":", src_output_slot);
      if (tensor_watches.find(tensor_name) == tensor_watches.end()) {
        // Add debug nodes only for edges with matching source node and source
        // output slot.
        continue;
      }

      // Now we have encountered a watched tensor. We will:
      //   1) Mark this edge as to be removed, iff this is a non-Reference
      //      tensor
      //   2) Create a Copy node for the tensor
      //   3) Add a new edge, from the source tensor to the Copy node
      //   4) Add a new edge, from the Copy node to the destination node, iff
      //      this is a non-Reference tensor.
      //   5) Create all the requested debug nodes and their edges to the Copy
      //      node.
      //   6) Add control edges from the debug nodes to the destination nodes
      //      to ensure that the tensors values exported by the debug nodes
      //      to the debug URLs reflect the values before the execution of
      //      the destination nodes.

      const DataType src_dt = src_node->output_type(src_output_slot);
      MemoryType memory_type;
      TF_RETURN_IF_ERROR(MemoryTypeForOutput(device_type, graph, src_node,
                                             src_output_slot, &memory_type));

      // Create the copy node for the watched tensor.
      Node* copy_node;
      Status copy_s = CreateCopyNode(
          graph, device_type, memory_type == HOST_MEMORY, src_node->name(),
          src_output_slot, src_dt, tensor_name, tensor_watches[tensor_name],
          tensor_watch_urls[tensor_name], &copy_node);
      if (!copy_s.ok()) {
        return Status(
            error::FAILED_PRECONDITION,
            strings::StrCat("Failed to create Copy/CopyHost node for tensor ",
                            tensor_name, ", due to: ", copy_s.error_message()));
      }

      // Add edge from watched tensor to the copy node.
      graph->AddEdge(src_node, src_output_slot, copy_node, 0);

      // Create all requested debug nodes and their edges to the Copy node.
      std::vector<Node*> debug_nodes;
      for (size_t i = 0; i < tensor_watches[tensor_name].size(); ++i) {
        const string& debug_op_name = tensor_watches[tensor_name][i];

        Node* debug_node;
        Status debug_s = CreateDebugNode(
            graph, *device, copy_node->name(), src_dt, tensor_name,
            tensor_watch_urls[tensor_name], i, debug_op_name, &debug_node);
        if (debug_s.ok()) {
          graph->AddEdge(copy_node, 0, debug_node, 0);
          debug_nodes.push_back(debug_node);
        } else {
          if (tensor_tolerate_failures[tensor_name]) {
            LOG(INFO) << "Tolerating failure to create debug node: "
                      << "tensor name = " << tensor_name << "; "
                      << "debug op name = " << debug_op_name;
          } else {
            return Status(
                error::FAILED_PRECONDITION,
                strings::StrCat("Failed to create debug node ", debug_op_name,
                                " for tensor ", tensor_name,
                                ", due to: ", debug_s.error_message()));
          }
        }
      }

      // Is the output a reference?
      const bool is_ref = IsRefType(src_node->output_type(src_output_slot));

      // Iterate through all outgoing edges attached to the slot.
      for (const Edge* edge : output_slot_to_edges[src_output_slot]) {
        // Mark the edge for removal.
        if (!is_ref) {
          edges_to_remove.push_back(edge);
          graph->AddEdge(copy_node, 0, edge->dst(), edge->dst_input());
        }

        // Add control edges from the debug nodes to the destination node
        // to ensure that the debug nodes are executed before the destination
        // node. Skip Enter and NextIteration ops to avoid hanging.
        for (Node* debug_node : debug_nodes) {
          if (!src_node->IsEnter() && !src_node->IsNextIteration()) {
            graph->AddEdge(debug_node, Graph::kControlSlot, edge->dst(),
                           Graph::kControlSlot);
          }
        }
      }
    }
  }

  // Remove all edges marked for removal.
  for (const Edge* edge : edges_to_remove) {
    graph->RemoveEdge(edge);
  }

  return Status::OK();
}

void DebugNodeInserter::DeparallelizeWhileLoops(Graph* graph, Device* device) {
  bool deparallelized_a_loop = false;
  for (Node* node : graph->nodes()) {
    if (node->IsEnter()) {
      const AttrValue* parallel_iterations =
          node->attrs().Find("parallel_iterations");
      if (parallel_iterations && parallel_iterations->i() > 1) {
        deparallelized_a_loop = true;
        VLOG(1) << "Changing the parallel_iterations attribute of the "
                << "Enter/RefEnter node \"" << node->name() << "\" on device \""
                << device->name() << "\" from " << parallel_iterations->i()
                << " to 1.";
        node->AddAttr<int64>("parallel_iterations", 1);
      }
    }
  }
  if (deparallelized_a_loop) {
    LOG(INFO) << "For debugging, tfdbg has set the parallel_iterations "
              << "attribute of all scheduled Enter/RefEnter nodes to 1. (This "
              << "does not affect subsequent non-debug runs.)";
  }
}

// static
const string DebugNodeInserter::GetCopyNodeName(const string& node_name,
                                                const int output_slot) {
  // For example, if the watched node is named "node1" and the output slot
  // is 0, the debug node will be called: __copy_node1_0
  return strings::StrCat("__copy_", node_name, "_", output_slot);
}

// static
const string DebugNodeInserter::GetDebugNodeName(const string& tensor_name,
                                                 const int debug_op_num,
                                                 const string& debug_op_name) {
  // For example, if the watched node is named "node1" and the debug op that
  // watches the output slot of node1 is of the type "DebugNanCount", the
  // debug node will be called: __dbg_node1_0_0_DebugNanCount.
  return strings::StrCat("__dbg_", tensor_name, "_", debug_op_num, "_",
                         debug_op_name);
}

// static
Status DebugNodeInserter::CreateCopyNode(
    Graph* graph, const DeviceType device_type, const bool is_host_memory,
    const string& src_node_name, const int src_output, const DataType src_dt,
    const string& tensor_name, const std::vector<string>& debug_ops,
    const std::vector<string>& debug_urls, Node** copy_node) {
  const string kGatedGrpcAttributeKey = "gated_grpc";

  NodeDef node_def;
  const KernelDef* kdef;

  const string copy_op_name = is_host_memory ? "CopyHost" : "Copy";
  const string copy_node_name = GetCopyNodeName(src_node_name, src_output);

  // Cross debug_ops and debug_urls to get the list of debug ops and watches.
  std::vector<string> debug_ops_spec;
  for (const string& debug_op : debug_ops) {
    for (const string& debug_url : debug_urls) {
      string debug_op_name_proper;
      std::unordered_map<string, string> custom_attributes;
      TF_RETURN_IF_ERROR(ParseDebugOpName(debug_op, &debug_op_name_proper,
                                          &custom_attributes));

      bool gated_grpc_value = false;
      if (custom_attributes.find(kGatedGrpcAttributeKey) !=
          custom_attributes.end()) {
        TF_RETURN_IF_ERROR(ParseBoolString(
            custom_attributes[kGatedGrpcAttributeKey], &gated_grpc_value));
      }
      debug_ops_spec.push_back(strings::StrCat(debug_op_name_proper, ";",
                                               debug_url, ";",
                                               gated_grpc_value ? "1" : "0"));
    }
  }

  auto builder = NodeDefBuilder(copy_node_name, copy_op_name)
                     .Input(src_node_name, src_output, src_dt)
                     .Attr("debug_ops_spec", std::move(debug_ops_spec));

  if (!builder.Finalize(&node_def).ok()) {
    return Status(
        error::FAILED_PRECONDITION,
        strings::StrCat("Failed to create node definition ", "for copy op ",
                        copy_node_name, " on watched tensor ", tensor_name));
  }
  Status s = FindKernelDef(device_type, node_def, &kdef, nullptr);

  if (!s.ok()) {
    return Status(
        error::FAILED_PRECONDITION,
        strings::StrCat("Failed to find kernel definition ", "for copy op ",
                        copy_node_name, " on watched tensor ", tensor_name));
  }
  if (!NodeBuilder(builder).Finalize(graph, copy_node).ok()) {
    return Status(error::FAILED_PRECONDITION,
                  strings::StrCat("Failed to create copy node ", copy_node_name,
                                  " on watched tensor ", tensor_name));
  }

  return Status::OK();
}

// static
Status DebugNodeInserter::ParseDebugOpName(
    const string& debug_op_name, string* debug_op_name_proper,
    std::unordered_map<string, string>* attributes) {
  const size_t l_index = debug_op_name.find('(');
  const size_t r_index = debug_op_name.find(')');
  if (l_index == string::npos && r_index == string::npos) {
    *debug_op_name_proper = debug_op_name;
  } else {
    if (l_index == string::npos || l_index == 0 ||
        r_index != debug_op_name.size() - 1) {
      return errors::InvalidArgument("Malformed debug op name \"",
                                     debug_op_name, "\"");
    }

    *debug_op_name_proper = debug_op_name.substr(0, l_index);
    string arguments = debug_op_name.substr(l_index + 1, r_index - l_index - 1);

    std::vector<string> attribute_segs = str_util::Split(arguments, ";");
    for (const string& attribute_seg : attribute_segs) {
      StringPiece seg(attribute_seg);
      str_util::RemoveWhitespaceContext(&seg);
      if (seg.empty()) {
        continue;
      }

      const size_t eq_index = seg.find('=');
      if (eq_index == string::npos) {
        return errors::InvalidArgument(
            "Malformed attributes in debug op name \"", debug_op_name, "\"");
      }

      const string key(seg.substr(0, eq_index));
      const string value(
          seg.substr(eq_index + 1, attribute_seg.size() - eq_index - 1));
      if (key.empty() || value.empty()) {
        return errors::InvalidArgument(
            "Malformed attributes in debug op name \"", debug_op_name, "\"");
      }

      if (attributes->find(key) == attributes->end()) {
        (*attributes)[key] = value;
      } else {
        return errors::InvalidArgument("Duplicate attribute name \"", key,
                                       "\" found in the debug op: \"",
                                       debug_op_name, "\"");
      }
    }
  }
  return Status::OK();
}

// static
Status DebugNodeInserter::SetDebugNodeAttributes(
    Node* debug_node, const std::unordered_map<string, string>& attributes) {
  std::unordered_set<string> unfulfilled_keys;
  for (const auto& item : attributes) {
    unfulfilled_keys.insert(item.first);
  }

  for (const auto& attr : debug_node->op_def().attr()) {
    if (attributes.find(attr.name()) != attributes.end()) {
      const string& attr_value = attributes.at(attr.name());
      if (attr.type() == "string") {
        debug_node->AddAttr<string>(attr.name(), attr_value);
      } else if (attr.type() == "float") {
        float float_value = 0.0;
        if (!::tensorflow::strings::safe_strtof(attr_value.c_str(),
                                                &float_value)) {
          return errors::InvalidArgument(
              "Invalid value string for float-type attribute ", attr.name(),
              "of debug node ", debug_node->name(), ": \"", attr_value, "\"");
        }
        debug_node->AddAttr<float>(attr.name(), float_value);
      } else if (attr.type() == "int") {
        int64 int_value = 0;
        if (!::tensorflow::strings::safe_strto64(attr_value, &int_value)) {
          return errors::InvalidArgument(
              "Invalid value string for int-type attribute ", attr.name(),
              "of debug node ", debug_node->name(), ": \"", attr_value, "\"");
        }
        debug_node->AddAttr<int>(attr.name(), int_value);
      } else if (attr.type() == "bool") {
        bool bool_value;
        if (!ParseBoolString(attr_value, &bool_value).ok()) {
          return errors::InvalidArgument(
              "Invalid value string for bool-type attribute ", attr.name(),
              "of debug node ", debug_node->name(), ": \"", attr_value, "\"");
        }
        debug_node->AddAttr<bool>(attr.name(), bool_value);
      } else {
        return errors::InvalidArgument(
            "Unsupported type of custom attribute for debug ops: ",
            attr.type());
      }

      unfulfilled_keys.erase(attr.name());
    }
  }

  if (unfulfilled_keys.empty()) {
    return Status::OK();
  } else {
    return errors::InvalidArgument(
        unfulfilled_keys.size(),
        " attribute key(s) were not valid for debug node ", debug_node->name(),
        ": ", str_util::Join(unfulfilled_keys, ", "));
  }
}

// static
Status DebugNodeInserter::CreateDebugNode(
    Graph* graph, const Device& device, const string& src_copy_node_name,
    const DataType src_dt, const string& tensor_name,
    const std::vector<string>& debug_urls, const int debug_op_num,
    const string& debug_op_name, Node** debug_node) {
  NodeDef node_def;
  const KernelDef* kdef;

  string debug_op_name_proper;
  std::unordered_map<string, string> custom_attributes;
  TF_RETURN_IF_ERROR(ParseDebugOpName(debug_op_name, &debug_op_name_proper,
                                      &custom_attributes));

  const string debug_node_name =
      GetDebugNodeName(tensor_name, debug_op_num, debug_op_name_proper);
  auto builder = NodeDefBuilder(debug_node_name, debug_op_name_proper)
                     .Input(src_copy_node_name, 0, src_dt)
                     .Attr("device_name", device.name())
                     .Attr("tensor_name", tensor_name)
                     .Attr("debug_urls", debug_urls);

  if (!builder.Finalize(&node_def).ok()) {
    return errors::FailedPrecondition(
        "Failed to create node definition for debug op ", debug_op_name_proper,
        " on watched tensor ", tensor_name);
  }
  if (!FindKernelDef(DeviceType(device.device_type()), node_def, &kdef, nullptr)
           .ok()) {
    return errors::FailedPrecondition(
        "Failed to find kernel definition for debug op ", debug_op_name_proper,
        " on watched tensor ", tensor_name);
  }
  if (!NodeBuilder(builder).Finalize(graph, debug_node).ok()) {
    return errors::FailedPrecondition("Failed to create debug node ",
                                      debug_op_name_proper,
                                      " on watched tensor ", tensor_name);
  }

  // Set custom attributes (if any).
  if (!custom_attributes.empty()) {
    TF_RETURN_IF_ERROR(SetDebugNodeAttributes(*debug_node, custom_attributes));
  }

  return Status::OK();
}

}  // namespace tensorflow