aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/common_runtime/executor_test.cc
blob: 7697103faf9bfa7a3fdbdbc0c3286d07d257d817 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <algorithm>

#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/common_runtime/device_factory.h"
#include "tensorflow/core/common_runtime/executor.h"
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h"
#include "tensorflow/core/common_runtime/process_util.h"
#include "tensorflow/core/common_runtime/step_stats_collector.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/rendezvous.h"
#include "tensorflow/core/framework/step_stats.pb.h"
#include "tensorflow/core/framework/versions.pb.h"
#include "tensorflow/core/graph/graph_constructor.h"
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/lib/random/simple_philox.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/platform/test_benchmark.h"
#include "tensorflow/core/platform/tracing.h"
#include "tensorflow/core/public/session_options.h"

namespace tensorflow {

class ExecutorTest : public ::testing::Test {
 protected:
  ExecutorTest()
      : device_(DeviceFactory::NewDevice("CPU", {},
                                         "/job:localhost/replica:0/task:0")),

        step_stats_collector_(&step_stats_) {
    SessionOptions options;
    thread_pool_ = ComputePool(options);
  }

  ~ExecutorTest() override {
    // There should always be exactly one Ref left on the Rendezvous
    // when the test completes.
    CHECK(rendez_->Unref());
    delete exec_;
    delete device_;
  }

  // Resets executor_ with a new executor based on a graph 'gdef'.
  void Create(std::unique_ptr<const Graph> graph) {
    const int version = graph->versions().producer();
    LocalExecutorParams params;
    params.device = device_;
    params.create_kernel = [this, version](const NodeDef& ndef,
                                           OpKernel** kernel) {
      return CreateNonCachedKernel(device_, nullptr, ndef, version, kernel);
    };
    params.delete_kernel = [](OpKernel* kernel) {
      DeleteNonCachedKernel(kernel);
    };
    delete exec_;
    TF_CHECK_OK(NewLocalExecutor(params, std::move(graph), &exec_));
    runner_ = [this](std::function<void()> fn) { thread_pool_->Schedule(fn); };
    rendez_ = NewLocalRendezvous();
  }

  Status Run(Rendezvous* rendez) {
    Executor::Args args;
    args.rendezvous = rendez;
    args.stats_collector = &step_stats_collector_;
    args.runner = runner_;
    return exec_->Run(args);
  }

  thread::ThreadPool* thread_pool_ = nullptr;
  Device* device_ = nullptr;
  Executor* exec_ = nullptr;
  StepStatsCollector step_stats_collector_;
  StepStats step_stats_;
  Executor::Args::Runner runner_;
  Rendezvous* rendez_ = nullptr;
};

// A float val -> Tensor<float>
Tensor V(const float val) {
  Tensor tensor(DT_FLOAT, TensorShape({}));
  tensor.scalar<float>()() = val;
  return tensor;
}

// A int32 val -> Tensor<int32>
Tensor VI(const int32 val) {
  Tensor tensor(DT_INT32, TensorShape({}));
  tensor.scalar<int32>()() = val;
  return tensor;
}

// A bool val -> Tensor<bool>
Tensor VB(const bool val) {
  Tensor tensor(DT_BOOL, TensorShape({}));
  tensor.scalar<bool>()() = val;
  return tensor;
}

// A double val -> Tensor<double>
Tensor VD(const double val) {
  Tensor tensor(DT_DOUBLE, TensorShape({}));
  tensor.scalar<double>()() = val;
  return tensor;
}

// Tensor<float> -> a float val.
float V(const Tensor& tensor) {
  CHECK_EQ(tensor.dtype(), DT_FLOAT);
  CHECK(TensorShapeUtils::IsScalar(tensor.shape()));
  return tensor.scalar<float>()();
}

static uint64 kIncarnation = 1;  // Uses in following tests.

Rendezvous::ParsedKey Key(const string& sender, const uint64 incarnation,
                          const string& receiver, const string& name) {
  Rendezvous::ParsedKey result;
  CHECK(
      Rendezvous::ParseKey(Rendezvous::CreateKey(sender, incarnation, receiver,
                                                 name, FrameAndIter(0, 0)),
                           &result)
          .ok());
  return result;
}

#define ALICE "/job:j/replica:0/task:0/cpu:0"
#define BOB "/job:j/replica:0/task:0/device:GPU:0"

TEST_F(ExecutorTest, SimpleAdd) {
  // c = a + b
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB);
  auto in1 = test::graph::Recv(g.get(), "b", "float", ALICE, 1, BOB);
  auto tmp = test::graph::Add(g.get(), in0, in1);
  test::graph::Send(g.get(), tmp, "c", BOB, 1, ALICE);
  Create(std::move(g));
  Rendezvous::Args args;
  TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0),
                             false));  // in0 = 1.0
  TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "b"), args, V(1.0),
                             false));  // in1 = 1.0
  TF_ASSERT_OK(Run(rendez_));
  Tensor out = V(-1);
  bool is_dead = false;
  TF_ASSERT_OK(
      rendez_->Recv(Key(BOB, kIncarnation, ALICE, "c"), args, &out, &is_dead));
  EXPECT_EQ(2.0, V(out));  // out = 1.0 + 1.0 = 2.0
}

TEST_F(ExecutorTest, SelfAdd) {
  // v0 <- a
  // v1 = v0 + v0
  // v2 = v1 + v1
  // ... ...
  // v10 = v9 + v9
  //
  // b <- v10
  // All nodes are executed by one thread.
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  auto v = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB);
  const int N = 10;
  for (int i = 1; i <= N; ++i) {
    v = test::graph::Add(g.get(), v, v);
  }
  // out <- v10
  test::graph::Send(g.get(), v, "b", BOB, 1, ALICE);
  Create(std::move(g));
  Rendezvous::Args args;
  // a = 1.0
  TF_ASSERT_OK(
      rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false));
  TF_ASSERT_OK(Run(rendez_));
  Tensor out = V(-1);
  bool is_dead = false;
  TF_ASSERT_OK(
      rendez_->Recv(Key(BOB, kIncarnation, ALICE, "b"), args, &out, &is_dead));
  EXPECT_EQ(1024.0, V(out));  // b=v10=2*v9=4*v8=...=1024*a=1024.0
}

// Builds a graph which adds N copies of one variable "in". I.e.,
//     a + a + a + ... + a
// The returned graph is parenthesized ramdonly. I.e.,
//     a + ((a + a) + a)
//     (a + a) + (a + a)
//     ((a + a) + a) + a
// are all possibly generated.
void BuildTree(int N, Graph* g) {
  CHECK_GT(N, 1);
  // A single input node "in".
  auto in = test::graph::Recv(g, "a", "float", ALICE, 1, BOB);
  std::vector<Node*> nodes;
  int i = 0;
  // Duplicate "in" N times. Each copies is named as l0, l1, l2, ....
  for (; i < N; ++i) {
    nodes.push_back(test::graph::Identity(g, in, 0));
  }
  random::PhiloxRandom philox(testing::RandomSeed(), 17);
  random::SimplePhilox rnd(&philox);
  while (nodes.size() > 1) {
    // Randomly pick two from nodes and add them. The resulting node
    // is named lik n10, n11, .... and is put back into "nodes".
    int x = rnd.Uniform(nodes.size());
    auto in0 = nodes[x];
    nodes[x] = nodes.back();
    nodes.resize(nodes.size() - 1);
    x = rnd.Uniform(nodes.size());
    auto in1 = nodes[x];
    // node = in0 + in1.
    nodes[x] = test::graph::Add(g, in0, in1);
  }
  // The final output node "out".
  test::graph::Send(g, nodes.back(), "b", BOB, 1, ALICE);
}

TEST_F(ExecutorTest, RandomTree) {
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  BuildTree(4096, g.get());
  Create(std::move(g));
  Rendezvous::Args args;
  TF_ASSERT_OK(
      rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false));
  TF_ASSERT_OK(Run(rendez_));
  Tensor out = V(-1);
  bool is_dead = false;
  TF_ASSERT_OK(
      rendez_->Recv(Key(BOB, kIncarnation, ALICE, "b"), args, &out, &is_dead));
  EXPECT_EQ(4096.0, V(out));
}

void BuildConcurrentAddAssign(Graph* g) {
  auto one = test::graph::Constant(g, V(1.0));
  // A variable holds one float.
  auto var = test::graph::Var(g, DT_FLOAT, TensorShape({}));
  // Initilize the variable with 1.0.
  auto init = test::graph::Assign(g, var, one);
  // Output
  auto out = test::graph::Send(g, var, "out", ALICE, kIncarnation, BOB);
  // Have many concurrent computation. Each does v = v + 1.
  for (int i = 0; i < 1024; ++i) {
    auto add = test::graph::Add(g, var, one);
    g->AddControlEdge(init, add);  // Ensures run after init.
    auto assign = test::graph::Assign(g, var, add);
    g->AddControlEdge(assign, out);
  }
}

#ifndef THREAD_SANITIZER
TEST_F(ExecutorTest, ConcurrentAddAssign) {
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  BuildConcurrentAddAssign(g.get());
  Create(std::move(g));
  for (int iters = 0; iters < 16; ++iters) {
    Rendezvous* rendez = NewLocalRendezvous();
    TF_ASSERT_OK(Run(rendez));
    Rendezvous::Args args;
    Tensor out;
    bool is_dead;
    TF_ASSERT_OK(rendez->Recv(Key(ALICE, kIncarnation, BOB, "out"), args, &out,
                              &is_dead));
    VLOG(1) << "Get " << V(out);
    EXPECT_LE(V(out), 1025.0);
    rendez->Unref();
  }
}
#endif

TEST_F(ExecutorTest, SimpleSwitchLive) {
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB);
  auto in1 = test::graph::Constant(g.get(), VB(false));
  auto tmp = test::graph::Switch(g.get(), in0, in1);
  test::graph::Send(g.get(), tmp, "c", BOB, 1, ALICE);
  Create(std::move(g));
  Rendezvous::Args args;
  TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0),
                             false));  // in0 = 1.0
  TF_ASSERT_OK(Run(rendez_));
  Tensor out = V(-1);
  bool is_dead = false;
  TF_ASSERT_OK(
      rendez_->Recv(Key(BOB, kIncarnation, ALICE, "c"), args, &out, &is_dead));
  EXPECT_EQ(1.0, V(out));  // out = 1.0
  EXPECT_FALSE(is_dead);
}

TEST_F(ExecutorTest, SimpleSwitchDead) {
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB);
  auto in1 = test::graph::Constant(g.get(), VB(true));
  auto tmp = test::graph::Switch(g.get(), in0, in1);
  test::graph::Send(g.get(), tmp, "c", BOB, 1, ALICE);
  Create(std::move(g));
  Rendezvous::Args args;
  TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0),
                             false));  // in0 = 1.0
  TF_ASSERT_OK(Run(rendez_));
  Tensor out = V(-1);
  bool is_dead = false;
  TF_ASSERT_OK(
      rendez_->Recv(Key(BOB, kIncarnation, ALICE, "c"), args, &out, &is_dead));
  EXPECT_TRUE(is_dead);
}

TEST_F(ExecutorTest, Abort) {
  // e = a + b + c + d
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB);
  auto in1 = test::graph::Recv(g.get(), "b", "float", ALICE, 1, BOB);
  auto in2 = test::graph::Recv(g.get(), "c", "float", ALICE, 1, BOB);
  auto in3 = test::graph::Recv(g.get(), "d", "float", ALICE, 1, BOB);
  auto add0 = test::graph::Add(g.get(), in0, in1);
  auto add1 = test::graph::Add(g.get(), in2, in3);
  auto add2 = test::graph::Add(g.get(), add0, add1);
  test::graph::Send(g.get(), add2, "e", BOB, 1, ALICE);
  Create(std::move(g));

  // Needs 4 inputs (recv). One of them is aborted.
  rendez_->Ref();
  SchedClosure([this]() {
    Env::Default()->SleepForMicroseconds(100 * 1000);
    Status s = rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"),
                             Rendezvous::Args(), V(1.0), false);
    rendez_->Unref();
  });
  rendez_->Ref();
  SchedClosure([this]() {
    Env::Default()->SleepForMicroseconds(100 * 1000);
    Status s = rendez_->Send(Key(ALICE, kIncarnation, BOB, "b"),
                             Rendezvous::Args(), V(1.0), false);
    rendez_->Unref();
  });
  rendez_->Ref();
  SchedClosure([this]() {
    Env::Default()->SleepForMicroseconds(100 * 1000);
    Status s = rendez_->Send(Key(ALICE, kIncarnation, BOB, "c"),
                             Rendezvous::Args(), V(1.0), false);
    rendez_->Unref();
  });
  rendez_->Ref();
  SchedClosure([this]() {
    Env::Default()->SleepForMicroseconds(100 * 1000);
    rendez_->StartAbort(errors::Aborted(""));
    rendez_->Unref();
  });
  EXPECT_TRUE(errors::IsAborted(Run(rendez_)));
  Tensor out = V(-1);
  bool is_dead = false;
  EXPECT_TRUE(errors::IsAborted(rendez_->Recv(
      Key(BOB, kIncarnation, ALICE, "c"), Rendezvous::Args(), &out, &is_dead)));
  // At this point there can still be pending (albeit Aborted) Send
  // closures holding Refs on rendez_.  We need to wait for them, or
  // else there can be a memory leak at termination.
  while (!rendez_->RefCountIsOne())
    ;
}

TEST_F(ExecutorTest, RecvInvalidDtype) {
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  // An input vector of type float of size 1.
  auto one = test::graph::Recv(g.get(), "one", "float", ALICE, 1, BOB);
  // A floating point variable vector of size 1.
  auto var = test::graph::Var(g.get(), DT_FLOAT, TensorShape({1}));
  // Initialize the variable with input.
  auto init = test::graph::Assign(g.get(), var, one);
  // Output
  auto* two = test::graph::Send(g.get(), var, "two", BOB, 1, ALICE);
  g->AddControlEdge(init, two);  // Ensures run after init.
  Create(std::move(g));
  Rendezvous* rendez = NewLocalRendezvous();
  // Send a double instead of float.
  TF_ASSERT_OK(rendez->Send(Key(ALICE, 1, BOB, "one"), Rendezvous::Args(),
                            VD(1.0), false));
  // Fails due to invalid dtype.
  EXPECT_TRUE(errors::IsInternal(Run(rendez)));
  Tensor output;
  bool is_dead;
  EXPECT_TRUE(errors::IsInternal(rendez->Recv(
      Key(BOB, 1, ALICE, "two"), Rendezvous::Args(), &output, &is_dead)));
  rendez->Unref();
}

TEST_F(ExecutorTest, RecvInvalidRefDtype) {
  std::unique_ptr<Graph> g(new Graph(OpRegistry::Global()));
  // A var that always produces as invalid dtype.
  auto var = test::graph::InvalidRefType(g.get(), DT_FLOAT, DT_DOUBLE);
  test::graph::Send(g.get(), var, "out", BOB, 1, ALICE);
  Create(std::move(g));
  Rendezvous* rendez = NewLocalRendezvous();
  EXPECT_TRUE(errors::IsInternal(Run(rendez)));
  Tensor output;
  bool is_dead;
  EXPECT_TRUE(errors::IsInternal(rendez->Recv(
      Key(BOB, 1, ALICE, "out"), Rendezvous::Args(), &output, &is_dead)));
  rendez->Unref();
}

// Create a graph that is 'depth' deep. At each level, fan-in and fan-out a
// maximum of 'width' nodes. All nodes are no-ops and all dependencies are
// control dependencies.
static void BM_executor(int iters, int width, int depth) {
#ifdef PLATFORM_GOOGLE
  BenchmarkUseRealTime();
#endif  // PLATFORM_GOOGLE
  Graph* g = new Graph(OpRegistry::Global());
  random::PhiloxRandom philox(1729, 17);
  random::SimplePhilox rand(&philox);
  uint64 cur = 0;
  uint32 r = 1 + rand.Rand32() % width;
  std::vector<Node*> ready_nodes;
  for (int i = 0; i < r; ++i) {
    ready_nodes.push_back(test::graph::NoOp(g, {}));
    ++cur;
  }
  for (int i = 0; i < depth; ++i) {
    std::random_shuffle(ready_nodes.begin(), ready_nodes.end());
    r = 1 + rand.Rand32() % (ready_nodes.size());
    std::vector<Node*> control_inputs;
    for (int j = 0; j < r; ++j) {
      control_inputs.push_back(ready_nodes.back());
      ready_nodes.pop_back();
    }
    Node* n = test::graph::NoOp(g, control_inputs);
    ++cur;
    r = 1 + rand.Rand32() % width;
    for (int j = 0; j < r; ++j) {
      ready_nodes.push_back(test::graph::NoOp(g, {n}));
      ++cur;
    }
  }
#ifdef PLATFORM_GOOGLE
  SetBenchmarkLabel(strings::StrCat("Nodes = ", cur));
  SetBenchmarkItemsProcessed(cur * static_cast<int64>(iters));
#endif  // PLATFORM_GOOGLE
  test::Benchmark("cpu", g).Run(iters);
}

// Tall skinny graphs
BENCHMARK(BM_executor)->ArgPair(16, 1024);
BENCHMARK(BM_executor)->ArgPair(32, 8192);

// Short fat graphs
BENCHMARK(BM_executor)->ArgPair(1024, 16);
BENCHMARK(BM_executor)->ArgPair(8192, 32);

// Tall fat graph
BENCHMARK(BM_executor)->ArgPair(1024, 1024);

static void BM_FeedInputFetchOutput(int iters) {
  Graph* g = new Graph(OpRegistry::Global());
  // z = x + y: x and y are provided as benchmark inputs.  z is the
  // output of the benchmark.  Conceptually, the caller is ALICE, the
  // benchmark is BOB.
  Node* x = test::graph::Recv(g, "x", "float", ALICE, 1, BOB);
  Node* y = test::graph::Recv(g, "y", "float", ALICE, 1, BOB);
  Node* sum = test::graph::Add(g, x, y);
  Node* z = test::graph::Send(g, sum, "z", BOB, 1, ALICE);
  Tensor val(DT_FLOAT, TensorShape({}));
  val.scalar<float>()() = 3.14;
#ifdef PLATFORM_GOOGLE
  SetBenchmarkItemsProcessed(static_cast<int64>(iters));
#endif  // PLATFORM_GOOGLE
  test::Benchmark("cpu", g).RunWithArgs({{x, val}, {y, val}}, {z}, iters);
}
BENCHMARK(BM_FeedInputFetchOutput);

}  // namespace tensorflow