aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/common_runtime/constant_folding.cc
blob: 8fa61d098eb702b6e0f7d06fdc57b2242f288627 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <algorithm>
#include <atomic>
#include <set>
#include <unordered_map>
#include <vector>

#include "tensorflow/core/common_runtime/constant_folding.h"

#include "tensorflow/core/common_runtime/device_factory.h"
#include "tensorflow/core/common_runtime/executor.h"
#include "tensorflow/core/common_runtime/function.h"
#include "tensorflow/core/common_runtime/graph_runner.h"
#include "tensorflow/core/common_runtime/memory_types.h"
#include "tensorflow/core/common_runtime/rendezvous_mgr.h"
#include "tensorflow/core/framework/log_memory.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/graph/algorithm.h"
#include "tensorflow/core/graph/node_builder.h"
#include "tensorflow/core/graph/subgraph.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/gtl/cleanup.h"
#include "tensorflow/core/lib/gtl/flatset.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/public/session_options.h"

namespace tensorflow {

namespace {

bool IsConstantFoldable(const Node* n,
                        const std::function<bool(const Node*)>& consider) {
  if (n->IsConstant()) {
    return true;
  }
  if (n->op_def().is_stateful()) {
    return false;
  }
  if (consider && !consider(n)) {
    return false;
  }
  if (n->IsControlFlow() || n->IsSend() || n->IsRecv()) {
    return false;
  }
  // TODO(yuanbyu): For now disable these session handle operations.
  if (n->IsGetSessionHandle() || n->IsGetSessionTensor() ||
      n->IsDeleteSessionTensor()) {
    return false;
  }
  if (n->IsSource()) {
    return false;
  }
  if (n->IsSink()) {
    return false;
  }
  // Since constant-folding runs on the CPU, do not attempt to constant-fold
  // operators that have no CPU kernel. Also implies that we will not
  // constant-fold functions.
  // TODO(phawkins): allow constant-folding for functions; functions may
  // be arbitrarily expensive to execute.
  if (!FindKernelDef(DeviceType(DEVICE_CPU), n->def(), /*def=*/nullptr,
                     /*kernel_class_name=*/nullptr)
           .ok()) {
    return false;
  }

  return true;
}

// Returns the constant foldable nodes in `nodes` in topological order.
// Populates `constant_control_deps` with the non-constant control depedencies
// of each constant node.
void FindConstantFoldableNodes(
    const Graph* graph, ConstantFoldingOptions opts, std::vector<Node*>* nodes,
    std::unordered_map<const Node*, gtl::FlatSet<Node*>>*
        constant_control_deps) {
  bool internal_node_inserted = false;
  // Walk the nodes in data flow order
  ReverseDFS(
      *graph, nullptr,
      [nodes, constant_control_deps, &internal_node_inserted, opts](Node* n) {
        if (IsConstantFoldable(n, opts.consider)) {
          // A node is constant provided all of its non-control
          // incoming Tensors come from constant nodes.
          //
          // We allow control dependencies from non-constant nodes to constant
          // nodes, but to preserve the graph structure we must transfer the
          // control dependency onto any constant replacement.
          bool all_parents_constant = true;
          for (const Edge* in : n->in_edges()) {
            // Allows non-constant -> constant control edges.
            if (!in->IsControlEdge() &&
                constant_control_deps->count(in->src()) == 0) {
              all_parents_constant = false;
              break;
            }
          }
          if (all_parents_constant) {
            gtl::FlatSet<Node*>& control_deps = (*constant_control_deps)[n];
            for (const Edge* e : n->in_edges()) {
              if (constant_control_deps->count(e->src()) == 0) {
                if (!e->src()->IsSource()) {
                  control_deps.insert(e->src());
                }
              } else {
                // If the parent is constant, add all of its transitive control
                // deps.
                const gtl::FlatSet<Node*>& parent_deps =
                    (*constant_control_deps)[e->src()];
                control_deps.insert(parent_deps.begin(), parent_deps.end());
              }
            }
            nodes->push_back(n);
            if (!n->IsConstant()) {
              internal_node_inserted = true;
            }
          }
        }
      });
  // If we have inserted just leaf level nodes, then there is nothing to fold.
  if (!internal_node_inserted) {
    nodes->clear();
    constant_control_deps->clear();
  }
}

typedef std::pair<Node*, int> NodeAndOutput;

// Given the constant foldable nodes in 'nodes', returns a new graph 'g'. 'g'
// will contain copies of the nodes in 'nodes'. In addition, if there is an edge
// going from a node 'n' in 'nodes' to another node in 'orig_graph' but not in
// 'nodes', then 'tensors_to_fetch' will contain the mapping from the
// corresponding copy of 'n' and the edge number in 'g' to 'n'.
Graph* GetConstantGraph(const Graph* orig_graph,
                        const std::vector<Node*>& nodes,
                        std::map<NodeAndOutput, Node*>* tensors_to_fetch) {
  Graph* constant_graph = new Graph(orig_graph->op_registry());
  std::unordered_map<Node*, Node*> node_map;
  node_map[orig_graph->source_node()] = constant_graph->source_node();
  node_map[orig_graph->sink_node()] = constant_graph->sink_node();
  for (Node* n : nodes) {
    Node* added = constant_graph->CopyNode(n);
    node_map[n] = added;
    for (const Edge* in_edge : n->in_edges()) {
      // Don't copy control edges to the constant graph.
      if (!in_edge->IsControlEdge()) {
        Node* in = in_edge->src();
        auto it = node_map.find(in);
        CHECK(it != node_map.end())
            << n->DebugString() << " <-" << in->DebugString();
        constant_graph->AddEdge(it->second, in_edge->src_output(), added,
                                in_edge->dst_input());
      }
    }
  }

  for (auto const& added_nodes : node_map) {
    for (const Edge* out_edge : added_nodes.first->out_edges()) {
      if (node_map.count(out_edge->dst()) == 0) {
        if (out_edge->IsControlEdge()) continue;
        tensors_to_fetch->insert(
            {{added_nodes.second, out_edge->src_output()}, added_nodes.first});
      }
    }
  }

  return constant_graph;
}

int64 UniqueConstantId() {
  static std::atomic_int_fast64_t id;
  return id.fetch_add(1);
}

// Replaces the identified Tensor in 'graph' by a 'Const' node with
// the value supplied in 'constant'. 'partition_device', if non-null
// is the device where the graph executes. Returns true if the
// replacement was successful, false otherwise.
// 'control_deps' is the set of nodes that should be control predecessors of the
// new constant node.
bool ReplaceTensorWithConstant(Graph* graph, Device* partition_device,
                               NodeAndOutput tensor, const Tensor& constant,
                               const gtl::FlatSet<Node*>& control_deps) {
  // Be conservative when replacing a tensor with a constant, when not
  // running on CPU.
  // 1) If the destination tensor is not an int32 tensor, and has HOST_MEMORY
  // constraint, do not replace it.
  // 2) If the destination tensor is an int32 tensor, but has DEVICE_MEMORY
  // constraint, do not replace it.
  // 3) If the constant op created does not have a kernel implementation
  // for the device, do not use it.
  // 4) If the size of the constant in bytes is too large (> 10M), do not
  // replace it. This prevents the size of the Graph from growing too large.
  // TODO(keveman): Consider adding a new constant op that has a kernel
  // implementation for all types, but with HostMemory constraint on it's
  // output.
  // 5) Do not replace another constant.
  if (tensor.first->IsConstant()) {
    return false;
  }
  DeviceType device_type = partition_device
                               ? DeviceType{partition_device->device_type()}
                               : DEVICE_CPU;
  if (partition_device && device_type != DEVICE_CPU) {
    MemoryType memory_type;
    if (!MemoryTypeForOutput(device_type, graph, tensor.first, tensor.second,
                             &memory_type)
             .ok()) {
      return false;
    }
    bool is_int32 = tensor.first->output_type(tensor.second) == DT_INT32;
    if ((memory_type == HOST_MEMORY && !is_int32) ||
        (memory_type == DEVICE_MEMORY && is_int32)) {
      return false;
    }
  }
  if (constant.TotalBytes() > 10 * 1024 * 1024) {
    return false;
  }

  Node* n = tensor.first;
  std::vector<const Edge*> edges_to_remove;
  for (const Edge* out_edge : n->out_edges()) {
    if (out_edge->src_output() == tensor.second) {
      edges_to_remove.push_back(out_edge);
    }
  }
  const string& node_name = n->name();
  Node* constant_node;
  auto builder = NodeDefBuilder(strings::StrCat(graph->NewName(node_name),
                                                "__cf__", UniqueConstantId()),
                                "Const")
                     .Attr("dtype", constant.dtype())
                     .Attr("value", constant);
  if (partition_device) {
    builder.Device(partition_device->name());
  }
  NodeDef def;
  if (!builder.Finalize(&def).ok()) {
    return false;
  }
  const KernelDef* kdef;
  if (!FindKernelDef(device_type, def, &kdef, nullptr).ok()) {
    return false;
  }

  VLOG(1) << "Replacing " << tensor.first->name() << " :: " << tensor.second
          << " with a constant";

  if (!NodeBuilder(builder).Finalize(graph, &constant_node).ok()) {
    return false;
  }
  for (auto edge : edges_to_remove) {
    graph->AddEdge(constant_node, 0, edge->dst(), edge->dst_input());
    graph->RemoveEdge(edge);
  }
  if (control_deps.empty()) {
    graph->AddControlEdge(graph->source_node(), constant_node);
  } else {
    for (Node* node : control_deps) {
      graph->AddControlEdge(node, constant_node);
    }
  }
  if (partition_device) {
    constant_node->set_assigned_device_name(partition_device->name());
  }
  return true;
}

}  // namespace

Status ConstantFold(const ConstantFoldingOptions& opts,
                    FunctionLibraryRuntime* function_library, Env* env,
                    Device* partition_device, Graph* graph, bool* was_mutated) {
  DumpGraph("Before", graph);

  std::vector<Node*> constant_foldable_nodes;
  std::unordered_map<const Node*, gtl::FlatSet<Node*>> constant_control_deps;
  FindConstantFoldableNodes(graph, opts, &constant_foldable_nodes,
                            &constant_control_deps);
  if (constant_foldable_nodes.empty()) {
    VLOG(1) << "No constant foldable nodes found";
    *was_mutated = false;
    // This is not an error, so return the status as OK.
    return Status::OK();
  }

  std::map<NodeAndOutput, Node*> tensors_to_fetch;
  std::unique_ptr<Graph> constant_graph(
      GetConstantGraph(graph, constant_foldable_nodes, &tensors_to_fetch));
  DumpGraph("Constant graph", constant_graph.get());

  if (tensors_to_fetch.empty()) {
    VLOG(1) << "No constant nodes found that feed into the original graph.";
    *was_mutated = false;
    // This is not an error, so return the status as OK.
    return Status::OK();
  }
  VLOG(1) << "Constant foldable " << constant_graph->num_node_ids() << " : "
          << graph->num_node_ids();

  std::vector<string> tensors_to_fetch_names;
  std::vector<NodeAndOutput> tensors_to_replace;
  for (auto n : tensors_to_fetch) {
    tensors_to_fetch_names.push_back(
        strings::StrCat(n.first.first->name(), ":", n.first.second));
    tensors_to_replace.push_back({n.second, n.first.second});
  }

  auto graph_runner = std::unique_ptr<GraphRunner>(new GraphRunner(env));
  // Evaluate the constant foldable nodes.
  std::vector<Tensor> outputs;
  auto delete_tensors = gtl::MakeCleanup([&graph_runner, &outputs] {
    // Output tensors need to be cleared before the GraphRunner is deleted.
    outputs.clear();
    graph_runner.reset(nullptr);
  });

  Status s =
      graph_runner->Run(constant_graph.get(), function_library, {} /* inputs*/,
                        tensors_to_fetch_names, &outputs);
  if (!s.ok()) {
    VLOG(1) << "Could not fetch constants: " << s;
    *was_mutated = false;
    // This is not an error, so return the status as OK.
    return s;
  }

  // Fetch the constant tensors and replace the corresponding tensors in the
  // original graph with those constants.
  int32 num_nodes_replaced = 0;
  for (size_t c = 0; c < outputs.size(); ++c) {
    const gtl::FlatSet<Node*>& control_deps =
        constant_control_deps[tensors_to_replace[c].first];
    if (ReplaceTensorWithConstant(graph, partition_device,
                                  tensors_to_replace[c], outputs[c],
                                  control_deps)) {
      ++num_nodes_replaced;
    }
  }

  DumpGraph("After", graph);

  *was_mutated = (num_nodes_replaced > 0);
  return Status::OK();
}

}  // namespace tensorflow