aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/verbs/rdma.cc
blob: ec5271abe04e51f7c4c3fb4358f8ed79835b74c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifdef TENSORFLOW_USE_VERBS

#include "tensorflow/contrib/verbs/rdma.h"
#include "tensorflow/contrib/verbs/verbs_service.pb.h"
#include <cstdlib>
#include <fcntl.h>
#include "tensorflow/core/common_runtime/device_mgr.h"
#include "tensorflow/core/common_runtime/dma_helper.h"
#include "tensorflow/core/common_runtime/process_util.h"
#if GOOGLE_CUDA
#include "tensorflow/core/common_runtime/gpu/gpu_util.h"
#include "tensorflow/core/common_runtime/gpu/process_state.h"
#endif
#include "tensorflow/core/distributed_runtime/rendezvous_mgr_interface.h"
#include "tensorflow/core/distributed_runtime/session_mgr.h"
#include "tensorflow/core/distributed_runtime/rpc/grpc_util.h"
#include "tensorflow/core/framework/rendezvous.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/hash/hash.h"
#include "tensorflow/core/lib/random/random.h"
#include "tensorflow/core/lib/core/threadpool.h"

namespace tensorflow {

#define RoCE_V2 "RoCE v2"

namespace {

// convenience function for printing message
string MessageTypeToString(RdmaMessageType rmt) {
  switch (rmt) {
    case RDMA_MESSAGE_META_DATA_UPDATE:
      return "RDMA_MESSAGE_META_DATA_UPDATE";
      break;
    case RDMA_MESSAGE_TENSOR_RE_REQUEST:
      return "RDMA_MESSAGE_TENSOR_RE_REQUEST";
      break;
    case RDMA_MESSAGE_TENSOR_REQUEST:
      return "RDMA_MESSAGE_TENSOR_REQUEST";
      break;
    default:
      return "UNKNOWN MESSAGE";
  }
}
}  // namespace

// Function to get environment variable
// Args:
//    var_name - the name of the environmental variable
// Returns:
//    string with it's value or empty string if not set
string get_env_var(char const* var_name) {
  char const* var_temp = getenv(var_name);

  return (var_temp == NULL) ? string() : string(var_temp);
}

// Function to open device
// Args:
//   ibv_dev device to open
// Returns:
//   context of the opened device
ibv_context* open_device(ibv_device* ibv_dev) {
  ibv_context* context = ibv_open_device(ibv_dev);

  CHECK(context) << "Open context failed for " << ibv_get_device_name(ibv_dev);
  return context;
}

// Function to count the number of active ports for device
// Args:
//   device - to check active ports
// Returns:
//   number of active ports of the given device
int get_dev_active_port_count(ibv_device* device) {
  ibv_device_attr device_att;
  ibv_port_attr port_attr;
  ibv_context* context = NULL;
  int rc, port_index, active_ports = 0;

  context = ibv_open_device(device);
  CHECK(context) << "Open context failed for " << ibv_get_device_name(device);
  rc = ibv_query_device(context, &device_att);
  CHECK(!rc) << "Failed to query the device";

  for (port_index = 1; port_index <= device_att.phys_port_cnt; port_index++) {
    rc = ibv_query_port(context, port_index, &port_attr);
    CHECK(!rc) << "Failed to query the port" << port_index;
    if (port_attr.state == IBV_PORT_ACTIVE) {
      active_ports++;
    }
  }
  ibv_close_device(context);
  return active_ports;
}

// Function to set device. If RDMA_DEVICE not set, search for device with active
// port.
// Fails if more than one device with active port was found.
// Returns:
//   device to use
ibv_device* set_device() {
  ibv_device** dev_list;
  int dev_num, device_index, device_to_open = 0;
  int num_devs_with_active_port = 0;
  string env_p_rdma_device, str_port_num;

  dev_list = ibv_get_device_list(&dev_num);
  CHECK(dev_list) << "No InfiniBand device found";

  env_p_rdma_device = get_env_var("RDMA_DEVICE");
  if (!env_p_rdma_device.empty()) {
    for (device_index = 0; device_index < dev_num; device_index++) {
      if (!env_p_rdma_device.compare(
              ibv_get_device_name(dev_list[device_index]))) {
        CHECK(get_dev_active_port_count(dev_list[device_index]) != 0)
            << "Device " << ibv_get_device_name(dev_list[device_index])
            << " has no active ports";
        return dev_list[device_index];
      }
    }
    // check validity of input device
    CHECK(false) << "The device " << env_p_rdma_device << " wasn't found";
  } else {
    // set default device
    str_port_num = get_env_var("RDMA_DEVICE_PORT");
    CHECK(str_port_num.empty())
        << "RDMA_DEVICE should be provided if RDMA_DEVICE_PORT is set by user";
    for (device_index = 0; device_index < dev_num; device_index++) {
      // get port_num
      if (get_dev_active_port_count(dev_list[device_index]) > 0) {
        num_devs_with_active_port++;
        CHECK(num_devs_with_active_port <= 1) << ". More than one device with "
                                                 "active port in the system. "
                                                 "Please enter RDMA_DEVICE";
        // found device with at least 1 active port
        device_to_open = device_index;
      }
    }
    CHECK(num_devs_with_active_port > 0)
        << "There is no active port in the system";
    return dev_list[device_to_open];
  }
  CHECK(false) << "No device was set!";
  return NULL;  // never happens
}

// Function to set port for device.
// If RDMA_DEVICE_PORT not set, first active port of the device will be set.
// Args:
//   context of the device
// Returns:
//   port to use
uint8_t set_port(ibv_context* context) {
  uint8_t port_num = 0;  // 0 is illegal port number
  string str_port_num;
  ibv_device_attr device_att;
  ibv_port_attr port_attr;
  int rc, port_index;

  rc = ibv_query_device(context, &device_att);
  CHECK(!rc) << "Failed to query the device\n";

  str_port_num = get_env_var("RDMA_DEVICE_PORT");
  // user defined port
  if (!str_port_num.empty()) {
    port_num = stoi(str_port_num);
    CHECK(port_num > 0) << "RDMA_DEVICE_PORT should be positive";
    CHECK(port_num <= device_att.phys_port_cnt) << "RDMA_DEVICE_PORT should be "
                                                   "less or equal to amount of "
                                                   "available ports";
    rc = ibv_query_port(context, port_num, &port_attr);
    CHECK(!rc) << "Failed to query the port" << port_num;
    // check if port id active
    CHECK(port_attr.state == IBV_PORT_ACTIVE)
        << "Selected RDMA_DEVICE_PORT is not active";
  } else {  // set default port
    for (port_index = 1; port_index <= device_att.phys_port_cnt; port_index++) {
      rc = ibv_query_port(context, port_index, &port_attr);
      CHECK(!rc) << "Failed to query the port" << port_index;
      if (port_attr.state == IBV_PORT_ACTIVE) {
        port_num = port_index;
        break;
      }
    }
    CHECK_GT(port_num, 0) << "No active ports";
  }
  return port_num;
}

// Function read from sysfs file
// Args:
//   dir - directory
//   file - file
//   buff - buffer for the result
//   size - buffer size
// Returns:
//   number of bytes were read or -1 if failed
int read_sysfs_file(const char* dir, const char* file, char* buf, size_t size) {
  char* path;
  int fd;
  int len;

  if (asprintf(&path, "%s/%s", dir, file) < 0) return -1;

  fd = open(path, O_RDONLY);
  if (fd < 0) {
    free(path);
    return -1;
  }

  len = read(fd, buf, size);

  close(fd);
  free(path);

  if (len > 0 && buf[len - 1] == '\n') buf[--len] = '\0';

  return len;
}

// Function to check if GID index support RoCE V2
// Args:
//   context - device context
//   port_num - port number
//   index -  GID index
// Returns:
//   if GID supports RoCE V2 - true, otherwise - false.
bool is_gid_type_roce_v2(ibv_context* context, uint8_t port_num,
                         uint8_t index) {
  char name[32];
  char buff[41];

  snprintf(name, sizeof(name), "ports/%d/gid_attrs/types/%d", port_num, index);
  if (read_sysfs_file(context->device->ibdev_path, name, buff, sizeof(buff)) <=
      0) {
    return false;
  }
  return !strcmp(buff, RoCE_V2);
}

// Function to set GID index.
// If the port link is IB, no GID index should be selected.
// If Ethernet but RDMA_GID_INDEX not set gid index that supports
//   RoCE V2 will be chosen(fails if more than one IP is configured)
// Args:
//   context - device context
//   port_num - port number
// Returns:
//   GID index to use
uint8_t set_gid(uint8_t port_num, ibv_context* context) {
  ibv_port_attr port_attr;
  string gid_str;
  int rc, i, gids_num = 0, v2_ip_num = 0;
  union ibv_gid gid;
  uint8_t gid_index = 0;

  rc = ibv_query_port(context, port_num, &port_attr);
  CHECK(!rc) << "Failed to query the port" << port_num;

  for (i = 0; i < port_attr.gid_tbl_len; i++) {
    rc = ibv_query_gid(context, port_num, i, &gid);
    CHECK(!rc) << "Failed to query gid to port " << (int)port_num << " index "
               << i;
    if (gid.global.interface_id) {
      gids_num++;
      if (gid.global.subnet_prefix == 0 &&
          is_gid_type_roce_v2(context, port_num, i)) {
        if (v2_ip_num == 0) {
          // can be overwritten by RDMA_GID_INDEX later
          gid_index = i;
        }
        v2_ip_num++;
      }
    }
  }
  switch (port_attr.link_layer) {
    case (IBV_LINK_LAYER_ETHERNET):
      gid_str = get_env_var("RDMA_GID_INDEX");
      if (!gid_str.empty()) {
        gid_index = stoi(gid_str);
        CHECK(gid_index < gids_num)
            << "RDMA_GID_INDEX should be less than GIDs amount" << gids_num;
      } else {
        CHECK(v2_ip_num <= 1)
            << "More than one IP is available, please specify GID_INDEX";
      }
      break;
    case (IBV_LINK_LAYER_INFINIBAND):  // no need in GID index
      break;
    default:
      LOG(INFO) << "Unknown port link layer. Currently supporting Ethernet and "
                   "InfiniBand only. ";
  }
  if (!is_gid_type_roce_v2(context, port_num, gid_index)) {
    LOG(INFO) << "RoCE v2 is not configured for GID_INDEX " << (int)gid_index;
  }
  return gid_index;
}

// set the default or environment value to the configuration parameter.
// Args:
//   default_val- the default value for this parameter
//   env_param- the environment parameter's name
// Returns:
//   32-bit value
uint32_t set_param(uint32_t default_val, const char* env_param) {
  uint32_t val = default_val;
  string val_s;

  val_s = get_env_var(env_param);

  if (!val_s.empty()) {
    val = stoi(val_s);
  }
  return val;
}

enum ibv_mtu set_mtu(uint8_t port_num, ibv_context* context) {
  ibv_port_attr port_attr;
  enum ibv_mtu mtu = IBV_MTU_512;
  string mtu_s;
  int rc, mtu_i;

  rc = ibv_query_port(context, port_num, &port_attr);
  CHECK(!rc) << "Failed to query the port" << port_num;

  mtu_s = get_env_var("RDMA_MTU");

  if (!mtu_s.empty()) {
    mtu_i = stoi(mtu_s);
    switch (mtu_i) {
      case 256:
        mtu = IBV_MTU_256;
        break;
      case 512:
        mtu = IBV_MTU_512;
        break;
      case 1024:
        mtu = IBV_MTU_1024;
        break;
      case 2048:
        mtu = IBV_MTU_2048;
        break;
      case 4096:
        mtu = IBV_MTU_4096;
        break;
      default:
        CHECK(0) << "Error: MTU input value must be one of the following: 256, "
                    "512, 1024, 2048, 4096. MTU "
                 << mtu << " is invalid\n";
        break;
    }
    CHECK(mtu < port_attr.active_mtu)
        << "MTU configuration for the QPs is larger than active MTU";
  } else {
    mtu = port_attr.active_mtu;
  }
  return mtu;
}

RdmaParams params_init(ibv_context* context) {
  RdmaParams params;

  params.port_num = set_port(context);
  params.sgid_index = set_gid(params.port_num, context);
  params.pkey_index = (uint8_t)set_param(PKEY_DEFAULT, "RDMA_PKEY");
  params.queue_depth = set_param(QUEUE_DEPTH_DEFAULT, "RDMA_QUEUE_DEPTH");
  params.timeout = (uint8_t)set_param(TIMEOUT_DEFAULT, "RDMA_TIMEOUT");
  params.retry_cnt = (uint8_t)set_param(RETRY_CNT_DEFAULT, "RDMA_RETRY_CNT");
  params.sl = (uint8_t)set_param(SL_DEFAULT, "RDMA_SL");
  CHECK(params.sl <= 7) << "SL value is " << (int)params.sl
                        << ". Valid values are 0-7.";
  params.mtu = set_mtu(params.port_num, context);
  params.traffic_class = set_param(TRAFFIC_CLASS, "RDMA_TRAFFIC_CLASS");
  return params;
}

ibv_pd* alloc_protection_domain(ibv_context* context) {
  ibv_pd* pd = ibv_alloc_pd(context);
  CHECK(pd) << "Failed to allocate protection domain";
  return pd;
}

RdmaAdapter::RdmaAdapter(const WorkerEnv* worker_env)
    : context_(open_device(set_device())),
      params_(params_init(context_)),
      pd_(alloc_protection_domain(context_)),
      worker_env_(worker_env) {
  event_channel_ = ibv_create_comp_channel(context_);
  CHECK(event_channel_) << "Failed to create completion channel";
  cq_ = ibv_create_cq(context_, MAX_CONCURRENT_WRITES * 2, NULL, event_channel_,
                      0);
  CHECK(cq_) << "Failed to create completion queue";
  CHECK(!ibv_req_notify_cq(cq_, 0)) << "Failed to request CQ notification";
}

RdmaAdapter::~RdmaAdapter() {
  polling_thread_.reset();
  CHECK(!ibv_destroy_cq(cq_)) << "Failed to destroy CQ";
  CHECK(!ibv_destroy_comp_channel(event_channel_))
      << "Failed to destroy channel";
  CHECK(!ibv_dealloc_pd(pd_)) << "Failed to deallocate PD";
  CHECK(!ibv_close_device(context_)) << "Failed to release context";
}

void RdmaAdapter::StartPolling() {
  polling_thread_.reset(Env::Default()->StartThread(
      ThreadOptions(), "RdmaAdapterCQThread", [this] { Process_CQ(); }));
  VLOG(2) << "Start RdmaAdapter: " << name();
}

string RdmaAdapter::name() const { return string(context_->device->name); }

// Function to process incoming messages
// There are two types of messages:
// 1. IBV_WC_RECV_RDMA_WITH_IMM (receive)
// 2. IBV_WC_RDMA_WRITE (send))
void RdmaAdapter::Process_CQ() {
  while (true) {
    ibv_cq* cq;
    void* cq_context;
    CHECK(!ibv_get_cq_event(event_channel_, &cq, &cq_context));
    CHECK(cq == cq_);
    ibv_ack_cq_events(cq, 1);
    CHECK(!ibv_req_notify_cq(cq_, 0));

    int ne =
        ibv_poll_cq(cq_, MAX_CONCURRENT_WRITES * 2, static_cast<ibv_wc*>(wc_));
    CHECK_GE(ne, 0);
    for (int i = 0; i < ne; ++i) {
      CHECK(wc_[i].status == IBV_WC_SUCCESS)
          << "Failed status \n" << ibv_wc_status_str(wc_[i].status) << " "
          << wc_[i].status << " " << static_cast<int>(wc_[i].wr_id) << " "
          << wc_[i].vendor_err;
      if (wc_[i].opcode == IBV_WC_RECV_RDMA_WITH_IMM) {
        RdmaChannel* rc = reinterpret_cast<RdmaChannel*>(wc_[i].wr_id);
        // put back a recv wr.
        rc->Recv();
        // imm_data is the index of RX buffer in the buffer table.
        uint32_t imm_data = wc_[i].imm_data;
        RdmaMessageBuffer* rb;
        RdmaMessage rm;

        if (imm_data == RDMA_IMM_DATA_ACK) {
          // receive an ack to a message
          rb = rc->tx_message_buffer_;
          rb->SetBufferStatus(remote, idle);
          rb->SendNextItem();
          continue;
        }

        if (imm_data <= RDMA_IMM_MAX_REQUEST_ID) {
          // receive a tensor RDMA write
          uint32_t request_index = imm_data;
          RdmaTensorRequest* request = rc->GetTensorRequest(request_index);
          request->RecvTensorContent();
          continue;
        }

        // receive a control message
        rb = rc->rx_message_buffer_;
        RdmaMessage::ParseMessage(rm, rb->buffer_);
        RdmaMessageBuffer::SendAck(rc);
        RDMA_LOG(1) << "Step 0x" << std::hex << rm.step_id_ << std::dec
                    << ": Received " << MessageTypeToString(rm.type_) << " "
                    << "#" << rm.request_index_ << ": " << rm.name_;

        if (rm.type_ == RDMA_MESSAGE_TENSOR_REQUEST) {
          RdmaTensorResponse* response = rc->AddTensorResponse(rm);
          response->Start();
        } else if (rm.type_ == RDMA_MESSAGE_META_DATA_UPDATE) {
          RdmaTensorRequest* request = rc->GetTensorRequest(rm.request_index_);
          request->RecvTensorMetaData(rm.data_type_, rm.tensor_shape_,
                                      rm.is_dead_, rm.tensor_bytes_);
#ifdef RDMA_DATA_VALIDATION
          request->RecvTensorChecksum(rm.checksum_);
#endif
        } else if (rm.type_ == RDMA_MESSAGE_TENSOR_RE_REQUEST) {
          RdmaTensorResponse* response = rc->UpdateTensorResponse(rm);
          response->Resume();
        } else if (rm.type_ == RDMA_MESSAGE_ERROR_STATUS) {
          RdmaTensorRequest* request = rc->GetTensorRequest(rm.request_index_);
          request->RecvErrorStatus(rm.status_);
        }
      } else if (wc_[i].opcode == IBV_WC_RDMA_WRITE) {
        RdmaWriteID* wr_id = reinterpret_cast<RdmaWriteID*>(wc_[i].wr_id);
        RDMA_LOG(2) << "Write complete of type " << wr_id->write_type;
        switch (wr_id->write_type) {
          case RDMA_WRITE_ID_ACK:
            break;
          case RDMA_WRITE_ID_MESSAGE: {
            RdmaMessageBuffer* rb =
                reinterpret_cast<RdmaMessageBuffer*>(wr_id->write_context);
            rb->SetBufferStatus(local, idle);
            rb->SendNextItem();
            break;
          }
          case RDMA_WRITE_ID_TENSOR_WRITE: {
            RdmaTensorResponse* response =
                reinterpret_cast<RdmaTensorResponse*>(wr_id->write_context);
            response->Destroy();
          }
        }
        delete wr_id;
      }
    }
  }
}

int RdmaChannel::PingPostRecv() {
  struct ibv_recv_wr wr, *bad_wr;
  memset(&wr, 0, sizeof(wr));
  wr.sg_list = &ping_sge_list_;
  wr.num_sge = 1;
  wr.wr_id = kPingRecvWrid;

  return ibv_post_recv(qp_, &wr, &bad_wr);
}

int RdmaChannel::PingPostSend() {
  struct ibv_send_wr wr, *bad_wr;
  memset(&wr, 0, sizeof(wr));
  wr.wr_id = (uint64_t) this;
  wr.sg_list = &ping_sge_list_;
  wr.num_sge = 1;
  wr.opcode = IBV_WR_SEND;
  wr.send_flags = IBV_SEND_SIGNALED;

  return ibv_post_send(qp_, &wr, &bad_wr);
}

RdmaChannel::RdmaChannel(const RdmaAdapter* adapter, const string local_name,
                         const string remote_name)
    : adapter_(adapter),
      local_name_(local_name),
      remote_name_(remote_name),
      request_serial_(0) {
  struct ibv_sge list;

  mr_ = ibv_reg_mr(adapter_->pd_, ping_buff_, kPingBuffSize,
                   IBV_ACCESS_LOCAL_WRITE);
  CHECK(mr_) << "Failed to register memory region";

  memset(&list, 0, sizeof(list));
  list.addr = (uintptr_t)ping_buff_;
  list.length = kPingBuffSize;
  list.lkey = mr_->lkey;

  ping_sge_list_ = list;
  // Create queue pair
  {
    struct ibv_qp_init_attr attr;
    memset(&attr, 0, sizeof(ibv_qp_init_attr));
    attr.send_cq = adapter_->cq_;
    attr.recv_cq = adapter_->cq_;
    attr.cap.max_send_wr = adapter_->params_.queue_depth;
    attr.cap.max_recv_wr = adapter_->params_.queue_depth;
    attr.cap.max_send_sge = 1;
    attr.cap.max_recv_sge = 1;
    attr.qp_type = IBV_QPT_RC;

    qp_ = ibv_create_qp(adapter_->pd_, &attr);
    CHECK(qp_) << "Failed to create queue pair";
  }

  // Init queue pair
  {
    struct ibv_qp_attr attr;
    memset(&attr, 0, sizeof(ibv_qp_attr));
    attr.qp_state = IBV_QPS_INIT;
    attr.pkey_index = adapter_->params_.pkey_index;
    attr.port_num = adapter_->params_.port_num;
    attr.qp_access_flags = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;

    int mask =
        IBV_QP_STATE | IBV_QP_PKEY_INDEX | IBV_QP_PORT | IBV_QP_ACCESS_FLAGS;
    CHECK(!ibv_modify_qp(qp_, &attr, mask)) << "Failed to set QP to INIT";
  }

  // Local address
  {
    struct ibv_port_attr attr;
    CHECK(
        !ibv_query_port(adapter_->context_, adapter_->params_.port_num, &attr))
        << "Query port";
    self_.lid = attr.lid;
    self_.qpn = qp_->qp_num;
    self_.psn = static_cast<uint32_t>(random::New64()) & 0xffffff;
    union ibv_gid gid;
    CHECK(!ibv_query_gid(adapter_->context_, adapter_->params_.port_num,
                         adapter_->params_.sgid_index, &gid))
        << "Query gid";
    self_.snp = gid.global.subnet_prefix;
    self_.iid = gid.global.interface_id;
  }

  // create message and ack buffers, then initialize the tables.
  {
    const string buffer_names[] = {"tx_message_buffer", "rx_message_buffer"};
    tx_message_buffer_ = new RdmaMessageBuffer(this, buffer_names[0]);
    rx_message_buffer_ = new RdmaMessageBuffer(this, buffer_names[1]);
    message_buffers_.reserve(kNumMessageBuffers);
    message_buffers_.push_back(tx_message_buffer_);
    message_buffers_.push_back(rx_message_buffer_);
    // create buffer on host
    tx_message_buffer_->CreateCPUBuffer(RdmaMessage::kRdmaMessageBufferSize);
    rx_message_buffer_->CreateCPUBuffer(RdmaMessage::kRdmaMessageBufferSize);
  }
  CHECK(PingPostRecv() == 0) << "Couldn't post receive from " << remote_name_
                             << " with error " << std::strerror(errno);
}

RdmaChannel::~RdmaChannel() {
  ibv_dereg_mr(mr_);
  CHECK(!ibv_destroy_qp(qp_)) << "Failed to destroy QP";
  delete tx_message_buffer_;
  delete rx_message_buffer_;
}

void RdmaChannel::SetRemoteAddress(const RdmaAddress& ra, bool override) {
  mutex_lock lock{mu_};
  if ((override) || (!remote_set_)) {
    remote_.lid = ra.lid;
    remote_.qpn = ra.qpn;
    remote_.psn = ra.psn;
    remote_.snp = ra.snp;
    remote_.iid = ra.iid;
    remote_set_ = true;
  } else {
    CHECK(remote_.lid == ra.lid);
    CHECK(remote_.qpn == ra.qpn);
    CHECK(remote_.psn == ra.psn);
    CHECK(remote_.snp == ra.snp);
    CHECK(remote_.iid == ra.iid);
  }
}

// Adding tokens to the completion queue
// Tokens are needed to process future messages.
void RdmaChannel::Recv() {
  struct ibv_recv_wr wr;
  memset(&wr, 0, sizeof(wr));
  wr.wr_id = (uint64_t) this;
  struct ibv_recv_wr* bad_wr;
  CHECK(!ibv_post_recv(qp_, &wr, &bad_wr)) << "Failed to post recv";
}

RdmaTensorRequest* RdmaChannel::InsertTensorRequest(
    const string& key, int64 step_id, Device* dst_dev,
    const Rendezvous::Args recv_args,
    const RdmaTensorRequest::RecvDoneCallback& done) {
  mutex_lock lock{ct_mu_};
  uint32_t request_index = request_serial_++;
  if (request_serial_ > RDMA_IMM_MAX_REQUEST_ID) {
    request_serial_ = 0;
  }
  RdmaTensorRequest request(request_index, key, step_id, this, dst_dev,
                            recv_args, done);
  auto it = request_table_.emplace(request_index, request);
  return &it.first->second;
}

void RdmaChannel::RemoveTensorRequest(uint32_t request_index) {
  mutex_lock lock{ct_mu_};
  request_table_.erase(request_index);
}

RdmaTensorRequest* RdmaChannel::GetTensorRequest(uint32_t request_index) {
  mutex_lock lock{ct_mu_};
  RequestTable::iterator iter = request_table_.find(request_index);
  CHECK(iter != request_table_.end());
  return &iter->second;
}

void RdmaChannel::Connect() {
  {
    mutex_lock lock{mu_};
    CHECK(remote_set_) << "remote channel is not set";
  }
  Connect(remote_);
}

// Setup channel to a remote node
// Args:
//   remoteAddr: the rdma address of a remote channel.
// Returns:
//   None
void RdmaChannel::Connect(const RdmaAddress& remoteAddr) {
  mutex_lock lock{mu_};
  if (!connected_) {
    struct ibv_qp_attr attr;
    memset(&attr, 0, sizeof(ibv_qp_attr));
    attr.qp_state = IBV_QPS_RTR;

    // This assumes both QP's ports are configured with the same MTU
    attr.path_mtu = adapter_->params_.mtu;
    attr.dest_qp_num = remoteAddr.qpn;
    attr.rq_psn = remoteAddr.psn;
    attr.max_dest_rd_atomic = 1;
    attr.min_rnr_timer = 12;
    attr.ah_attr.is_global = 1;
    attr.ah_attr.grh.dgid.global.subnet_prefix = remoteAddr.snp;
    attr.ah_attr.grh.dgid.global.interface_id = remoteAddr.iid;
    attr.ah_attr.grh.flow_label = 0;
    attr.ah_attr.grh.hop_limit = 255;
    attr.ah_attr.dlid = remoteAddr.lid;
    attr.ah_attr.sl = adapter_->params_.sl;
    attr.ah_attr.src_path_bits = 0;
    attr.ah_attr.port_num = adapter_->params_.port_num;
    attr.ah_attr.grh.sgid_index = adapter_->params_.sgid_index;
    attr.ah_attr.grh.traffic_class = adapter_->params_.traffic_class;

    int r;
    CHECK(!(r = ibv_modify_qp(qp_, &attr, IBV_QP_STATE | IBV_QP_AV |
                                              IBV_QP_PATH_MTU |
                                              IBV_QP_DEST_QPN | IBV_QP_RQ_PSN |
                                              IBV_QP_MAX_DEST_RD_ATOMIC |
                                              IBV_QP_MIN_RNR_TIMER)))
        << "QP to Ready to Receive " << r;

    memset(&attr, 0, sizeof(ibv_qp_attr));
    attr.qp_state = IBV_QPS_RTS;
    attr.sq_psn = self_.psn;
    attr.timeout = adapter_->params_.timeout;
    attr.retry_cnt = adapter_->params_.retry_cnt;
    attr.rnr_retry = 7; /* infinite */
    attr.max_rd_atomic = 1;

    CHECK(!(r = ibv_modify_qp(qp_, &attr, IBV_QP_STATE | IBV_QP_TIMEOUT |
                                              IBV_QP_RETRY_CNT |
                                              IBV_QP_RNR_RETRY | IBV_QP_SQ_PSN |
                                              IBV_QP_MAX_QP_RD_ATOMIC)))
        << "QP to Ready to Send " << r;

    connected_ = true;
  } else {
    RDMA_LOG(2) << "channel already connected";
  }
}

RdmaMessageBuffer::RdmaMessageBuffer(RdmaChannel* channel, string name)
    : channel_(channel), name_(name) {}

RdmaMessageBuffer::~RdmaMessageBuffer() {
  CHECK(!ibv_dereg_mr(self_)) << "ibv_dereg_mr failed";
  FreeBuffer();
}

void RdmaMessageBuffer::FreeBuffer() {
  if ((buffer_ != nullptr) && buffer_on_host_) {
    free(buffer_);
  }
}

// Allocate CPU memory for the Rdma buffer
// Args:
//   size: to-be-allocated memory size
//   lock: whether or not mutex_lock the process to protect concurrency.
// Returns:
//   None
void RdmaMessageBuffer::CreateCPUBuffer(size_t size, bool lock) {
  CHECK(size > 0);
  if (lock) {
    mu_.lock();
  }
  if (local_status_ != none) {
    // delete existing buffer
    CHECK(!ibv_dereg_mr(self_)) << "ibv_dereg_mr failed";
    FreeBuffer();
  }
  size_ = size;
  buffer_ = malloc(size_);
  self_ = ibv_reg_mr(channel_->adapter_->pd_, buffer_, size_,
                     IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
  CHECK(self_) << "Failed to register memory region";
  buffer_on_host_ = true;
  local_status_ = idle;
  if (lock) {
    mu_.unlock();
  }
}

// Set address of remote memory region
// Args:
//   rmr: address of remote memory region
//   override: whether override existing information
// Returns:
//   None
void RdmaMessageBuffer::SetRemoteMR(RemoteMR rmr, bool override) {
  mutex_lock lock{mu_};
  if ((override) || (remote_status_ == none)) {
    remote_.remote_addr = rmr.remote_addr;
    remote_.rkey = rmr.rkey;
    remote_status_ = idle;
  } else {
    CHECK(remote_.remote_addr == rmr.remote_addr);
    CHECK(remote_.rkey == rmr.rkey);
  }
}

// Put a task in the buffer's job queue
void RdmaMessageBuffer::EnqueueItem(string item) {
  mutex_lock lock{mu_};
  queue_.push(item);
}

// Rdma-Write the content of the buffer
void RdmaMessageBuffer::Write(uint32_t imm_data, size_t buffer_size) {
  Write(channel_, imm_data, buffer_size, (uint64_t)buffer_, self_->lkey,
        remote_.remote_addr, remote_.rkey, RDMA_WRITE_ID_MESSAGE, this);
}

// Generalized Write method
void RdmaMessageBuffer::Write(const RdmaChannel* channel, uint32_t imm_data,
                              size_t buffer_size, uint64_t src_addr,
                              uint32_t lkey, uint64_t remote_addr,
                              uint32_t rkey, RdmaWriteIDType write_type,
                              void* write_context) {
  struct ibv_sge list;
  list.addr = src_addr;
  list.length = buffer_size;
  list.lkey = lkey;

  struct ibv_send_wr wr;
  memset(&wr, 0, sizeof(wr));
  wr.wr_id = (uint64_t) new RdmaWriteID(write_type, write_context);
  wr.sg_list = &list;
  wr.num_sge = 1;
  wr.opcode = IBV_WR_RDMA_WRITE_WITH_IMM;
  wr.send_flags = IBV_SEND_SIGNALED;
  wr.imm_data = imm_data;
  wr.wr.rdma.remote_addr = remote_addr;
  wr.wr.rdma.rkey = rkey;

  struct ibv_send_wr* bad_wr;
  CHECK(!ibv_post_send(channel->qp_, &wr, &bad_wr)) << "Failed to post send";
}

// Send the next ack from the buffer's job queue.
void RdmaMessageBuffer::SendAck(const RdmaChannel* channel) {
  Write(channel, RDMA_IMM_DATA_ACK, 0, 0, 0, 0, 0, RDMA_WRITE_ID_ACK, nullptr);
}

// Send the next message from the buffer's job queue.
void RdmaMessageBuffer::SendNextItem() {
  uint32_t imm_data = RDMA_IMM_DATA_MESSAGE;
  mu_.lock();
  if (!queue_.empty() && (local_status_ == idle) && (remote_status_ == idle)) {
    local_status_ = busy;
    remote_status_ = busy;
    string message = queue_.front();
    queue_.pop();
    // local/remote_status_ won't be set back to idle
    // unitl Write() is successful
    mu_.unlock();
    memcpy(buffer_, message.data(), message.size());
    Write(imm_data, message.size());
  } else {
    mu_.unlock();
  }
}

#if GOOGLE_CUDA
static void CountCopies(const std::string& key, void* src_addr, void* dst_addr,
                        size_t tensor_bytes, bool is_gpu_to_cpu) {
#ifdef RDMA_COUNT_COPIES
  static uint64_t numGPUToCPUCopies = 0;
  static uint64_t numGPUToCPUCopiedBytes = 0;
  static uint64_t numCPUToGPUCopies = 0;
  static uint64_t numCPUToGPUCopiedBytes = 0;
  static uint64_t numTotalCopies = 0;

  if (is_gpu_to_cpu) {
    ++numGPUToCPUCopies;
    numGPUToCPUCopiedBytes += tensor_bytes;
  } else {
    ++numCPUToGPUCopies;
    numCPUToGPUCopiedBytes += tensor_bytes;
  }
  if ((++numTotalCopies % 0x400) == 0) {
    RDMA_LOG(0) << "Tensor copies:"
                << " GPU to CPU: " << numGPUToCPUCopies
                << " (" << numGPUToCPUCopiedBytes << " Bytes)"
                << " CPU to GPU: " << numCPUToGPUCopies
                << " (" << numCPUToGPUCopiedBytes << " Bytes)";
  }
  RDMA_LOG(2) << "Copying tensor " << key
              << " From: " << src_addr << " To: " << dst_addr;
#endif // RDMA_COUNT_COPIES
}
#endif // GOOGLE_CUDA

#ifdef RDMA_DATA_VALIDATION
static uint64_t Checksum(Device* device, const DeviceContext* device_context,
                         const Tensor& in) {
  uint64 checksum = 0;
  if (DataTypeCanUseMemcpy(in.dtype())) {
#if GOOGLE_CUDA
    if (in.TotalBytes() == 0) {
      return 0;
    }
    checksum = (device_context != nullptr)
                   ? GPUUtil::Checksum(device, device_context, in)
                   : GPUUtil::Checksum(in);
#endif // GOOGLE_CUDA
  } else {
    string s = in.SummarizeValue(999999);
    checksum = Hash64(s.c_str(), s.size(), 0);
  }
  return checksum;
}

static void ValidateChecksum(uint64_t expected, uint64_t actual,
                             const Tensor& in, uint32_t request_index,
                             const std::string& key, const std::string& msg) {
  RDMA_LOG(2) << "Request #" << request_index << ": " << key
              << ": Checksum: " << std::hex << " Expected = 0x" << expected
              << ". Actual = 0x" << actual << ".";

  if (expected != actual) {
    // Checksum failed. There is one case where this is allowed - if the
    // tensor is an AssignAdd of the global step. Since the data-validation
    // always postpones the Tensor response in order to send a checksum message,
    // it is possible that the global-step was updated while the response was
    // still in queue.
    if ((in.TotalBytes() == 8) && (in.dtype() == DT_INT64)) {
      int64_t prev_val = *(int64_t*)DMAHelper::base(&in) - 1;
      actual = Hash64((const char*)&prev_val, 8, 0);
    }
    if (expected != actual) {
      LOG(FATAL) << "[" << msg << "]: Checksum validation failed for request #"
                 << request_index << ": " << key << std::hex << " "
                 << DataTypeString(in.dtype()) << " "
                 << in.shape().DebugString() << " (0x" << in.TotalBytes()
                 << " bytes): "
                 << " Expected 0x" << expected << ". Got 0x" << actual << ".";
    }
  }
}
#endif // RDMA_DATA_VALIDATION

#if GOOGLE_CUDA
// Sync the 'done' operation on the GPU stream, but without all the data
// copying.
static void StreamGPUOp(Device* gpu_device,
                        const DeviceContext* device_context,
                        StatusCallback done) {
  Tensor dummy1, dummy2;
  GPUUtil::CopyGPUTensorToCPU(
      gpu_device, device_context, &dummy1, &dummy2, done);
}
#endif  // GOOGLE_CUDA

RdmaTensorResponse* RdmaChannel::AddTensorResponse(const RdmaMessage& rm) {
  mutex_lock lock{mu_};
  auto it =
      responses_table_.emplace(rm.request_index_, RdmaTensorResponse(this, rm));
  CHECK(it.second) << "Response with the ID " << rm.request_index_
                   << " already exists.";
  return &it.first->second;
}

RdmaTensorResponse* RdmaChannel::UpdateTensorResponse(const RdmaMessage& rm) {
  mutex_lock lock{mu_};
  auto it = responses_table_.find(rm.request_index_);
  CHECK(it != responses_table_.end()) << "No response found.";
  RdmaTensorResponse* response = &it->second;
  response->Update(rm);
  return response;
}

void RdmaChannel::RemoveTensorResponse(uint32_t request_index) {
  mutex_lock lock{mu_};
  responses_table_.erase(request_index);
}

void RdmaTensorResponse::Start() {
  Rendezvous::ParsedKey parsed;
  Status s = Rendezvous::ParseKey(rm_.name_, &parsed);
  if (!s.ok()) {
    SendErrorStatus(s);
    return;
  }

  channel_->adapter_->worker_env_->rendezvous_mgr->RecvLocalAsync(
      rm_.step_id_, parsed,
      [this, parsed](const Status& status, const Rendezvous::Args& send_args,
                     const Rendezvous::Args& recv_args, const Tensor& in,
                     bool is_dead) {
        CHECK(status.ok()) << "RecvLocalAsync was not ok."
                           << " error message: " << status.error_message();
        RecvHandler(parsed, send_args, recv_args, in, is_dead);
      });
}

void RdmaTensorResponse::Resume() { SendContent(*tensor_, *proto_, is_dead_); }

// Helper for RecvTensor. Validates "key" and returns the source
// device in "*src_dev".
Status RdmaTensorResponse::PrepareRecvTensor(
    const Rendezvous::ParsedKey& parsed, Device** src_dev) {
  // Figures out which device the tensor is hosted on.
  string local_name = DeviceNameUtils::LocalName(parsed.src_device);
  TF_RETURN_IF_ERROR(channel_->adapter_->worker_env_->device_mgr->LookupDevice(
      local_name, src_dev));

  // Does the device have the right incarnation number we expect?
  if ((*src_dev)->attributes().incarnation() != parsed.src_incarnation) {
    return errors::Aborted(
        "RecvTensor expects a different device incarnation: ",
        parsed.src_incarnation, " vs. ", (*src_dev)->attributes().incarnation(),
        ". Your worker job was probably restarted. Check your "
        "worker job for the reason why it was restarted.");
  }

  return Status::OK();
}

void RdmaTensorResponse::RecvHandler(Rendezvous::ParsedKey parsed,
                                     const Rendezvous::Args& send_args,
                                     const Rendezvous::Args& recv_args,
                                     const Tensor& in, bool is_dead) {
  Status s = PrepareRecvTensor(parsed, &src_dev_);
  if (!s.ok()) {
    SendErrorStatus(s);
    return;
  }

  meta_data_changed_ = TensorMetaDataChanged(in, is_dead);
#ifdef RDMA_DATA_VALIDATION
  // Always send a meta data message with the source checksum
  meta_data_changed_ = rm_.type_ == RDMA_MESSAGE_TENSOR_REQUEST;
  checksum_ = Checksum(src_dev_, send_args.device_context, in);
#endif
  bool can_memcpy = DataTypeCanUseMemcpy(in.dtype());
  // string tensor needs to be serialized
  Tensor copy;
  TensorProto proto;
  const bool on_host = send_args.alloc_attrs.on_host();
  if (src_dev_->tensorflow_gpu_device_info() && !on_host) {
#if GOOGLE_CUDA
    DeviceContext* send_dev_context = send_args.device_context;
    CHECK(send_dev_context)
        << "send dev name: " << src_dev_->name()
        << " gpu_info: " << src_dev_->tensorflow_gpu_device_info();

    if (can_memcpy) {
      // If the tensor is located on a GDR compatible GPU, there is no need to
      // copy it. We can send directly from the source, just need to make sure
      // we are in sync with the GPU stream.
      // If the tensor's meta-data changed however, we will need to clone it,
      // so anyway we'll have to copy it from GPU to CPU first. If at some
      // point in time Clone() is changed to only save a shallow copy, we can
      // skip the copy here as well.
      if ((in.TotalBytes() > 0) && !meta_data_changed_ &&
          (RdmaMemoryMgr::Singleton().FindMemoryRegion(
              (void*)DMAHelper::base(&in), in.TotalBytes()) != nullptr)) {
        StreamGPUOp(src_dev_, send_dev_context,
                    [this, in, proto, is_dead](const Status& s) {
                      Send(in, proto, is_dead, s);
                    });
        return;
      }

      // The tensor must be copied from GPU to CPU, because either:
      // 1. The tensor is located on a non GDR compatible GPU.
      // 2. The tensor's meta-data has changed.
      Allocator* alloc = ProcessState::singleton()->GetCUDAHostAllocator(0);
      copy = Tensor(alloc, in.dtype(), in.shape());
      CountCopies(rm_.name_, (void*)DMAHelper::base(&in),
                  (void*)DMAHelper::base(&copy), in.TotalBytes(), true);
      GPUUtil::CopyGPUTensorToCPU(
          src_dev_, send_dev_context, &in, &copy,
          [this, copy, proto, is_dead](const Status& s) {
            Send(copy, proto, is_dead, s);
          });
    } else {
      GPUUtil::SetProtoFromGPU(
          in, src_dev_, send_args.device_context, &proto, is_dead,
          [this, in, proto, is_dead](const Status& s) mutable {
            Send(in, proto, is_dead, s);
          });
    }
#else
    SendErrorStatus(errors::Internal("No GPU device in process"));
#endif  // GOOGLE_CUDA
  } else {
    // tensor is in CPU memory.
    if (!can_memcpy) {
      in.AsProtoTensorContent(&proto);
    }
    Send(in, proto, is_dead, Status::OK());
  }
}

void RdmaTensorResponse::Send(const Tensor& in, const TensorProto& proto,
                              bool is_dead, const Status& status) {
  if (!status.ok()) {
    SendErrorStatus(status);
    return;
  }
  bool can_memcpy = DataTypeCanUseMemcpy(in.dtype());
  bool proto_size_changed = (!can_memcpy) &&
                            (proto.ByteSize() != rm_.tensor_bytes_);
  if (meta_data_changed_ || proto_size_changed) {
    Clone(in, proto, is_dead);
    SendMetaData(in, proto, is_dead);
  } else {
    SendContent(in, proto, is_dead);
  }
}

bool RdmaTensorResponse::TensorMetaDataChanged(const Tensor& in, bool is_dead) {
  return (rm_.data_type_ != in.dtype()) || (rm_.tensor_shape_ != in.shape()) ||
         (rm_.is_dead_ != is_dead);
}

void RdmaTensorResponse::Clone(const Tensor& in, const TensorProto& proto,
                               bool is_dead) {
  // Clone the data to be sent later. For simplicity, we clone the tensor's
  // data even if it is already a copy. Performance is less of a concern here
  // since the meta-data hardly ever changes. The reason we create a copy, is
  // that some tensors share their buffer between different step-ids, so the
  // tensor content may change before re-request was completed.
  bool can_memcpy = DataTypeCanUseMemcpy(in.dtype());
  if (can_memcpy && (in.TotalBytes() > 0)) {
    AllocatorAttributes host_alloc_attrs;
    host_alloc_attrs.set_nic_compatible(true);
    host_alloc_attrs.set_on_host(true);
    Allocator* allocator = src_dev_->GetAllocator(host_alloc_attrs);
    tensor_ = new Tensor(allocator, in.dtype(), in.shape());
    memcpy(DMAHelper::base(tensor_), DMAHelper::base(&in), in.TotalBytes());
  } else {
    tensor_ = new Tensor(in.dtype(), in.shape());
  }
  if (!can_memcpy) {
    proto_ = new TensorProto(proto);
  }
  is_dead_ = is_dead;
}

void RdmaTensorResponse::SendMetaData(const Tensor& in,
                                      const TensorProto& proto, bool is_dead) {
  RDMA_LOG(2) << "Request #" << rm_.request_index_
              << ": Meta data changed: " << rm_.name_;
  bool can_memcpy = DataTypeCanUseMemcpy(in.dtype());
  size_t tensor_bytes = (can_memcpy) ? in.TotalBytes() : proto.ByteSize();

  // Send meta-data update:
  RdmaMessage rm;
  rm.type_ = RDMA_MESSAGE_META_DATA_UPDATE;
  rm.name_size_ = rm_.name_.size();
  rm.name_ = rm_.name_;
  rm.tensor_shape_ = in.shape();
  rm.data_type_ = in.dtype();
  rm.step_id_ = rm_.step_id_;
  rm.is_dead_ = is_dead;
  rm.tensor_bytes_ = tensor_bytes;
  rm.request_index_ = rm_.request_index_;
#ifdef RDMA_DATA_VALIDATION
  rm.checksum_ = checksum_;
#endif
  RDMA_LOG(1) << "Step 0x" << std::hex << rm.step_id_ << std::dec
              << ": Sending RDMA_MESSAGE_META_DATA_UPDATE #"
              << rm.request_index_ << ": " << rm.name_
              << " (shape = " << rm.tensor_shape_.DebugString() << "."
              << " data-type = " << DataTypeString(rm.data_type_) << "."
              << " is-dead = " << rm.is_dead_ << ")";

  string message = RdmaMessage::CreateMessage(rm);
  channel_->tx_message_buffer_->EnqueueItem(message);
  channel_->tx_message_buffer_->SendNextItem();
}

void RdmaTensorResponse::SendContent(const Tensor& in, const TensorProto& proto,
                                     bool is_dead) {
  bool can_memcpy = DataTypeCanUseMemcpy(in.dtype());
  size_t tensor_bytes = (can_memcpy) ? in.TotalBytes() : proto.ByteSize();
  uint32_t imm_data = rm_.request_index_;
  if (!is_dead) {
    if (can_memcpy) {
      src_buffer_ = const_cast<TensorBuffer*>(DMAHelper::buffer(&in));
      if (src_buffer_ != nullptr) {
        src_buffer_->Ref();  // Keep buffer alive until write is complete
        src_addr_ = src_buffer_->data();
        mr_ = RdmaMemoryMgr::Singleton().FindMemoryRegion(src_addr_,
                                                          tensor_bytes);
      }
    } else {
      RDMA_LOG(2) << "Encoding proto: " << rm_.name_
                  << " (Size: " << tensor_bytes << ") " << in.DebugString();
      src_addr_ = malloc(tensor_bytes);
      mr_ = ibv_reg_mr(channel_->adapter_->pd_, src_addr_, tensor_bytes,
                       IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
      proto.SerializeToArray(src_addr_, tensor_bytes);
    }
  } else {
    tensor_bytes = 0;
  }

  uint32_t lkey = (mr_ == nullptr) ? 0 : mr_->lkey;
  RDMA_LOG(1) << "Step 0x" << std::hex << rm_.step_id_ << std::dec
              << ": Sending tensor content #" << rm_.request_index_ << " from "
              << std::hex << src_addr_ << " (0x" << lkey << ")"
              << " to " << rm_.remote_addr_ << " (0x" << rm_.rkey_
              << "): " << rm_.name_ << " (size: 0x" << std::hex << tensor_bytes
              << ")";

  RdmaMessageBuffer::Write(channel_, imm_data, tensor_bytes,
                           (uint64_t)src_addr_, lkey, rm_.remote_addr_,
                           rm_.rkey_, RDMA_WRITE_ID_TENSOR_WRITE, this);
}

void RdmaTensorResponse::SendErrorStatus(const Status& status) {
  RdmaMessage rm;
  rm.type_ = RDMA_MESSAGE_ERROR_STATUS;
  rm.name_size_ = rm_.name_.size();
  rm.name_ = rm_.name_;
  rm.step_id_ = rm_.step_id_;
  rm.request_index_ = rm_.request_index_;
  rm.status_ = status;
  LOG(ERROR) << "Step 0x" << std::hex << rm.step_id_ << std::dec
             << ": Sending RDMA_MESSAGE_ERROR_STATUS #"
             << rm.request_index_ << ": " << rm.name_
             << ". Status: " << status.ToString();

  string message = RdmaMessage::CreateMessage(rm);
  channel_->tx_message_buffer_->EnqueueItem(message);
  channel_->tx_message_buffer_->SendNextItem();

  // Destroy the response.
  Destroy();
}

void RdmaTensorResponse::Destroy() {
  if (src_buffer_ != nullptr) {
    src_buffer_->Unref();
  }
  if (tensor_ != nullptr) {
    delete tensor_;
  }
  if (proto_ != nullptr) {
    ibv_dereg_mr(mr_);
    free(src_addr_);
    delete proto_;
  }
  // Remove response from the pending list:
  channel_->RemoveTensorResponse(rm_.request_index_);
}

// Create a RdmaMessage according to the pre-defined format
// Args:
//   rm: the message structure
// Returns:
//   message in string format
string RdmaMessage::CreateMessage(const RdmaMessage& rm) {
  // Rdma Message format
  // type|name_size|name|step_id|request_index|remote_addr|rkey|is_dead|...
  //   1B|    2B   | 512|  8B   |     8B      |       8B  | 4B |    1B |...
  // ...|data_type|tensor_shape|tensor_bytes|error_status          |
  // ...|   XB    |    XB      |    8B      |size - 4B, proto - XB |
  //
  // ACK:             Imm-type: ACK
  // TENSOR_REQUEST:  Imm-type: MESSAGE
  //                  Fields: type, request_index, name, step_id, remote_addr,
  //                      rkey, is_dead, data_type, tensor_shape, tensor_bytes
  // META_DATA_UPDATE: Imm-type: MESSAGE
  //                  Fields: type, request_index, is_dead, data_type,
  //                      tensor_shape, tensor_bytes
  // TENSOR_RE_REQUST: Imm-type: MESSAGE
  //                  Fields: type, request_index, name, step_id, remote_addr,
  //                      rkey, is_dead, data_type, tensor_shape, tensor_bytes
  // ERROR_STATUS:    Imm-type: MESSAGE
  //                  Fields: type, request_index, name, step_id, error_status
  // Tensor content:  Imm-type: request_index
  size_t message_size = kMessageTotalBytes;
  char message[kMessageTotalBytes + kErrorStatusMaxSize];
  // type
  message[kTypeStartIndex] = static_cast<char>(rm.type_) & 0xff;
  // request index
  memcpy(&message[kRequestIndexStartIndex], &rm.request_index_,
         sizeof(rm.request_index_));
  // name, step_id, remote_addr, rkey
  if ((rm.type_ == RDMA_MESSAGE_TENSOR_REQUEST) ||
      (rm.type_ == RDMA_MESSAGE_TENSOR_RE_REQUEST)) {
    memcpy(&message[kNameSizeStartIndex], &rm.name_size_,
           sizeof(rm.name_size_));
    memcpy(&message[kNameStartIndex], rm.name_.data(), rm.name_.size());
    memcpy(&message[kRemoteAddrStartIndex], &rm.remote_addr_,
           sizeof(rm.remote_addr_));
    memcpy(&message[kRkeyStartIndex], &rm.rkey_, sizeof(rm.rkey_));
    memcpy(&message[kStepIdStartIndex], &rm.step_id_, sizeof(rm.step_id_));
  }
  // is_dead, data_type, tensor_shape, tensor_bytes
  if ((rm.type_ == RDMA_MESSAGE_TENSOR_REQUEST) ||
      (rm.type_ == RDMA_MESSAGE_META_DATA_UPDATE) ||
      (rm.type_ == RDMA_MESSAGE_TENSOR_RE_REQUEST)) {
    memcpy(&message[kIsDeadStartIndex], &rm.is_dead_, sizeof(rm.is_dead_));

    memcpy(&message[kDataTypeStartIndex], &rm.data_type_,
           sizeof(rm.data_type_));
    memcpy(&message[kTensorShapeStartIndex], &rm.tensor_shape_,
           sizeof(rm.tensor_shape_));
    memcpy(&message[kTensorBytesStartIndex], &rm.tensor_bytes_,
           sizeof(rm.tensor_bytes_));
  }
  // checksum
#ifdef RDMA_DATA_VALIDATION
  memcpy(&message[kChecksumStartIndex], &rm.checksum_, sizeof(rm.checksum_));
#endif
  // error status
  if (rm.type_ == RDMA_MESSAGE_ERROR_STATUS) {
    ::grpc::Status gs = ToGrpcStatus(rm.status_);
    ErrorStatusProto gsProto;
    gsProto.set_error_code(gs.error_code());
    gsProto.set_error_message(gs.error_message());
    gsProto.set_error_details(gs.error_details());
    uint32_t gsProtoSize = gsProto.ByteSize();
    if (gsProtoSize + 4 > kErrorStatusMaxSize) {
      LOG(ERROR) << "Error status (" << gsProtoSize + 4 << " bytes) "
                 << "is too big to fit in RDMA message ("
                 << kErrorStatusMaxSize << " bytes). Truncated.";
      gsProtoSize = kErrorStatusMaxSize - 4;
    }
    uint32_t* proto_size = (uint32_t*)&message[kErrorStatusStartIndex];
    *proto_size = gsProtoSize;
    gsProto.SerializeToArray(&message[kErrorStatusStartIndex + 4],
                             gsProtoSize);
    message_size += gsProtoSize + 4;
  }
  return string(message, message_size);
}

// Parse a RdmaMessage according to the pre-defined format
// Args:
//   rm: the message structure where the parsed message will be saved
//   buffer: the place where the raw message is stored
// Returns:
//   None
void RdmaMessage::ParseMessage(RdmaMessage& rm, void* buffer) {
  char* message = static_cast<char*>(buffer);
  // type
  rm.type_ = static_cast<RdmaMessageType>(message[kTypeStartIndex]);
  // request index
  memcpy(&rm.request_index_, &message[kRequestIndexStartIndex],
         sizeof(rm.request_index_));
  // name, step_id, remote_addr, rkey
  if ((rm.type_ == RDMA_MESSAGE_TENSOR_REQUEST) ||
      (rm.type_ == RDMA_MESSAGE_TENSOR_RE_REQUEST)) {
    memcpy(&rm.name_size_, &message[kNameSizeStartIndex],
           sizeof(rm.name_size_));
    rm.name_ = string(&message[kNameStartIndex], rm.name_size_);
    memcpy(&rm.remote_addr_, &message[kRemoteAddrStartIndex],
           sizeof(rm.remote_addr_));
    memcpy(&rm.rkey_, &message[kRkeyStartIndex], sizeof(rm.rkey_));
    memcpy(&rm.step_id_, &message[kStepIdStartIndex], sizeof(rm.step_id_));
  }
  // data_type, tensor_bytes, tensor_shape, is_dead
  if ((rm.type_ == RDMA_MESSAGE_TENSOR_REQUEST) ||
      (rm.type_ == RDMA_MESSAGE_META_DATA_UPDATE) ||
      (rm.type_ == RDMA_MESSAGE_TENSOR_RE_REQUEST)) {
    memcpy(&rm.is_dead_, &message[kIsDeadStartIndex], sizeof(rm.is_dead_));
    memcpy(&rm.data_type_, &message[kDataTypeStartIndex],
           sizeof(rm.data_type_));
    memcpy(&rm.tensor_shape_, &message[kTensorShapeStartIndex],
           sizeof(rm.tensor_shape_));
    memcpy(&rm.tensor_bytes_, &message[kTensorBytesStartIndex],
           sizeof(rm.tensor_bytes_));
  }
  // checksum
#ifdef RDMA_DATA_VALIDATION
  memcpy(&rm.checksum_, &message[kChecksumStartIndex], sizeof(rm.checksum_));
#endif
  // error status
  if (rm.type_ == RDMA_MESSAGE_ERROR_STATUS) {
    ErrorStatusProto gsProto;
    uint32_t gsProtoSize = *(uint32_t*)&message[kErrorStatusStartIndex];
    CHECK(ParseProtoUnlimited(
        &gsProto, &message[kErrorStatusStartIndex + 4], gsProtoSize))
        << "Failed to parse error status proto from message. Aborting.";
    ::grpc::Status gs((::grpc::StatusCode)gsProto.error_code(),
                      gsProto.error_message(), gsProto.error_details());
    rm.status_ = FromGrpcStatus(gs);
  }
}

//*****************************************************************************
// RdmaMemoryMgr
//*****************************************************************************

ibv_mr* RdmaMemoryMgr::FindMemoryRegion(void* addr, size_t length) {
  mutex_lock l(mrs_mu_);
  auto iter = std::upper_bound(mrs_.begin(), mrs_.end(), addr, &Comparator);
  if (iter == std::end(mrs_) || iter->get()->addr > addr) {
    return nullptr;
  } else {
    return iter->get();
  }
}

void RdmaMemoryMgr::InsertMemoryRegion(void* addr, size_t length,
                                       const std::string& allocator_name) {
  if (length == 0) return;
  ibv_mr* mr = ibv_reg_mr(pd_, addr, length,
                          IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
  RDMA_LOG(1) << "Insert memory region 0x" << std::hex << mr->rkey << ". ["
              << addr << "-" << (void*)((uint64_t)addr + length - 1) << "]"
              << " SIZE: 0x" << length << " (" << allocator_name << ").";
  if (mr != nullptr) {
    mutex_lock l(mrs_mu_);
    auto iter = std::upper_bound(mrs_.begin(), mrs_.end(), addr, &Comparator);
    mrs_.insert(iter, {mr, &MRDeleter});
  } else {
    LOG(WARNING) << "Cannot register memory region";
  }
}

void RdmaMemoryMgr::EvictMemoryRegion(void* addr, size_t length) {
  if (length == 0) return;
  mutex_lock l(mrs_mu_);
  auto iter = std::upper_bound(mrs_.begin(), mrs_.end(), addr, &Comparator);
  if (iter != std::end(mrs_) && iter->get()->addr == addr) {
    mrs_.erase(iter);
    RDMA_LOG(1) << "Evict memory region 0x" << std::hex << iter->get()->rkey;

  } else {
    LOG(WARNING) << "Failed to de-register memory region";
  }
}

const TensorMetaData* RdmaMemoryMgr::GetTensorMetaData(
    const std::string& tensor_name) {
  mutex_lock l(tensor_meta_data_mu_);
  auto it = tensors_meta_data_.find(tensor_name);
  if (it == tensors_meta_data_.end()) {
    return nullptr;
  }
  return &it->second;
}

const TensorMetaData* RdmaMemoryMgr::SetTensorMetaData(
    const std::string& tensor_name, DataType dtype, const TensorShape& shape,
    bool is_dead, size_t proto_size) {
  mutex_lock l(tensor_meta_data_mu_);
  TensorMetaData& meta_data = tensors_meta_data_[tensor_name];
  meta_data.data_type_ = dtype;
  meta_data.tensor_shape_ = shape;
  meta_data.proto_size_ = proto_size;
  meta_data.is_dead_ = is_dead;
  return &meta_data;
}

//*****************************************************************************
// RdmaTensorRequest
//*****************************************************************************

RdmaTensorRequest::RdmaTensorRequest(
    uint32_t index, const string& key, int64 step_id, RdmaChannel* channel,
    Device* dst_dev, const Rendezvous::Args recv_args,
    const RdmaTensorRequest::RecvDoneCallback& done)
    : index_(index),
      key_(key),
      step_id_(step_id),
      channel_(channel),
      dst_dev_(dst_dev),
      recv_args_(recv_args),
      meta_data_(RdmaMemoryMgr::Singleton().GetTensorMetaData(key)),
      result_tensor_(nullptr),
      proxy_tensor_(nullptr),
      rdma_addr_(nullptr),
      mr_(nullptr),
      done_(done) {}

RdmaTensorRequest::~RdmaTensorRequest() { DeallocateTensors(); }

void RdmaTensorRequest::Done(const Status& s) {
  Tensor val = std::move(*result_tensor_);

#ifdef RDMA_DATA_VALIDATION
  // Validate checksum
  // Unfortunately we can't always do a Checksum directly on the result tensor.
  // If the result tensor is on GPU, then we need to copy it back to CPU. If
  // we happen to be in the midst of a proxy callback, then the copying will
  // get stuck.
  uint64_t checksum = (proxy_tensor_ != nullptr)
                          ? Checksum(nullptr, nullptr, *proxy_tensor_)
                          : Checksum(dst_dev_, recv_args_.device_context, val);
  ValidateChecksum(checksum_, checksum, val, index_, key_, "RDMA");
#endif

  Rendezvous::Args recv_args = std::move(recv_args_);
  bool is_dead = (meta_data_ == nullptr) ? false : meta_data_->is_dead_;
  RecvDoneCallback done = done_;
  DeallocateTensors();
  channel_->RemoveTensorRequest(index_);
  done(s, Rendezvous::Args(), recv_args, val, is_dead);
}

void RdmaTensorRequest::DeallocateTensors() {
  if (result_tensor_ != nullptr) {
    delete result_tensor_;
    result_tensor_ = nullptr;
  }
  if (proxy_tensor_ != nullptr) {
    delete proxy_tensor_;
    proxy_tensor_ = nullptr;
  }
}

bool RdmaTensorRequest::AllocateTensors() {
  result_tensor_ =
      new Tensor(dst_dev_->GetAllocator(recv_args_.alloc_attrs),
                 meta_data_->data_type_, meta_data_->tensor_shape_);

  size_t tensor_size = result_tensor_->TotalBytes();
  bool can_memcpy = DataTypeCanUseMemcpy(result_tensor_->dtype());
  if (can_memcpy) {
    if (tensor_size == 0) {
      return true;
    }
    rdma_addr_ = DMAHelper::base(result_tensor_);
    mr_ = RdmaMemoryMgr::Singleton().FindMemoryRegion(rdma_addr_, tensor_size);
#if GOOGLE_CUDA
    if (mr_ == nullptr) {
      // Can't RDMA directly to result. Use a proxy.
      proxy_tensor_ =
          new Tensor(ProcessState::singleton()->GetCUDAHostAllocator(0),
                     result_tensor_->dtype(), result_tensor_->shape());
      rdma_addr_ = DMAHelper::base(proxy_tensor_);
      mr_ =
          RdmaMemoryMgr::Singleton().FindMemoryRegion(rdma_addr_, tensor_size);
    }
#endif
  } else {
    uint32_t proto_size = meta_data_->proto_size_;
    rdma_addr_ = malloc(proto_size);
    mr_ = ibv_reg_mr(RdmaMemoryMgr::Singleton().pd_, rdma_addr_, proto_size,
                     IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
  }
  CHECK(mr_ != nullptr) << " No memory region found for address " << rdma_addr_
                        << ": " << key_;
  return true;
}

void RdmaTensorRequest::AllocateTensorsAsync(StatusCallback done) {
  AllocateTensors();
  bool on_host = recv_args_.alloc_attrs.on_host();
  if (dst_dev_->tensorflow_gpu_device_info() && !on_host &&
      (proxy_tensor_ == nullptr)) {
#if GOOGLE_CUDA
        // We need to sync the memory allocation on the GPU:
        StreamGPUOp(dst_dev_, recv_args_.device_context, done);
#endif
  } else {
    done(Status::OK());
  }
}

void RdmaTensorRequest::Send(RdmaMessageType message_type) {
  RdmaMessageBuffer* rb = channel_->tx_message_buffer_;
  RdmaMessage rm;
  rm.type_ = message_type;
  rm.request_index_ = index_;
  rm.name_size_ = key_.size();
  rm.name_ = key_;
  rm.step_id_ = step_id_;
  rm.remote_addr_ = (uint64_t)rdma_addr_;
  if (meta_data_ != nullptr) {
    rm.data_type_ = meta_data_->data_type_;
    rm.tensor_shape_ = meta_data_->tensor_shape_;
    rm.is_dead_ = meta_data_->is_dead_;
    rm.tensor_bytes_ = meta_data_->proto_size_;
  } else {
    rm.data_type_ = DT_INVALID;
  }
  rm.rkey_ = (mr_ == nullptr) ? 0 : mr_->rkey;

  RDMA_LOG(1) << "Step 0x" << std::hex << rm.step_id_ << std::dec
              << ": Sending  " << MessageTypeToString(message_type)
              << " #" << index_ << ": "
              << rm.name_ << " on " << rdma_addr_
              << " (rkey: 0x" << std::hex << rm.rkey_ << ")";

  string message = RdmaMessage::CreateMessage(rm);
  rb->EnqueueItem(message);
  rb->SendNextItem();
}

void RdmaTensorRequest::RecvTensorMetaData(DataType dtype, TensorShape shape,
                                           bool is_dead, size_t proto_size) {
  meta_data_ = RdmaMemoryMgr::Singleton().SetTensorMetaData(
      key_, dtype, shape, is_dead, proto_size);

  DeallocateTensors();
  AllocateTensorsAsync([this](const Status& s) {
    Send(RDMA_MESSAGE_TENSOR_RE_REQUEST);
  });
}

void RdmaTensorRequest::RecvTensorContent() {
  bool can_memcpy = DataTypeCanUseMemcpy(meta_data_->data_type_);
  size_t message_size =
      can_memcpy ? result_tensor_->TotalBytes() : meta_data_->proto_size_;
  RDMA_LOG(1) << "Step 0x" << std::hex << step_id_ << std::dec
              << ": Received tensor content #" << index_ << ": "
              << key_ << " (Size: 0x" << std::hex << message_size << ")";

  Tensor val;

#if GOOGLE_CUDA
  if (proxy_tensor_ != nullptr) {
    CountCopies(key_, (void*)DMAHelper::base(proxy_tensor_),
                (void*)DMAHelper::base(result_tensor_),
                result_tensor_->TotalBytes(), false);
    GPUUtil::CopyCPUTensorToGPU(proxy_tensor_, recv_args_.device_context,
                                dst_dev_, result_tensor_,
                                [this](const Status& s) {
                                  CHECK(s.ok()) << "copy tensor to gpu sync";
                                  Done(s);
                                });
    return;
  }
#endif

  if (can_memcpy) {
    Done(Status::OK());
  } else {
    RDMA_LOG(2) << "Decoding proto: " << key_
                << " (Size: " << meta_data_->proto_size_ << ")";
    TensorProto proto;
    CHECK(ParseProtoUnlimited(&proto, rdma_addr_, meta_data_->proto_size_))
        << "fail to parse proto from array";
    ibv_dereg_mr(mr_);
    free(rdma_addr_);
    Status s = dst_dev_->MakeTensorFromProto(proto, recv_args_.alloc_attrs,
                                             result_tensor_);
    Done(s);
  }
}

void RdmaTensorRequest::RecvErrorStatus(const Status& status) {
  if (result_tensor_ == nullptr) {
    result_tensor_ = new Tensor();
  }
  LOG(ERROR) << "Received RDMA_MESSAGE_ERROR_STATUS: " << status.ToString();
  Done(status);
}

void RdmaTensorRequest::Start() {
  meta_data_ = RdmaMemoryMgr::Singleton().GetTensorMetaData(key_);
  if (meta_data_ != nullptr) {
    AllocateTensorsAsync([this](const Status& s) {
      Send(RDMA_MESSAGE_TENSOR_REQUEST);
    });
  } else {
    Send(RDMA_MESSAGE_TENSOR_REQUEST);
  }
}

}  // end namespace tensorflow

#endif