aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/common_runtime/graph_execution_state.cc
blob: 4475fa979eb39f3da7e6f95caf8174c30d0f4ce2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/common_runtime/graph_execution_state.h"

#include <memory>
#include <set>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>

#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/common_runtime/optimization_registry.h"
#include "tensorflow/core/common_runtime/placer.h"
#include "tensorflow/core/framework/graph.pb_text.h"
#include "tensorflow/core/framework/graph_def_util.h"
#include "tensorflow/core/framework/node_def.pb.h"
#include "tensorflow/core/framework/versions.pb.h"
#include "tensorflow/core/graph/algorithm.h"
#include "tensorflow/core/graph/graph.h"
#include "tensorflow/core/graph/graph_constructor.h"
#include "tensorflow/core/graph/subgraph.h"
#include "tensorflow/core/graph/tensor_id.h"
#include "tensorflow/core/graph/validate.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/util/device_name_utils.h"
#include "tensorflow/core/util/util.h"

#ifndef IS_MOBILE_PLATFORM
#include "tensorflow/core/grappler/clusters/virtual_cluster.h"
#include "tensorflow/core/grappler/grappler_item.h"
#include "tensorflow/core/grappler/optimizers/meta_optimizer.h"
#endif  // IS_MOBILE_PLATFORM

namespace tensorflow {

GraphExecutionState::GraphExecutionState(
    GraphDef* graph_def, const GraphExecutionStateOptions& options)
    : stateful_placements_(options.stateful_placements),
      device_set_(options.device_set),
      session_options_(options.session_options),
      flib_def_(new FunctionLibraryDefinition(OpRegistry::Global(),
                                              graph_def->library())),
      graph_(nullptr) {
  // NOTE(mrry): GraphDef does not have a move constructor, so we pass
  // a non-const pointer and use `Swap()` to transfer the contents
  // without copying.
  original_graph_def_.Swap(graph_def);
  // TODO(mrry): Publish placement visualizations or handle the log
  // placement option.
}

GraphExecutionState::~GraphExecutionState() {
  node_name_to_cost_id_map_.clear();
  delete graph_;
}

/* static */ Status GraphExecutionState::MakeForBaseGraph(
    GraphDef* graph_def, const GraphExecutionStateOptions& options,
    std::unique_ptr<GraphExecutionState>* out_state) {
#ifndef __ANDROID__
  VLOG(4) << "Graph proto is " << graph_def->DebugString();
#endif  // __ANDROID__

  std::unique_ptr<GraphExecutionState> ret(
      new GraphExecutionState(graph_def, options));

  TF_RETURN_IF_ERROR(
      AddDefaultAttrsToGraphDef(&ret->original_graph_def_, *ret->flib_def_, 0));
  // TODO(mrry): Refactor InitBaseGraph() so that we don't have to
  // pass an empty BuildGraphOptions (that isn't going to be used when
  // place_pruned_graph is false).
  if (!ret->session_options_->config.graph_options().place_pruned_graph()) {
    TF_RETURN_IF_ERROR(ret->InitBaseGraph(BuildGraphOptions()));
  }
  *out_state = std::move(ret);
  return Status::OK();
}

/* static */ Status GraphExecutionState::MakeForPrunedGraph(
    const FunctionDefLibrary& func_def_lib,
    const GraphExecutionStateOptions& options, const GraphDef& graph_def,
    const BuildGraphOptions& subgraph_options,
    std::unique_ptr<GraphExecutionState>* out_state,
    std::unique_ptr<ClientGraph>* out_client_graph) {
  DCHECK(options.session_options->config.graph_options().place_pruned_graph());
  // NOTE(mrry): This makes a copy of `graph_def`, which is
  // regrettable. We could make `GraphDef` objects sharable between
  // execution states to optimize pruned graph execution, but since
  // this case is primarily used for interactive sessions, we make the
  // bet that graph construction is not performance-critical. (Note
  // also that the previous version used `Extend()`, which is strictly
  // more expensive than copying a `GraphDef`.)
  GraphDef temp(graph_def);
  std::unique_ptr<GraphExecutionState> ret(
      new GraphExecutionState(&temp, options));
  TF_RETURN_IF_ERROR(
      AddDefaultAttrsToGraphDef(&ret->original_graph_def_, *ret->flib_def_, 0));
  TF_RETURN_IF_ERROR(ret->InitBaseGraph(subgraph_options));
  TF_RETURN_IF_ERROR(ret->BuildGraph(subgraph_options, out_client_graph));
  *out_state = std::move(ret);
  return Status::OK();
}

Status GraphExecutionState::Extend(
    const GraphDef& extension_def,
    std::unique_ptr<GraphExecutionState>* out) const {
  GraphDef gdef;

  // 1. Copy the function library.
  TF_RETURN_IF_ERROR(flib_def_->AddLibrary(extension_def.library()));
  *gdef.mutable_library() = flib_def_->ToProto();

  // 2. Build an index of the new node names.
  std::unordered_set<string> new_names;
  for (const NodeDef& node : extension_def.node()) {
    new_names.insert(node.name());
  }

  // 3. Add the non-duplicates from the old graph to the new graph.
  //    Return an error if the same node name appears in both the
  //    old graph and the extension.
  for (const NodeDef& node : original_graph_def_.node()) {
    if (new_names.count(node.name()) == 0) {
      *gdef.add_node() = node;
    } else {
      return errors::InvalidArgument(tensorflow::strings::Printf(
          "GraphDef argument to Extend includes node '%s', which was created "
          "by a previous call to Create or Extend in this session.",
          node.name().c_str()));
    }
  }

  // 4. Merge the versions field.
  int old_node_size = gdef.node_size();
  gdef.mutable_node()->MergeFrom(extension_def.node());
  TF_RETURN_IF_ERROR(
      AddDefaultAttrsToGraphDef(&gdef, *flib_def_, old_node_size));
  // Merge versions
  if (gdef.has_versions()) {
    if (gdef.versions().producer() != extension_def.versions().producer()) {
      return errors::InvalidArgument(
          "Can't extend GraphDef at version ", gdef.versions().producer(),
          " with graph at version ", extension_def.versions().producer());
    }
    VersionDef* versions = gdef.mutable_versions();
    versions->set_min_consumer(std::max(
        versions->min_consumer(), extension_def.versions().min_consumer()));
    if (extension_def.versions().bad_consumers_size()) {
      // Add new bad_consumers that aren't already marked bad.
      //
      // Note: This implementation is quadratic time if there are many calls to
      // ExtendLocked with many bad consumers.  Since this is unlikely, and
      // fixing it would require data structures outside of this routine,
      // quadratic time it is.
      auto* bad_consumers = versions->mutable_bad_consumers();
      const std::unordered_set<int> existing(bad_consumers->begin(),
                                             bad_consumers->end());
      for (const int v : extension_def.versions().bad_consumers()) {
        if (existing.find(v) == existing.end()) {
          bad_consumers->Add(v);
        }
      }
    }

  } else {
    gdef.mutable_versions()->CopyFrom(extension_def.versions());
  }

  // 5. Validate that the final graphdef is valid.
  if (gdef.versions().producer() >= 5) {
    // Validate the graph: we assume that merging two valid graphs
    // should maintain graph validity.
    TF_RETURN_IF_ERROR(graph::ValidateGraphDef(gdef, *flib_def_));
  }

  // 6. Add the extension.
  GraphExecutionStateOptions combined_options;
  combined_options.device_set = device_set_;
  combined_options.session_options = session_options_;
  combined_options.stateful_placements = stateful_placements_;

  // NOTE(mrry): `gdef` is no longer valid after the constructor
  // executes.
  std::unique_ptr<GraphExecutionState> new_execution_state(
      new GraphExecutionState(&gdef, combined_options));

  TF_RETURN_IF_ERROR(AddDefaultAttrsToGraphDef(
      &new_execution_state->original_graph_def_, *flib_def_, 0));
  if (!session_options_->config.graph_options().place_pruned_graph()) {
    // TODO(mrry): Refactor InitBaseGraph() so that we don't have to
    // pass an empty BuildGraphOptions (that isn't going to be used
    // when place_pruned_graph is false).
    TF_RETURN_IF_ERROR(new_execution_state->InitBaseGraph(BuildGraphOptions()));
  }
  *out = std::move(new_execution_state);

  // TODO(mrry): This is likely to be used for non-throughput-sensitive
  // interactive workloads, but in future we may want to transfer other
  // parts of the placement and/or cost model.
  return Status::OK();
}

void GraphExecutionState::SaveStatefulNodes(Graph* graph) {
  for (Node* n : graph->nodes()) {
    if (n->op_def().is_stateful()) {
      VLOG(2) << "Saving " << n->DebugString();
      stateful_placements_[n->name()] = n->assigned_device_name();
    }
  }
}

void GraphExecutionState::RestoreStatefulNodes(Graph* graph) {
  for (Node* n : graph->nodes()) {
    if (n->op_def().is_stateful()) {
      auto iter = stateful_placements_.find(n->name());
      if (iter != stateful_placements_.end()) {
        n->set_assigned_device_name(iter->second);
        VLOG(2) << "Restored " << n->DebugString();
      }
    }
  }
}

namespace {

class TensorConnectionPruneRewrite : public subgraph::PruneRewrite {
 public:
  TensorConnectionPruneRewrite(const string* endpoint_name,
                               NodeBuilder::NodeOut from_tensor)
      : subgraph::PruneRewrite(endpoint_name, nullptr /* device_info */),
        from_tensor_(std::move(from_tensor)) {}

  Status AddNode(Graph* g, NodeBuilder::NodeOut feed_tensor,
                 Node** out_node) override {
    Status s;
    auto check_no_cycle_fn = [this, feed_tensor, &s](Node* n) {
      if (n == feed_tensor.node) {
        s.Update(errors::InvalidArgument(
            "Requested Tensor connection between nodes \"",
            feed_tensor.node->name(), "\" and \"", from_tensor_.node->name(),
            "\" would create a cycle."));
      }
    };
    ReverseDFSFrom(*g, {from_tensor_.node}, std::move(check_no_cycle_fn),
                   nullptr);
    TF_RETURN_IF_ERROR(s);

    TF_RETURN_IF_ERROR(
        NodeBuilder(strings::StrCat("_identity_", feed_tensor.node->name(), "_",
                                    feed_tensor.index),
                    "Identity")
            .Input(from_tensor_)
            .Attr("T",
                  BaseType(from_tensor_.node->output_type(from_tensor_.index)))
            .Finalize(g, out_node));

    (*out_node)->set_assigned_device_name(
        feed_tensor.node->assigned_device_name());
    return Status::OK();
  }

 private:
  NodeBuilder::NodeOut from_tensor_;
};

template <class Map>
Status LookupDevice(const DeviceSet& device_set, const string& tensor_name,
                    const Map& tensor2device,
                    const tensorflow::DeviceAttributes** out_device_attrs) {
  *out_device_attrs = nullptr;
  if (tensor2device.empty()) {
    *out_device_attrs = &device_set.client_device()->attributes();
    return Status::OK();
  }
  const auto it = tensor2device.find(tensor_name);
  if (it == tensor2device.end()) {
    *out_device_attrs = &device_set.client_device()->attributes();
    return Status::OK();
  }
  DeviceNameUtils::ParsedName parsed_name;
  if (!DeviceNameUtils::ParseFullName(it->second, &parsed_name)) {
    return errors::InvalidArgument("Invalid device name ('", it->second,
                                   "') provided for the tensor '", tensor_name,
                                   "' in CallableOptions");
  }
  Device* device = device_set.FindDeviceByName(
      DeviceNameUtils::ParsedNameToString(parsed_name));
  if (device == nullptr) {
    return errors::InvalidArgument("Device '", it->second,
                                   "' specified for tensor '", tensor_name,
                                   "' in CallableOptions does not exist");
  }
  *out_device_attrs = &device->attributes();
  return Status::OK();
}

struct TensorAndDevice {
  // WARNING: backing memory for the 'tensor' field is NOT owend.
  const TensorId tensor;
  // WARNING: device pointer is not owned, so must outlive TensorAndDevice.
  const DeviceAttributes* device;
};

// Tensors of some DataTypes cannot placed in device memory as feeds or
// fetches. Validate against a whitelist of those known to work.
bool IsFeedAndFetchSupported(DataType dtype, const string& device_type) {
  // The mechanism for supporting feeds of device-backed Tensors requires
  // the _Arg kernel to be registered for the corresponding type (and that
  // the input to the kernel be in device and not host memory).
  //
  // The mechanism for supporting fetches of device-backed Tensors requires
  // the _Retval kernel to be registered for the corresponding type (and
  // that the output is produced in device and not host memory).
  //
  // For now, we return true iff there are _Arg AND _Retval kernels for dtype on
  // the device. False negatives are okay, false positives would be bad.
  //
  // TODO(ashankar): Instead of a whitelist here, perhaps we could query
  // the kernel registry for _Arg and _Retval kernels instead.
  if (device_type == DEVICE_CPU) return true;
  if (device_type != DEVICE_GPU) return false;
  switch (dtype) {
    case DT_BFLOAT16:
    case DT_BOOL:
    case DT_COMPLEX128:
    case DT_COMPLEX64:
    case DT_DOUBLE:
    case DT_FLOAT:
    case DT_HALF:
    case DT_INT16:
    case DT_INT64:
    case DT_INT8:
    case DT_UINT16:
    case DT_UINT8:
      return true;
    default:
      return false;
  }
}

Status ValidateFeedAndFetchDevices(
    const Graph& graph,
    const std::vector<TensorAndDevice>& tensors_and_devices) {
  if (tensors_and_devices.empty()) return Status::OK();
  std::vector<bool> found(tensors_and_devices.size(), false);
  for (const Node* node : graph.nodes()) {
    // Linearly looping through all nodes and then all feed+fetch tensors isn't
    // quite efficient. At the time of this writing, the expectation was that
    // tensors_and_devices.size() is really small in practice, so this won't be
    // problematic.
    // Revist and make a more efficient lookup possible if needed (e.g., perhaps
    // Graph can maintain a map from node name to Node*).
    for (int i = 0; i < tensors_and_devices.size(); ++i) {
      const TensorAndDevice& td = tensors_and_devices[i];
      if (td.tensor.first != node->name()) continue;
      found[i] = true;
      TF_RETURN_IF_ERROR(graph.IsValidOutputTensor(node, td.tensor.second));
      const DataType dtype = node->output_type(td.tensor.second);
      if (!IsFeedAndFetchSupported(dtype, td.device->device_type())) {
        return errors::Unimplemented(
            "Cannot feed or fetch tensor '", td.tensor.ToString(),
            "' from device ", td.device->name(), " as feeding/fetching from ",
            td.device->device_type(), " devices is not yet supported for ",
            DataTypeString(dtype), " tensors");
      }
    }
  }
  for (int i = 0; i < found.size(); ++i) {
    if (!found[i]) {
      return errors::InvalidArgument(
          "Tensor ", tensors_and_devices[i].tensor.ToString(),
          ", specified in either feed_devices or fetch_devices was not found "
          "in the Graph");
    }
  }
  return Status::OK();
}
}  // namespace

Status GraphExecutionState::PruneGraph(
    const BuildGraphOptions& options, Graph* graph,
    subgraph::RewriteGraphMetadata* out_rewrite_metadata) {
  std::vector<std::unique_ptr<subgraph::PruneRewrite>> feed_rewrites;
  feed_rewrites.reserve(options.callable_options.feed_size());
  std::vector<std::unique_ptr<subgraph::PruneRewrite>> fetch_rewrites;
  fetch_rewrites.reserve(options.callable_options.fetch_size());
  if (options.use_function_convention) {
    std::vector<TensorAndDevice> tensors_and_devices;
    for (int i = 0; i < options.callable_options.feed_size(); ++i) {
      // WARNING: feed MUST be a reference, since ArgFeedRewrite and
      // tensors_and_devices holds on to its address.
      const string& feed = options.callable_options.feed(i);
      const DeviceAttributes* device_info;
      TF_RETURN_IF_ERROR(LookupDevice(*device_set_, feed,
                                      options.callable_options.feed_devices(),
                                      &device_info));
      feed_rewrites.emplace_back(
          new subgraph::ArgFeedRewrite(&feed, device_info, i));
      tensors_and_devices.push_back({ParseTensorName(feed), device_info});
    }
    if (!options.callable_options.fetch_devices().empty() &&
        !options.callable_options.fetch_skip_sync()) {
      return errors::Unimplemented(
          "CallableOptions.fetch_skip_sync = false is not yet implemented. You "
          "can set it to true instead, but MUST ensure that Device::Sync() is "
          "invoked on the Device corresponding to the fetched tensor before "
          "dereferencing the Tensor's memory.");
    }
    for (int i = 0; i < options.callable_options.fetch_size(); ++i) {
      // WARNING: fetch MUST be a reference, since RetvalFetchRewrite and
      // tensors_and_devices holds on to its address.
      const string& fetch = options.callable_options.fetch(i);
      const DeviceAttributes* device_info;
      TF_RETURN_IF_ERROR(LookupDevice(*device_set_, fetch,
                                      options.callable_options.fetch_devices(),
                                      &device_info));
      fetch_rewrites.emplace_back(
          new subgraph::RetvalFetchRewrite(&fetch, device_info, i));
      tensors_and_devices.push_back({ParseTensorName(fetch), device_info});
    }
    TF_RETURN_IF_ERROR(
        ValidateFeedAndFetchDevices(*graph, tensors_and_devices));
  } else {
    if (!options.callable_options.feed_devices().empty() ||
        !options.callable_options.fetch_devices().empty()) {
      return errors::Unimplemented(
          "CallableOptions::feed_devices and CallableOptions::fetch_devices "
          "to configure feeding/fetching tensors to/from device memory is not "
          "yet supported when using a remote session.");
    }
    const DeviceAttributes* device_info =
        &device_set_->client_device()->attributes();
    for (const string& feed : options.callable_options.feed()) {
      feed_rewrites.emplace_back(
          new subgraph::RecvFeedRewrite(&feed, device_info));
    }
    for (const string& fetch : options.callable_options.fetch()) {
      fetch_rewrites.emplace_back(
          new subgraph::SendFetchRewrite(&fetch, device_info));
    }
  }

  for (const TensorConnection& tensor_connection :
       options.callable_options.tensor_connection()) {
    Node* from_node = nullptr;
    TensorId from_id(ParseTensorName(tensor_connection.from_tensor()));

    for (Node* n : graph->nodes()) {
      if (n->name() == from_id.first) {
        from_node = n;
        break;
      }
    }
    if (from_node == nullptr) {
      return errors::InvalidArgument(
          "Requested tensor connection from unknown node: \"",
          tensor_connection.to_tensor(), "\".");
    }
    if (from_id.second >= from_node->num_outputs()) {
      return errors::InvalidArgument(
          "Requested tensor connection from unknown edge: \"",
          tensor_connection.to_tensor(),
          "\" (actual number of outputs = ", from_node->num_outputs(), ").");
    }

    feed_rewrites.emplace_back(new TensorConnectionPruneRewrite(
        &tensor_connection.to_tensor(), {from_node, from_id.second}));
  }

  std::vector<string> target_node_names(
      options.callable_options.target().begin(),
      options.callable_options.target().end());
  TF_RETURN_IF_ERROR(subgraph::RewriteGraphForExecution(
      graph, feed_rewrites, fetch_rewrites, target_node_names,
      out_rewrite_metadata));

  CHECK_EQ(out_rewrite_metadata->feed_types.size(),
           options.callable_options.feed_size() +
               options.callable_options.tensor_connection_size());
  for (int i = 0; i < options.callable_options.tensor_connection_size(); ++i) {
    out_rewrite_metadata->feed_types.pop_back();
  }
  return Status::OK();
}

Status GraphExecutionState::InitBaseGraph(const BuildGraphOptions& options) {
  const GraphDef* graph_def = &original_graph_def_;

  std::unique_ptr<Graph> new_graph(new Graph(OpRegistry::Global()));
  GraphConstructorOptions opts;
  TF_RETURN_IF_ERROR(ConvertGraphDefToGraph(opts, *graph_def, new_graph.get()));
  for (const Node* n : new_graph->nodes()) {
    VLOG(2) << "Mapping " << n->name() << " to " << n->cost_id();
    node_name_to_cost_id_map_[n->name()] = n->cost_id();
  }
  if (session_options_ &&
      session_options_->config.graph_options().place_pruned_graph()) {
    // Rewrite the graph before placement.
    rewrite_metadata_.reset(new subgraph::RewriteGraphMetadata);
    TF_RETURN_IF_ERROR(
        PruneGraph(options, new_graph.get(), rewrite_metadata_.get()));
  }

  // Save stateful placements before placing.
  RestoreStatefulNodes(new_graph.get());

  GraphOptimizationPassOptions optimization_options;
  optimization_options.session_options = session_options_;
  optimization_options.graph = &new_graph;
  optimization_options.flib_def = flib_def_.get();
  optimization_options.device_set = device_set_;

  TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping(
      OptimizationPassRegistry::PRE_PLACEMENT, optimization_options));

  Placer placer(new_graph.get(), device_set_, session_options_);
  // TODO(mrry): Consider making the Placer cancelable.
  TF_RETURN_IF_ERROR(placer.Run());

  TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping(
      OptimizationPassRegistry::POST_PLACEMENT, optimization_options));

  SaveStatefulNodes(new_graph.get());
  graph_ = new_graph.release();
  return Status::OK();
}

Status GraphExecutionState::OptimizeGraph(
    const BuildGraphOptions& options, std::unique_ptr<Graph>* optimized_graph,
    std::unique_ptr<FunctionLibraryDefinition>* optimized_flib) {
#ifndef IS_MOBILE_PLATFORM
  if (session_options_->config.graph_options().place_pruned_graph()) {
    return errors::InvalidArgument("Can't optimize a pruned graph");
  }

  const RewriterConfig& rewrite_options =
      session_options_->config.graph_options().rewrite_options();

  if (grappler::MetaOptimizerEnabled(rewrite_options)) {
    // Adding this functionality in steps. The first step is to make sure
    // we don't break dependencies. The second step will be to turn the
    // functionality on by default.
    grappler::GrapplerItem item;
    item.id = "tf_graph";
    graph_->ToGraphDef(&item.graph);
    // TODO(b/114748242): Add a unit test to test this bug fix.
    if (flib_def_) {
      *item.graph.mutable_library() = flib_def_->ToProto();
    }

    item.fetch.insert(item.fetch.end(),
                      options.callable_options.fetch().begin(),
                      options.callable_options.fetch().end());
    item.fetch.insert(item.fetch.end(),
                      options.callable_options.target().begin(),
                      options.callable_options.target().end());

    for (const TensorConnection& tensor_connection :
         options.callable_options.tensor_connection()) {
      item.fetch.push_back(tensor_connection.from_tensor());
    }

    if (!(options.callable_options.feed().empty() &&
          options.callable_options.tensor_connection().empty())) {
      std::unordered_set<string> feeds;
      for (const string& feed : options.callable_options.feed()) {
        TensorId id = ParseTensorName(feed);
        if (id.second != 0) {
          return errors::InvalidArgument("Unsupported feed: ", feed);
        }
        feeds.emplace(id.first);
      }
      for (const TensorConnection& tensor_connection :
           options.callable_options.tensor_connection()) {
        TensorId id = ParseTensorName(tensor_connection.to_tensor());
        if (id.second != 0) {
          return errors::InvalidArgument("Unsupported feed: ",
                                         tensor_connection.to_tensor());
        }
        feeds.emplace(id.first);
      }
      for (const NodeDef& node : original_graph_def_.node()) {
        if (feeds.find(node.name()) == feeds.end()) {
          continue;
        }
        if (node.attr().count("dtype") == 0 ||
            node.attr().count("shape") == 0) {
          return errors::InvalidArgument("Missing node shape or type");
        }
        TensorShapeProto shape_proto(node.attr().at("shape").shape());
        // If the shape of the placeholder value is only partially known,
        // we're free to use any dimension we want to feed the placeholder. We
        // choose 1 to minimize the memory impact. Note that this only matters
        // if an optimizer choose to run the graph to build its cost model,
        // which doesn't happen (yet)
        if (shape_proto.unknown_rank()) {
          shape_proto.set_unknown_rank(false);
        }
        for (auto& dim : *shape_proto.mutable_dim()) {
          if (dim.size() < 0) {
            dim.set_size(1);
          }
        }
        TensorShape shape(shape_proto);
        DataType type = node.attr().at("dtype").type();
        Tensor fake_input(type, shape);
        item.feed.emplace_back(node.name(), fake_input);
      }
    }

    Device* cpu_device = nullptr;
    for (const auto& device : device_set_->devices()) {
      if (device->parsed_name().id == 0 &&
          StringPiece(device->parsed_name().type) == "CPU" &&
          device->GetAllocator(AllocatorAttributes()) != nullptr) {
        cpu_device = device;
      }
    }
    grappler::VirtualCluster cluster(device_set_);
    GraphDef new_graph;
    TF_RETURN_IF_ERROR(grappler::RunMetaOptimizer(
        item, rewrite_options, cpu_device, &cluster, &new_graph));

    // Merge optimized graph function library with an original library.
    // Optimized graph might have new functions specialized for it's
    // instantiation context (see Grappler function optimizer), and modified
    // function body for the existing functions.
    optimized_flib->reset(new FunctionLibraryDefinition(*flib_def_));

    for (const FunctionDef& fdef : new_graph.library().function()) {
      const string& func_name = fdef.signature().name();

      if ((*optimized_flib)->Contains(func_name)) {
        VLOG(3) << "Replace function: name=" << func_name;
        TF_RETURN_IF_ERROR((*optimized_flib)->ReplaceFunction(func_name, fdef));
      } else {
        VLOG(3) << "Add new function: name=" << func_name;
        TF_RETURN_IF_ERROR((*optimized_flib)->AddFunctionDef(fdef));
      }
    }

    optimized_graph->reset(new Graph(OpRegistry::Global()));

    GraphConstructorOptions opts;
    opts.allow_internal_ops = true;
    TF_RETURN_IF_ERROR(
        ConvertGraphDefToGraph(opts, new_graph, optimized_graph->get()));
    // The graph conversion sets the requested device names but not the
    // assigned device names. However, since at this point the graph is placed
    // TF expects an assigned device name for every node. Therefore we copy
    // the requested device into the assigned device field.
    for (Node* node : optimized_graph->get()->nodes()) {
      node->set_assigned_device_name(node->requested_device());
    }
    return Status::OK();
  } else {
    return errors::InvalidArgument("Meta Optimizer disabled");
  }
#else
  return errors::InvalidArgument("Mobile platforms not supported");
#endif  // IS_MOBILE_PLATFORM
}

Status GraphExecutionState::BuildGraph(const BuildGraphOptions& options,
                                       std::unique_ptr<ClientGraph>* out) {
  VLOG(1) << "BuildGraph";
  if (!graph_) {
    // It is only valid to call this method directly when the original graph
    // was created with the option `place_pruned_graph == false`.
    return errors::Internal(
        "Attempted to prune a graph that has not been fully initialized.");
  }

  // Grappler optimization might change the structure of a graph itself, and
  // also it can add/prune functions to/from the library.
  std::unique_ptr<Graph> optimized_graph;
  std::unique_ptr<FunctionLibraryDefinition> optimized_flib;

  Status s = OptimizeGraph(options, &optimized_graph, &optimized_flib);
  if (!s.ok()) {
    VLOG(2) << "Grappler optimization failed. Error: " << s.error_message();
    // Simply copy the original graph and the function library if we couldn't
    // optimize it.
    optimized_graph.reset(new Graph(flib_def_.get()));
    CopyGraph(*graph_, optimized_graph.get());
    optimized_flib.reset(new FunctionLibraryDefinition(*flib_def_));
  }

  subgraph::RewriteGraphMetadata rewrite_metadata;
  if (session_options_ == nullptr ||
      !session_options_->config.graph_options().place_pruned_graph()) {
    TF_RETURN_IF_ERROR(
        PruneGraph(options, optimized_graph.get(), &rewrite_metadata));
  } else {
    // This GraphExecutionState represents a graph that was
    // pruned when this was constructed, so we copy the metadata from
    // a member variable.
    CHECK(rewrite_metadata_);
    rewrite_metadata = *rewrite_metadata_;
  }

  CHECK_EQ(options.callable_options.feed_size(),
           rewrite_metadata.feed_types.size());
  CHECK_EQ(options.callable_options.fetch_size(),
           rewrite_metadata.fetch_types.size());

  // TODO(andydavis): Clarify optimization pass requirements around CostModel.
  GraphOptimizationPassOptions optimization_options;
  optimization_options.session_options = session_options_;
  optimization_options.graph = &optimized_graph;
  optimization_options.flib_def = optimized_flib.get();
  optimization_options.device_set = device_set_;

  TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping(
      OptimizationPassRegistry::POST_REWRITE_FOR_EXEC, optimization_options));

  int64 collective_graph_key = options.collective_graph_key;
  if (collective_graph_key == BuildGraphOptions::kNoCollectiveGraphKey) {
    // BuildGraphOptions does not specify a collective_graph_key.  Check all
    // nodes in the Graph and FunctionLibraryDefinition for collective ops and
    // if found, initialize a collective_graph_key as a hash of the ordered set
    // of instance keys.
    std::set<int32> instance_key_set;
    for (Node* node : optimized_graph->nodes()) {
      if (node->IsCollective()) {
        int32 instance_key;
        TF_RETURN_IF_ERROR(
            GetNodeAttr(node->attrs(), "instance_key", &instance_key));
        instance_key_set.emplace(instance_key);
      } else {
        const FunctionDef* fdef = optimized_flib->Find(node->def().op());
        if (fdef != nullptr) {
          for (const NodeDef& ndef : fdef->node_def()) {
            if (ndef.op() == "CollectiveReduce" ||
                ndef.op() == "CollectiveBcastSend" ||
                ndef.op() == "CollectiveBcastRecv") {
              int32 instance_key;
              TF_RETURN_IF_ERROR(
                  GetNodeAttr(ndef, "instance_key", &instance_key));
              instance_key_set.emplace(instance_key);
            }
          }
        }
      }
    }
    if (!instance_key_set.empty()) {
      uint64 hash = 0x8774aa605c729c72ULL;
      for (int32 instance_key : instance_key_set) {
        hash = Hash64Combine(instance_key, hash);
      }
      collective_graph_key = hash;
    }
  }

  // Copy the extracted graph in order to make its node ids dense,
  // since the local CostModel used to record its stats is sized by
  // the largest node id.
  std::unique_ptr<ClientGraph> dense_copy(
      new ClientGraph(std::move(optimized_flib), rewrite_metadata.feed_types,
                      rewrite_metadata.fetch_types, collective_graph_key));
  CopyGraph(*optimized_graph, &dense_copy->graph);

  // TODO(vrv): We should check invariants of the graph here.

  *out = std::move(dense_copy);
  return Status::OK();
}

}  // namespace tensorflow