aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/common_runtime/ring_reducer.cc
blob: b1fe928ba7d4d2184b5d28344fa7dea0cb3c160b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/common_runtime/ring_reducer.h"

#include <stdlib.h>
#include <atomic>
#include <functional>
#include <utility>

#include "tensorflow/core/common_runtime/collective_rma_local.h"
#include "tensorflow/core/common_runtime/collective_util.h"
#include "tensorflow/core/common_runtime/copy_tensor.h"
#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/common_runtime/device_mgr.h"
#include "tensorflow/core/common_runtime/dma_helper.h"
#include "tensorflow/core/common_runtime/process_util.h"
#include "tensorflow/core/framework/allocator.h"
#include "tensorflow/core/framework/device_base.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/notification.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/types.h"

// Set true for greater intelligibility of debug mode log messages.
#define READABLE_KEYS false
// RingReduce algorithm exchanges chunks of tensor between devices.  The chunk
// size depends on the number of subdivisions specified in the algorithm.  If
// the user does not specify the number of subdivisions, we infer the number
// dynamically so that the resulting chunk size does not exceed
// kMaxChunkSizeBytes, empirically set at 4 MiB.
constexpr size_t kMaxChunkSizeBytes = (4 * 1024 * 1024);
// kMaxSubdivsPerDev is used to give an upper bound on the number of
// subdivisions dynamically generated.  A reasonable value would be a small
// multiple of the number of NICs adjacent to each device.
constexpr int kMaxSubdivsPerDevice = 2;

namespace tensorflow {
namespace {
// Each CollectiveOp implementation is free to define its own
// BufRendezvous key format.  This function produces the key used by
// RingReducer.
string RingReduceBufKey(const string& exec_key, int pass, int section,
                        int source_rank) {
  if (READABLE_KEYS) {
    return strings::StrCat("rred(", exec_key, "):pass(", pass, "):section(",
                           section, "):srcrank(", source_rank, ")");
  } else {
    // TODO(b/78352018): Try out some kind of denser encoding, e.g. 128 bit
    // hash.
    return strings::StrCat(exec_key, ":", pass, ":", section, ":", source_rank);
  }
}

}  // namespace

void RingReducer::PCQueue::Enqueue(RingField* rf) {
  mutex_lock l(pcq_mu_);
  deque_.push_back(rf);
  if (waiter_count_ > 0) {
    cv_.notify_one();
  }
}

RingReducer::RingField* RingReducer::PCQueue::Dequeue() {
  mutex_lock l(pcq_mu_);
  if (deque_.empty()) {
    ++waiter_count_;
    while (deque_.empty()) {
      cv_.wait(l);
    }
    --waiter_count_;
  }
  RingField* rf = deque_.front();
  deque_.pop_front();
  return rf;
}

RingReducer::RingReducer()
    : col_ctx_(nullptr),
      col_params_(nullptr),
      done_(nullptr),
      group_size_(-1),
      num_subdivs_(-1) {}

RingReducer::~RingReducer() { group_size_tensor_ready_.WaitForNotification(); }

Status GenerateSubdivsInCollectiveParams(CollectiveParams* col_params) {
  if (col_params->instance.shape.num_elements() == 0) {
    return errors::Internal("shape in CollectiveParams should be non-empty");
  }
  const int kAvgDevPerTask =
      col_params->group.group_size / col_params->group.num_tasks;
  const int kMaxNumSubdivs = kMaxSubdivsPerDevice * kAvgDevPerTask;
  if (kMaxNumSubdivs <= 0) {
    return errors::Internal("Unexpected kMaxNumSubdivs ", kMaxNumSubdivs,
                            " in RingReducer");
  }
  // NOTE(ayushd): If no subdiv_offsets have been specified, dynamically add
  // as many offsets as needed so that the size of tensor chunks <=
  // kMaxChunkSizeBytes.  Empirically, chunks that are too small or too large
  // lead to worse performance.
  int num_subdivs = 0;
  const size_t tensor_size = col_params->instance.shape.num_elements() *
                             DataTypeSize(col_params->instance.data_type);
  size_t chunk_size;
  do {
    ++num_subdivs;
    int num_chunks = col_params->group.group_size * num_subdivs;
    chunk_size = tensor_size / num_chunks;
    VLOG(2) << "num_subdivs " << num_subdivs << " num_chunks " << num_chunks
            << " chunk_size " << chunk_size;
  } while (chunk_size > kMaxChunkSizeBytes && num_subdivs < kMaxNumSubdivs);
  if (num_subdivs <= 0) {
    return errors::Internal("Unexpected num_subdivs ", num_subdivs,
                            " in RingReducer");
  }

  int subdiv_stride = kAvgDevPerTask / num_subdivs;
  if (subdiv_stride == 0) subdiv_stride = 1;
  col_params->instance.impl_details.subdiv_offsets.reserve(num_subdivs);
  for (int sdi = 0; sdi < num_subdivs; ++sdi) {
    int subdiv_offset = subdiv_stride * sdi;
    if (sdi % 2 == 1) subdiv_offset *= -1;
    col_params->instance.impl_details.subdiv_offsets.push_back(subdiv_offset);
  }

  if (VLOG_IS_ON(2)) {
    string subdiv_buf;
    for (const int subdiv_offset :
         col_params->instance.impl_details.subdiv_offsets) {
      strings::StrAppend(&subdiv_buf, " ", subdiv_offset);
    }
    VLOG(2) << "Dynamically generated " << num_subdivs
            << " subdiv_offsets:" << subdiv_buf << " tensor_size "
            << tensor_size << " chunk_size " << chunk_size;
  }

  return Status::OK();
}

Status RingReducer::InitializeCollectiveParams(CollectiveParams* col_params) {
  // TODO(b/113171733): change CHECKs to return errors.
  CHECK_EQ(col_params->instance.type, REDUCTION_COLLECTIVE);
  CHECK_EQ(col_params->instance.impl_details.collective_name, "RingReduce");
  const string& device_name =
      col_params->instance.device_names[col_params->default_rank];
  // Each subdiv permutation is a ring formed by rotating each
  // single-task subsequence of devices by an offset.  This makes most
  // sense when each task has the same number of devices but we can't
  // depend on that being the case so we'll compute something that
  // works in any case.

  // Start by counting the devices in each task.
  // Precondition: device_names must be sorted so that all devices in
  // the same task are adjacent.
  VLOG(2) << "Sorted task names: "
          << str_util::Join(col_params->instance.task_names, ", ");
  std::vector<int> dev_per_task;
  const string* prior_task_name = &col_params->instance.task_names[0];
  int dev_count = 1;
  for (int di = 1; di < col_params->group.group_size; ++di) {
    if (col_params->instance.task_names[di] != *prior_task_name) {
      dev_per_task.push_back(dev_count);
      dev_count = 1;
      prior_task_name = &col_params->instance.task_names[di];
    } else {
      ++dev_count;
    }
  }
  dev_per_task.push_back(dev_count);
  CHECK_EQ(col_params->group.num_tasks, dev_per_task.size());

  if (col_params->instance.impl_details.subdiv_offsets.empty()) {
    TF_RETURN_IF_ERROR(GenerateSubdivsInCollectiveParams(col_params));
  }

  // Generate a ring permutation for requested offset.
  VLOG(2) << "Setting up perms for col_params " << col_params
          << " subdiv_permutations "
          << &col_params->instance.impl_details.subdiv_permutations;
  col_params->instance.impl_details.subdiv_permutations.resize(
      col_params->instance.impl_details.subdiv_offsets.size());
  col_params->subdiv_rank.resize(
      col_params->instance.impl_details.subdiv_offsets.size(), -1);
  for (int sdi = 0;
       sdi < col_params->instance.impl_details.subdiv_offsets.size(); ++sdi) {
    std::vector<int>& perm =
        col_params->instance.impl_details.subdiv_permutations[sdi];
    CHECK_EQ(perm.size(), 0);
    int offset = col_params->instance.impl_details.subdiv_offsets[sdi];
    // A negative subdivision offset is interpreted as follows:
    //  1. Reverse the local device ordering.
    //  2. Begin the subdivision at abs(offset) in the reversed ordering.
    bool reverse = false;
    if (offset < 0) {
      offset = abs(offset);
      reverse = true;
    }
    int prior_dev_count = 0;  // sum over prior worker device counts
    for (int ti = 0; ti < col_params->group.num_tasks; ++ti) {
      for (int di = 0; di < dev_per_task[ti]; ++di) {
        int di_offset = (di + offset) % dev_per_task[ti];
        int offset_di =
            reverse ? (dev_per_task[ti] - (di_offset + 1)) : di_offset;
        // Device index in global subdivision permutation.
        int permuted_di = prior_dev_count + offset_di;
        int rank = static_cast<int>(perm.size());
        perm.push_back(permuted_di);
        if (col_params->instance.device_names[permuted_di] == device_name) {
          CHECK_EQ(permuted_di, col_params->default_rank);
          col_params->subdiv_rank[sdi] = rank;
        }
      }
      prior_dev_count += dev_per_task[ti];
    }
    CHECK_EQ(col_params->group.group_size, perm.size());
  }

  VLOG(2) << collective_util::SubdivPermDebugString(*col_params);
  return Status::OK();
}

Status RingReducer::InitializeCollectiveContext(CollectiveContext* col_ctx) {
  CHECK(col_ctx->dev_mgr);
  col_ctx_ = col_ctx;
  col_params_ = &col_ctx->col_params;
  return collective_util::InitializeDeviceAndLocality(
      col_ctx->dev_mgr, col_ctx->device_name, &col_ctx->device,
      &col_ctx->device_locality);
}

void RingReducer::Run(StatusCallback done) {
  CHECK(col_ctx_);
  CHECK(col_params_);
  done_ = std::move(done);
  group_size_ = col_params_->group.group_size;
  num_subdivs_ = static_cast<int>(
      col_params_->instance.impl_details.subdiv_permutations.size());
  CHECK_GT(num_subdivs_, 0);

  if (VLOG_IS_ON(1)) {
    string buf;
    for (int r = 0; r < col_params_->instance.device_names.size(); ++r) {
      strings::StrAppend(&buf, "dev ", r, " : ",
                         col_params_->instance.device_names[r], "\n");
    }
    for (int sd = 0;
         sd < col_params_->instance.impl_details.subdiv_permutations.size();
         ++sd) {
      strings::StrAppend(&buf, "\nsubdiv ", sd, " perm: ");
      for (auto x :
           col_params_->instance.impl_details.subdiv_permutations[sd]) {
        strings::StrAppend(&buf, x, ", ");
      }
    }
    VLOG(1) << "RingReducer::Run for device " << col_ctx_->device_name
            << " default_rank " << col_params_->default_rank << "\n"
            << buf;
  }

  // Start by copying input to output if they're not already the same, i.e. if
  // we're not computing in-place on the input tensor.
  if ((col_ctx_->input != col_ctx_->output) &&
      (DMAHelper::base(col_ctx_->input) != DMAHelper::base(col_ctx_->output))) {
    // We are running in a blockable thread and the callback can't block so
    // just wait here on the copy.
    Notification note;
    Status status;
    CollectiveRemoteAccessLocal::MemCpyAsync(
        col_ctx_->op_ctx->input_device_context(0),
        col_ctx_->op_ctx->op_device_context(), col_ctx_->device,
        col_ctx_->device, col_ctx_->op_ctx->input_alloc_attr(0),
        col_ctx_->op_ctx->output_alloc_attr(0), col_ctx_->input,
        col_ctx_->output, 0 /*dev_to_dev_stream_index*/,
        [this, &note, &status](const Status& s) {
          status.Update(s);
          note.Notify();
        });
    note.WaitForNotification();
    if (!status.ok()) {
      done_(status);
      return;
    }
  }
  ContinueAfterInputCopy();
}

string RingReducer::TensorDebugString(const Tensor& tensor) {
  const DeviceBase::GpuDeviceInfo* gpu_device_info =
      col_ctx_->op_ctx->device()->tensorflow_gpu_device_info();
  if (gpu_device_info) {
    Tensor cpu_tensor(tensor.dtype(), tensor.shape());
    Notification note;
    gpu_device_info->default_context->CopyDeviceTensorToCPU(
        &tensor, "" /*tensor_name*/, col_ctx_->device, &cpu_tensor,
        [&note](const Status& s) {
          CHECK(s.ok());
          note.Notify();
        });
    note.WaitForNotification();
    return cpu_tensor.SummarizeValue(64);
  } else {
    return tensor.SummarizeValue(64);
  }
}

// Note that this function is blocking and must not run in any thread
// which cannot be blocked.
void RingReducer::ContinueAfterInputCopy() {
  AllocatorAttributes attr = col_ctx_->op_ctx->output_alloc_attr(0);
  ca_.reset(MakeCollectiveAdapter(col_ctx_->output, group_size_ * num_subdivs_,
                                  col_ctx_->device->GetAllocator(attr)));

  if (col_params_->final_op) {
    // Create an on-device scalar value from group_size_ that may be needed
    // later.
    // TODO(tucker): Cache and reuse across invocations? Or maybe the scalar
    // can be provided to the kernel in host memory?
    Tensor group_size_val = ca_->Scalar(group_size_);
    if (col_params_->group.device_type != "CPU") {
      group_size_tensor_ = ca_->Scalar(col_ctx_->device->GetAllocator(
          col_ctx_->op_ctx->input_alloc_attr(0)));
      DeviceContext* op_dev_ctx = col_ctx_->op_ctx->op_device_context();
      op_dev_ctx->CopyCPUTensorToDevice(&group_size_val, col_ctx_->device,
                                        &group_size_tensor_,
                                        [this](const Status& s) {
                                          if (!s.ok()) {
                                            StartAbort(s);
                                          }
                                          group_size_tensor_ready_.Notify();
                                        });
    } else {
      group_size_tensor_ = group_size_val;
      group_size_tensor_ready_.Notify();
    }
  } else {
    // Value won't be used, so no need to initialize.
    group_size_tensor_ready_.Notify();
  }
  Finish(RunAsyncParts());
}

void RingReducer::StartAbort(const Status& s) {
  // In abort mode we stop issuing additional ProvideBuf
  // and ConsumeBuf calls, but we need to wait for all of the
  // outstanding callbacks to be invoked before quitting.
  bool abort_started = false;
  {
    mutex_lock l(status_mu_);
    if (status_.ok()) {
      LOG(ERROR) << "Aborting RingReduce with " << s;
      abort_started = true;
      status_.Update(s);
    }
  }
  // If this is the initial entry to abort mode then invoke StartAbort
  // on the CollectiveExecutor that invoked us.  That should start
  // cancellation on all of the outstanding CollectiveRemoteAccess
  // actions.
  if (abort_started) {
    col_ctx_->col_exec->StartAbort(s);
  }
}

void RingReducer::Finish(bool ok) {
  if (ok) {
    // Recover the output from the adaptor.
    ca_->ConsumeFinalValue(col_ctx_->output);
  }
  Status s;
  {
    mutex_lock l(status_mu_);
    s = status_;
  }
  rfv_.clear();  // Give up Refs on output tensor.
  done_(s);
}

RingReducer::SubContext::SubContext(OpKernelContext* ctx,
                                    OpKernelContext::Params* params,
                                    OpKernel* op, Tensor* output, Tensor* input)
    : sub_params_(*params),
      sub_inputs_({output, input}),
      sub_input_attr_({ctx->input_alloc_attr(0), ctx->input_alloc_attr(0)}),
      sub_input_dc_(
          {ctx->input_device_context(0), ctx->input_device_context(0)}) {
  sub_params_.op_kernel = op;
  sub_params_.inputs = &sub_inputs_;
  sub_params_.input_alloc_attrs = &sub_input_attr_;
  sub_params_.input_device_contexts = &sub_input_dc_;
  sub_params_.eigen_gpu_device = nullptr;
  sub_params_.ensure_eigen_gpu_device();
  sub_params_.forward_from_array = &forward_from_;
  sub_ctx_ = new OpKernelContext(&sub_params_, 1);
}

Status RingReducer::ComputeBinOp(Device* device, OpKernel* op, Tensor* output,
                                 Tensor* input) {
  // Prepare an OpKernelContext that is identical to that of the original Op
  // (i.e. the collective), except for the input output sizes and identities and
  // the Op itself.
  // TODO(tucker): Is it possible to cache and reuse these objects?  They're
  // mostly identical inside one device execution.
  std::unique_ptr<SubContext> sub_ctx(
      new SubContext(col_ctx_->op_ctx, col_ctx_->op_params, op, output, input));
  device->Compute(op, sub_ctx->sub_ctx_);
  return sub_ctx->sub_ctx_->status();
}

// At the beginning of the algorithm initialize a RingField struct for
// every independent field of the tensor.
void RingReducer::InitRingField(RingField* rf, int chunk_idx, int subdiv_idx,
                                int field_idx) {
  // Note on field indexing: There are group_size_ devices in the
  // instance, implying the same number of chunks per tensor, where a
  // chunk is the unit of data transferred in a time step.  However, if
  // a device can simultaneously send data by 2 or more independent
  // channels we can speed up the transfer by subdividing chunks and
  // processing multiple subdivisions at once.  So the actual number
  // of RingFields is group_size_ * num_subdivs_.
  DCHECK_EQ(field_idx, (chunk_idx * num_subdivs_) + subdiv_idx);
  rf->chunk_idx = chunk_idx;
  rf->subdiv_idx = subdiv_idx;
  rf->sc_idx = field_idx;
  rf->rank = col_params_->subdiv_rank[subdiv_idx];
  rf->second_pass = false;
  rf->action = RF_INIT;
  // Recv from the device with preceding rank within the subdivision.
  int recv_from_rank = (rf->rank + (group_size_ - 1)) % group_size_;
  int send_to_rank = (rf->rank + 1) % group_size_;
  rf->recv_dev_idx = col_params_->instance.impl_details
                         .subdiv_permutations[subdiv_idx][recv_from_rank];
  int send_dev_idx = col_params_->instance.impl_details
                         .subdiv_permutations[subdiv_idx][send_to_rank];
  rf->recv_is_remote = !col_params_->task.is_local[rf->recv_dev_idx];
  rf->send_is_remote = !col_params_->task.is_local[send_dev_idx];
  if (ca_->ChunkBytes(rf->sc_idx) > 0) {
    // In pass 0 we skip Recv when rank = chunk_idx
    rf->do_recv = (rf->chunk_idx != rf->rank);
    // In pass 0 we skip Send when rank = chunk_idx-1
    rf->do_send =
        (rf->rank != ((rf->chunk_idx + (group_size_ - 1)) % group_size_));
  }
  rf->is_final =
      (rf->rank == ((rf->chunk_idx + (group_size_ - 1)) % group_size_));
  if (rf->do_send || rf->do_recv) {
    rf->chunk = ca_->ChunkAlias(rf->sc_idx);
    CHECK(rf->chunk.IsAligned()) << rf->DebugString();
  }
  if (rf->do_recv) {
    rf->tmp_chunk = ca_->TempChunk(rf->sc_idx);
    CHECK(rf->tmp_chunk.IsAligned()) << rf->DebugString();
  }
  VLOG(2) << this << " InitRingField " << rf->DebugString() << " chunk "
          << ca_->TBounds(rf->chunk);
}

// When a RingField transitions from first to second recompute the
// do_send and do_recv values.
void RingReducer::AdvanceToSecondPass(RingField* rf) {
  VLOG(3) << "IncrRingField old value " << rf->DebugString();
  CHECK(!rf->second_pass);
  rf->second_pass = true;
  rf->action = RF_INIT;
  if (ca_->ChunkBytes(rf->sc_idx) > 0) {
    // In pass 1 the send/no-send boundary moves down 1 place.
    rf->do_recv =
        (rf->rank != ((rf->chunk_idx + (group_size_ - 1)) % group_size_));
    rf->do_send =
        (rf->rank != ((rf->chunk_idx + (group_size_ - 2)) % group_size_));
  }
  rf->is_final =
      (rf->rank == ((rf->chunk_idx + (group_size_ - 2)) % group_size_));
  VLOG(3) << "IncrRingField new value " << rf->DebugString();
}

string RingReducer::RingField::DebugString() const {
  string rv = strings::StrCat("RingField rank=", rank, " chunk_idx=", chunk_idx,
                              " subdiv=", subdiv_idx, " sc_idx=", sc_idx,
                              " action=", action);
  strings::StrAppend(&rv, " pass=", second_pass);
  strings::StrAppend(&rv, " do_send=", do_send, " do_recv=", do_recv,
                     " is_final=", is_final, " recv_is_remote=", recv_is_remote,
                     " recv_dev_idx=", recv_dev_idx, " sc_idx=", sc_idx);
  return rv;
}

void RingReducer::DispatchSend(RingField* rf, const StatusCallback& done) {
  CHECK(rf->do_send);
  string send_buf_key = RingReduceBufKey(col_ctx_->exec_key, rf->second_pass,
                                         rf->sc_idx, rf->rank);
  VLOG(3) << "DispatchSend rank=" << col_params_->default_rank << " send key "
          << send_buf_key << " chunk " << ca_->TBounds(rf->chunk) << " sc_idx "
          << rf->sc_idx;
  int send_to_rank = (rf->rank + 1) % group_size_;
  int send_to_dev_idx = col_params_->instance.impl_details
                            .subdiv_permutations[rf->subdiv_idx][send_to_rank];
  col_ctx_->col_exec->PostToPeer(
      col_params_->instance.device_names[send_to_dev_idx],
      col_params_->instance.task_names[send_to_dev_idx], send_buf_key,
      col_ctx_->device, col_ctx_->op_ctx->op_device_context(),
      col_ctx_->op_ctx->output_alloc_attr(0), &rf->chunk,
      col_ctx_->device_locality, done);
}

void RingReducer::DispatchRecv(RingField* rf, const StatusCallback& done) {
  CHECK(rf->do_recv);
  string recv_buf_key =
      RingReduceBufKey(col_ctx_->exec_key, rf->second_pass, rf->sc_idx,
                       (rf->rank + (group_size_ - 1)) % group_size_);
  VLOG(3) << "DispatchRecv rank=" << col_params_->default_rank << " recv key "
          << recv_buf_key << " chunk " << ca_->TBounds(rf->chunk) << " into "
          << ((col_params_->merge_op != nullptr) ? "tmp_chunk" : "chunk");
  Tensor* dst_tensor = (!rf->second_pass && (col_params_->merge_op != nullptr))
                           ? &rf->tmp_chunk
                           : &rf->chunk;
  col_ctx_->col_exec->RecvFromPeer(
      col_params_->instance.device_names[rf->recv_dev_idx],
      col_params_->instance.task_names[rf->recv_dev_idx],
      col_params_->task.is_local[rf->recv_dev_idx], recv_buf_key,
      col_ctx_->device, col_ctx_->op_ctx->op_device_context(),
      col_ctx_->op_ctx->output_alloc_attr(0), dst_tensor,
      col_ctx_->device_locality, rf->subdiv_idx, done);
}

string RingReducer::FieldState() {
  string s = strings::StrCat(
      "RingReducer ", strings::Hex(reinterpret_cast<uint64>(this)), " exec ",
      col_ctx_->exec_key, " step_id=", col_ctx_->step_id, " state of all ",
      rfv_.size(), " fields:");
  for (int i = 0; i < rfv_.size(); ++i) {
    s.append("\n");
    s.append(rfv_[i].DebugString());
  }
  return s;
}

bool RingReducer::RunAsyncParts() {
  // This function orchestrates RingReduce actions on behalf of a
  // single device. It is entered by a blockable thread that
  // loops within it until all actions assigned to that device
  // complete. Hence function local variables are accessible only by that
  // one thread and do not require an explicit mutex.
  rfv_.clear();
  rfv_.resize(group_size_ * num_subdivs_);
  PCQueue ready_queue;
  for (int chunk_idx = 0; chunk_idx < group_size_; ++chunk_idx) {
    for (int subdiv_idx = 0; subdiv_idx < num_subdivs_; ++subdiv_idx) {
      int rf_index = (chunk_idx * num_subdivs_) + subdiv_idx;
      InitRingField(&rfv_[rf_index], chunk_idx, subdiv_idx, rf_index);
      ready_queue.Enqueue(&rfv_[rf_index]);
    }
  }
  const DeviceBase::GpuDeviceInfo* gpu_info =
      col_ctx_->device->tensorflow_gpu_device_info();
  if (gpu_info) {
    // Wait for all currently queued events on the CPU compute stream to
    // complete before proceeding.  The previous InitRingField calls allocated
    // temp memory buffers that are not guaranteed to be valid (e.g. for RDMA
    // write) unless we do.
    Notification note;
    Status s = gpu_info->default_context->ThenExecute(
        col_ctx_->device, gpu_info->stream, [&note]() { note.Notify(); });
    if (s.ok()) {
      note.WaitForNotification();
    } else {
      mutex_lock l(status_mu_);
      status_ =
          errors::Internal("Failed to dispatch ThenExecute in RingReducer");
      return false;
    }
  }

  int field_done_count = 0;
  int send_pending_count = 0;
  int recv_pending_count = 0;
  std::atomic<bool> aborted(false);

  // Loop until all RingFields have advanced to completion.
  while (field_done_count < rfv_.size()) {
    VLOG(4) << FieldState();
    // Wait for a RingField to appear in the ready_queue.
    RingField* rf = ready_queue.Dequeue();
    // Advance the RingField to its next action and execute, repeating
    // until either an async action has been started or the RingField
    // is done.
    bool dispatched = false;  // true if async action was initiated
    do {
      if (aborted) {
        // Requeue this RingField to be counted off below.
        ready_queue.Enqueue(rf);
        break;
      }
      switch (rf->action) {
        case RF_INIT:
          if (rf->do_recv) {
            rf->action = RF_RECV;
            auto requeue = [this, rf, &ready_queue, &aborted](Status s) {
              if (!s.ok()) {
                aborted = true;
                StartAbort(s);
              }
              ready_queue.Enqueue(rf);
            };
            DispatchRecv(rf, requeue);
            dispatched = true;
            ++recv_pending_count;
          } else {
            rf->action = RF_SEND_READY;
          }
          break;
        case RF_RECV:
          CHECK_GT(recv_pending_count, 0);
          --recv_pending_count;
          if (!rf->second_pass) {
            rf->action = RF_REDUCE;
            Status s =
                ComputeBinOp(col_ctx_->device, col_params_->merge_op.get(),
                             &rf->chunk, &rf->tmp_chunk);
            if (!s.ok()) {
              aborted = true;
              StartAbort(s);
            }
          } else {
            rf->action = RF_SEND_READY;
          }
          break;
        case RF_REDUCE:
          if (!rf->second_pass && col_params_->final_op.get() && rf->is_final) {
            rf->action = RF_FINALIZE;
            group_size_tensor_ready_.WaitForNotification();
            Status s =
                ComputeBinOp(col_ctx_->device, col_params_->final_op.get(),
                             &rf->chunk, &group_size_tensor_);
            if (!s.ok()) {
              aborted = true;
              StartAbort(s);
            }
          } else {
            rf->action = RF_SEND_READY;
          }
          break;
        case RF_FINALIZE:
          rf->action = RF_DONE;
          break;
        case RF_SEND_READY:
          if (rf->do_send) {
            rf->action = RF_SEND;
            auto send_complete = [this, rf, &ready_queue, &aborted](Status s) {
              if (!s.ok()) {
                aborted = true;
                StartAbort(s);
              }
              ready_queue.Enqueue(rf);
            };
            DispatchSend(rf, send_complete);
            dispatched = true;
            ++send_pending_count;
          } else {
            rf->action = RF_DONE;
          }
          break;
        case RF_SEND:
          CHECK_GT(send_pending_count, 0);
          --send_pending_count;
          rf->action = RF_DONE;
          break;
        case RF_DONE:
          break;
      }
      if (rf->action == RF_DONE) {
        if (rf->second_pass) {
          ++field_done_count;
          break;  // from do while(!dispatched)
        } else {
          AdvanceToSecondPass(rf);
        }
      }
    } while (!dispatched);
    if (aborted) break;
  }  // while (field_done_count < number of fields)

  if (aborted) {
    // All of the pending data actions should be aborted; field the
    // callbacks and clear the queue before quitting.
    while ((send_pending_count > 0) || (recv_pending_count > 0)) {
      RingField* rf = ready_queue.Dequeue();
      switch (rf->action) {
        case RF_RECV:
          --recv_pending_count;
          break;
        case RF_SEND:
          --send_pending_count;
          break;
        default: {
        }  // Ignore any other actions
      }
    }
  }

  CHECK_EQ(send_pending_count, 0);
  CHECK_EQ(recv_pending_count, 0);

  VLOG(2) << this << " device=" << col_ctx_->device_name << " finish;"
          << " final value " << TensorDebugString(ca_->Value());
  return !aborted;
}

REGISTER_COLLECTIVE(RingReduce, RingReducer);

}  // namespace tensorflow