aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/tpu/python/tpu/keras_support.py
blob: 81798ee42313cb9e2232a4796f56d4d16068b82f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""*Experimental* support for running Keras models on the TPU.

To use, wrap your model with the `keras_support.tpu_model` function.

Example usage:

```
image = tf.keras.layers.Input(shape=(28, 28, 3), name='image')
c1 = tf.keras.layers.Conv2D(filters=16, kernel_size=(3, 3))( image)
flattened = tf.keras.layers.Flatten()(c1)
logits = tf.keras.layers.Dense(10, activation='softmax')(flattened)
model = tf.keras.Model(inputs=[image], outputs=[logits])

strategy = keras_support.TPUDistributionStrategy(num_cores_per_host=8)
model = keras_support.tpu_model(model,
                                strategy=strategy,
                                tpu_name_or_address=tpu_name)

# Only TF optimizers are currently supported.
model.compile(optimizer=tf.train.AdamOptimizer(), ...)

# `images` and `labels` should be Numpy arrays.  Support for tensor input
# (e.g. datasets) is planned.
model.fit(images, labels)
```
"""

# pylint: disable=protected-access

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import collections
import contextlib
import re
import sys
import time

import numpy as np

from tensorflow.contrib.cluster_resolver.python.training import tpu_cluster_resolver
from tensorflow.contrib.distribute.python import tpu_strategy
from tensorflow.contrib.framework.python.framework import experimental
from tensorflow.contrib.tpu.proto import compilation_result_pb2 as tpu_compilation_result
from tensorflow.contrib.tpu.python.ops import tpu_ops
from tensorflow.contrib.tpu.python.tpu import tpu
from tensorflow.contrib.tpu.python.tpu import tpu_function
from tensorflow.contrib.tpu.python.tpu import tpu_optimizer
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.client import session as tf_session
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.estimator import model_fn as model_fn_lib
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_spec
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import models
from tensorflow.python.keras import optimizers as keras_optimizers
from tensorflow.python.keras.engine import base_layer
from tensorflow.python.keras.layers import embeddings
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.platform import tf_logging as logging

TPUDistributionStrategy = tpu_strategy.TPUStrategy  # pylint: disable=invalid-name


class TPUEmbedding(embeddings.Embedding):
  """TPU compatible embedding layer.

  The default Keras layer is not TPU compatible.  This layer is a drop-in
  replacement: it has the same behavior and will work on CPU and GPU devices.
  """

  def build(self, input_shape):
    if input_shape[0] is None:
      raise ValueError(
          'TPUEmbeddings must have a fixed input_length or input shape.')
    return super(TPUEmbedding, self).build(input_shape)

  def call(self, inputs):
    if K.dtype(inputs) != 'int32':
      inputs = math_ops.cast(inputs, 'int32')

    inputs = array_ops.one_hot(inputs, self.input_dim)
    return math_ops.tensordot(inputs, self.embeddings, 1)


class KerasCrossShardOptimizer(keras_optimizers.Optimizer):
  """An optimizer that averages gradients across TPU shards."""

  def __init__(self, opt, name='KerasCrossShardOptimizer'):
    """Construct a new cross-shard optimizer.

    Args:
      opt: An existing `Optimizer` to encapsulate.
      name: Optional name prefix for the operations created when applying
        gradients. Defaults to "KerasCrossShardOptimizer".

    Raises:
      ValueError: If reduction is not a valid cross-shard reduction.
    """
    super(KerasCrossShardOptimizer, self).__init__()
    self._name = name
    self._opt = opt

  def get_updates(self, loss, params):
    logging.info('Get updates: %s', loss)
    self._opt.get_gradients = self.get_gradients
    return self._opt.get_updates(loss, params)

  def get_gradients(self, loss, params):
    num_shards = tpu_function.get_tpu_context().number_of_shards
    grads = super(KerasCrossShardOptimizer, self).get_gradients(loss, params)
    return [tpu_ops.cross_replica_sum(grad) / num_shards for grad in grads]

  def set_weights(self, weights):
    self._opt.set_weights()

  def get_weights(self):
    return self._opt.get_weights()

  @property
  def lr(self):
    return self._opt.lr


class TPUModelOp(
    collections.namedtuple('TPUModelOp', [
        'compile_op', 'execute_op', 'infeed_tensors', 'infeed_op', 'outfeed_op'
    ])):
  pass


def _valid_name(tensor_name):
  """Return a valid tensor name (strips '/', ':', etc)."""
  return re.sub('[^a-zA-Z0-9_-]+', '', tensor_name)


def _replicated_optimizer(opt):
  """Wrap the optimizer `opt` with CrossShardOptimizer if applicable."""
  if tpu_function.get_tpu_context().number_of_shards == 1:
    return opt

  if isinstance(opt, keras_optimizers.TFOptimizer):
    return tpu_optimizer.CrossShardOptimizer(opt.optimizer)
  else:
    return KerasCrossShardOptimizer(opt)


class TPURewriteContext(object):
  """Prepare the environment for a Keras model during `tpu.rewrite`.

  This overrides the default placeholder behaviour to instead refer to a preset
  input mapping.  Placeholders are unsupported in TPU compiled code, and must
  be replaced with explicit inputs or values from the infeed queue.

  Instead of explicitly threading inputs all the way through the Keras codebase,
  we override the behavior of the placeholder while compiling and inject the
  Tensors from the infeed in place of the placeholder.

  Similarly, as we compile a new sub-graph for each unique shape and execution
  mode, we need to override the behavior of an embedded `name_scope` call in
  the base Keras layer code.  This allows us to re-use the same weights across
  many compiles and share a single session/graph.
  """

  def __init__(self, input_map):
    self._input_map = input_map
    self._default_placeholder = None
    self._default_name_scope = None

  def __enter__(self):

    def _placeholder(dtype, shape=None, name=None):  # pylint: disable=unused-argument
      logging.info('Remapping placeholder for %s', name)
      if name in self._input_map:
        return self._input_map[name]
      else:
        logging.info('Default: %s', name)
        return self._default_placeholder(dtype, shape, name)

    def _name_scope(name, default_name=None, values=None):
      caller_frame = sys._getframe().f_back
      caller_obj = caller_frame.f_locals.get('self')
      if (caller_obj is not None and
          isinstance(caller_obj, base_layer.Layer) and name is not None):
        return variable_scope.variable_scope(
            name, default_name, values, reuse=variable_scope.AUTO_REUSE)

      return self._default_name_scope(name, default_name, values)

    self._default_placeholder = array_ops.placeholder
    self._default_name_scope = ops.name_scope
    self._default_make_variable = base_layer.make_variable
    self._default_random_normal = random_ops.random_normal
    self._default_qr = gen_linalg_ops.qr

    array_ops.placeholder = _placeholder

    # Replace random_ops.random_normal with a dummy function because
    # `random_normal` isn't yet implemented on the TPU. Because these
    # initialized values are overwritten by the CPU values, this is okay.
    def random_normal(shape,
                      mean=0.0,
                      stddev=1.0,
                      dtype=dtypes.float32,
                      seed=None,
                      name=None):
      del mean
      del stddev
      del seed
      return array_ops.zeros(shape, dtype=dtype, name=name)

    random_ops.random_normal = random_normal

    # Replace gen_linalg_ops.qr because QR decomposition is not yet implemented.
    # TODO(saeta): Remove qr override once we confirm the qr implementation is
    # ok.
    # pylint: disable=redefined-builtin
    def qr(input, full_matrices=False, name=None):
      """Dummy implementation of qr decomposition."""
      del full_matrices  # TODO(saeta): Properly handle the full matrix case.
      input_shape = input.shape
      if len(input_shape) < 2:
        raise ValueError('Invalid shape passed to qr: %s' % input_shape)
      p = min(input_shape[-1], input_shape[-2])
      if len(input_shape) == 2:
        q = array_ops.zeros((p, p), name=name)
        r = array_ops.zeros(input_shape, name=name)
        return (r, q)
      elif len(input_shape) == 3:
        n = input_shape[0]
        q = array_ops.zeros((n, p, p), name=name)
        r = array_ops.zeros(input_shape, name=name)
        return (r, q)
      else:
        raise ValueError('Invalid shape passed to qr: %s' % input_shape)
    gen_linalg_ops.qr = qr

    ops.name_scope = _name_scope
    base_layer.make_variable = variable_scope.get_variable
    logging.info('Overriding default placeholder.')
    return

  def __exit__(self, exc_type, exc_val, exc_tb):
    array_ops.placeholder = self._default_placeholder
    ops.name_scope = self._default_name_scope
    base_layer.make_variable = self._default_make_variable
    random_ops.random_normal = self._default_random_normal
    gen_linalg_ops.qr = self._default_qr


class SizedInfeed(collections.namedtuple('SizedInfeed',
                                         ['sharded_infeed_tensors',
                                          'infeed_ops'])):
  """Represents an instantiation of the infeed ops for a concrete input shape.

  sharded_infeed_tensors: A data structure of Tensors used to represent the
    placeholder tensors that must be fed when using feed_dicts.

  infeed_ops: the set of ops that will be run to drive infeed for a single step.
  """
  pass


class TPUInfeedInstance(object):
  """TPUInfeedInstance represents the logic to manage feeding in a single step.

  See the comments on the `TPUInfeedManager` for a description for how infeed
  is managed.
  """

  @abc.abstractmethod
  def make_input_specs(self, input_tensors):
    """Constructs the infeed_specs for the given Infeed instance.

    Args:
      input_tensors: The inputs to the model.

    Returns:
      A list of
    """
    pass

  def make_feed_dict(self, tpu_model_op):
    """Constructs a feed_dict for this instance, given the tpu_model_op.

    Args:
      tpu_model_op: A `TPUModelOp` representing the TPU Model for this
        instance's input spec.

    Returns:
      A dictionary to use as the feed_dict of a `session.run` call.
    """
    pass


class TPUInfeedManager(object):
  """TPUInfeedManager manages the data infeeding of data to a TPU computation.

  Because there are multiple data sources (e.g. in-memory NumPy arrays,
  `tf.data.Dataset`s), we abstract the different logic behind a single
  interface: the `TPUInfeedManager`.

  (1) A `TPUFunction` is called with a set of inputs. Based on the inputs,
  `TPUFunction` retrieves the corresponding `TPUInfeedManager` (or constructs a
  new one if required).

  (2) The `TPUFunction` calls `make_infeed_instance` on the `TPUInfeedManager`
  which returns a `TPUInfeedInstance`.

  (3) The `TPUFunction` checks in the shape cache for a pre-compiled instance of
  the model based on the returned `input_specs` from `TPUInfeedInstance`.

  (4) [Optional.] If the model has not already been instantiated for the given
  input spec, the `TPUFunction` compiles the model for the input spec (using the
  `TPUInfeedManager`).

  (5) The `TPUInfeedInstance` constructs the session.run's feed_dict given the
  compiled model instance corresponding to its shape.
  """

  @abc.abstractmethod
  def make_infeed_instance(self, inputs):
    """Given a single step's input, construct a `TPUInfeedInstance`.

    Args:
      inputs: The inputs to a given step.

    Returns:
      A subclass of `TPUInfeedInstance`.
    """
    pass

  @abc.abstractmethod
  def build_infeed_from_input_specs(self, input_specs, execution_mode):
    """For a given input specification (size, type), construct the infeed ops.

    This is called only once for a given input specification and builds the
    graph ops. It does not have a pointer to the actual infeed data.

    Args:
      input_specs: TODO(saeta): Document me!
      execution_mode: TODO(saeta): Document me!

    Returns:
      A `SizedInfeed` instance.
    """
    pass


class TPUNumpyInfeedManager(TPUInfeedManager):
  """TPU Infeed manager for Numpy inputs."""

  class NumpyInfeedInstance(TPUInfeedInstance):
    """Infeed instance for Numpy inputs."""

    def __init__(self, sharded_inputs):
      self._sharded_inputs = sharded_inputs

    def make_input_specs(self, input_tensors):
      # Compute an input specification (used to generate infeed enqueue and
      # dequeue operations).  We use the shape from our input array and the
      # dtype from our model.  A user may pass in a float64 for a float32
      # input: for model compatibility we still must generate a float32 infeed.
      input_specs = []
      # We use the shape and dtype from the first shard to compute the input
      # metadata (`input_specs`); all replicas have the same type and shape.
      for tensor, ary in zip(input_tensors, self._sharded_inputs[0]):
        input_specs.append(
            tensor_spec.TensorSpec(ary.shape, tensor.dtype,
                                   _valid_name(tensor.name)))

      return input_specs

    def make_feed_dict(self, tpu_model_op):
      infeed_dict = {}
      for infeed_tensors, inputs in zip(tpu_model_op.infeed_tensors,
                                        self._sharded_inputs):
        for tensor, value in zip(infeed_tensors, inputs):
          infeed_dict[tensor] = value
      return infeed_dict

  def __init__(self, distribution_strategy):
    self._strategy = distribution_strategy

  def _split_tensors(self, inputs):
    """Split input data across shards.

    Each input is sliced along the batch axis.

    Args:
      inputs: List of Numpy arrays to run on the TPU.

    Returns:
      List of lists containing the input to feed to each TPU shard.
    """
    if self._strategy.num_towers == 1:
      return [inputs]

    batch_size = inputs[0].shape[0]
    assert batch_size % self._strategy.num_towers == 0, (
        'batch_size must be divisible by strategy.num_towers (%s vs %s)' %
        (batch_size, self._strategy.num_towers))
    shard_size = batch_size // self._strategy.num_towers
    input_list = []
    for index in range(self._strategy.num_towers):
      shard_inputs = [
          x[index * shard_size:(index + 1) * shard_size] for x in inputs
      ]
      input_list.append(shard_inputs)
    return input_list

  def make_infeed_instance(self, inputs):
    sharded_inputs = self._split_tensors(inputs)
    return self.NumpyInfeedInstance(sharded_inputs)

  def build_infeed_from_input_specs(self, input_specs, execution_mode):
    infeed_op = []
    shard_infeed_tensors = []

    for shard_id in range(self._strategy.num_towers):
      with ops.device('/device:CPU:0'):
        infeed_tensors = []
        with ops.device('/device:TPU:%d' % shard_id):
          for spec in input_specs:
            # Construct placeholders for each of the inputs.
            infeed_tensors.append(
                array_ops.placeholder(
                    dtype=spec.dtype,
                    shape=spec.shape,
                    name='infeed-enqueue-%s-%d' % (spec.name, shard_id)))
        shard_infeed_tensors.append(infeed_tensors)

        infeed_op.append(
            tpu_ops.infeed_enqueue_tuple(
                infeed_tensors, [spec.shape for spec in input_specs],
                name='infeed-enqueue-%s-%d' % (execution_mode, shard_id),
                device_ordinal=shard_id))
    return SizedInfeed(infeed_ops=infeed_op,
                       sharded_infeed_tensors=shard_infeed_tensors)


class TPUDatasetInfeedManager(TPUInfeedManager):
  """Manages infeed for a `tf.data.Dataset` into a TPU computation.
  """

  class DatasetInfeedInstance(TPUInfeedInstance):
    """An instance of the TPU infeed."""

    def __init__(self, input_specs):
      self._input_specs = input_specs

    def make_input_specs(self, input_tensors):
      # TODO(saeta): Do error checking here!
      return self._input_specs

    def make_feed_dict(self, tpu_model_op):
      # TODO(saeta): Verify tpu_model_op is as expected!
      return {}

  def __init__(self, dataset, distribution_strategy, tpu_session):
    """Constructs a TPUDatasetInfeedManager.

    Must be called within a `KerasTPUModel.tpu_session` context!

    Args:
      dataset: A `tf.data.Dataset` to infeed.
      distribution_strategy: The `TPUDistributionStrategy` used to configure the
        Keras TPU model.
      tpu_session: The `tf.Session` object used for running the TPU model.
    """
    self._verify_dataset_shape(dataset)
    self._dataset = dataset
    self._strategy = distribution_strategy
    dummy_x_shape = dataset.output_shapes[0].as_list()
    dummy_x_shape[0] *= distribution_strategy.num_towers
    dummy_y_shape = dataset.output_shapes[1].as_list()
    dummy_y_shape[0] *= distribution_strategy.num_towers
    self._iterator = dataset.make_initializable_iterator()
    tpu_session.run(self._iterator.initializer)

    self._get_next_ops = []
    ctrl_deps = []
    for i in range(distribution_strategy.num_towers):
      with ops.control_dependencies(ctrl_deps):  # Ensure deterministic
        # TODO(saeta): Ensure correct placement!
        get_next_op = self._iterator.get_next()
        self._get_next_ops.append(get_next_op)
        ctrl_deps.extend(get_next_op)

    # Use dummy numpy inputs for the rest of Keras' shape checking. We
    # intercept them when building the model.
    self._dummy_x = np.zeros(dummy_x_shape,
                             dtype=dataset.output_types[0].as_numpy_dtype)
    self._dummy_y = np.zeros(dummy_y_shape,
                             dtype=dataset.output_types[1].as_numpy_dtype)

    input_specs = []
    if isinstance(self._iterator.output_shapes, tuple):
      assert isinstance(self._iterator.output_types, tuple)
      assert len(self._iterator.output_shapes) == len(
          self._iterator.output_types)
      for i in range(len(self._iterator.output_shapes)):
        spec = tensor_spec.TensorSpec(self._iterator.output_shapes[i],
                                      self._iterator.output_types[i])
        input_specs.append(spec)
    elif isinstance(self._iterator.output_shapes, tensor_shape.TensorShape):
      spec = tensor_spec.TensorSpec(self._iterator.output_shapes,
                                    self._iterator.output_types)
      input_specs.append(spec)

    self._infeed_instance = self.DatasetInfeedInstance(input_specs)

  def _verify_dataset_shape(self, dataset):
    """Verifies a dataset is of an appropriate shape for TPUs."""
    if not isinstance(dataset, dataset_ops.Dataset):
      raise ValueError('The function passed as the `x` parameter did not '
                       'return a `tf.data.Dataset`.')
    if not isinstance(dataset.output_classes, tuple):
      raise ValueError('The dataset must return a tuple of tf.Tensors, '
                       'instead it returns: %s' % dataset.output_classes)
    if len(dataset.output_classes) != 2:
      raise ValueError(
          'The dataset must return a 2-element tuple, got '
          '%s output classes instead.' % (dataset.output_classes,))
    for i, cls in enumerate(dataset.output_classes):
      if cls != ops.Tensor:
        raise ValueError('The dataset returned a non-Tensor type (%s) at '
                         'index %d.' % (cls, i))
    for i, shape in enumerate(dataset.output_shapes):
      if not shape:
        raise ValueError('The dataset returns a scalar tensor in '
                         'tuple index %d. Did you forget to batch? '
                         '(Output shapes: %s).' % (i,
                                                   dataset.output_shapes))
      for j, dim in enumerate(shape):
        if dim.value is None:
          if j == 0:
            hint = (' Hint: did you use `ds.batch(BATCH_SIZE, '
                    'drop_remainder=True)`?')
          else:
            hint = ''
          raise ValueError(
              'The Keras-TPU integration for `tf.data` '
              'currently requires static shapes. The provided '
              'dataset only has a partially defined shape. '
              '(Dimension %d of output tensor %d is not statically known '
              'for output shapes: %s.%s)' % (i, j, dataset.output_shapes, hint))

  @property
  def dummy_x(self):
    return self._dummy_x

  @property
  def dummy_y(self):
    return self._dummy_y

  def make_infeed_instance(self, inputs):
    # TODO(saeta): Verify inputs is as expected.
    return self._infeed_instance

  def build_infeed_from_input_specs(self, input_specs, execution_mode):
    shard_infeed_tensors = self._get_next_ops
    assert len(shard_infeed_tensors) == self._strategy.num_towers
    infeed_ops = []
    for shard_id in range(self._strategy.num_towers):
      with ops.device('/device:CPU:0'):
        infeed_ops.append(
            tpu_ops.infeed_enqueue_tuple(
                shard_infeed_tensors[shard_id],
                [spec.shape for spec in input_specs],
                name='infeed-enqueue-%s-%d' % (execution_mode, shard_id),
                device_ordinal=shard_id))
    return SizedInfeed(infeed_ops=infeed_ops,
                       sharded_infeed_tensors=shard_infeed_tensors)


class TPUFunction(object):
  """K.function compatible interface for invoking a TPU compiled function.

  Recompilation is triggered on-demand for each set of new inputs shapes: the
  results are cached for future execution.  We expect most computations will
  be dominated by a standard batch-size, followed by a straggler batch for
  the end of training or evaluation.

  All `inputs` and `outputs` will be loaded via the infeed and outfeed queues
  instead of being injected as `feed_dict` items or fetches.
  """

  def __init__(self, model, execution_mode, strategy):
    self.model = model
    self.execution_mode = execution_mode
    self._strategy = strategy
    self._compilation_cache = {}
    self._cloned_model = None

    # Copy optimizer configuration.  This is done prior to `_specialize_model`
    # as the configuration may require evaluating variables in the CPU session.
    self._optimizer_config = None
    if not isinstance(self.model.optimizer, keras_optimizers.TFOptimizer):
      self._optimizer_config = self.model.optimizer.get_config()

  def _specialize_model(self, input_specs, infeed_manager):
    """Specialize `self.model` (a Keras model) for the given input shapes."""
    # Re-create our input and output layers inside our subgraph.  They will be
    # attached to the true computation when we clone our model in `tpu_fn`.
    K.set_learning_phase(self.execution_mode == model_fn_lib.ModeKeys.TRAIN)

    # functools.partial and callable objects are not supported by tpu.rewrite
    def _model_fn():
      """Compute fit/eval/predict for the TPU."""
      is_training = self.execution_mode == model_fn_lib.ModeKeys.TRAIN
      is_test = self.execution_mode == model_fn_lib.ModeKeys.EVAL
      is_predict = self.execution_mode == model_fn_lib.ModeKeys.PREDICT

      # During train/eval, we infeed our features as well as labels.
      if is_training or is_test:
        infeed_layers = self.model._input_layers + self.model._output_layers
      else:
        infeed_layers = self.model._input_layers

      # Generate our infeed operation to read features & labels.
      infeed_tensors = tpu_ops.infeed_dequeue_tuple(
          dtypes=[spec.dtype for spec in input_specs],
          shapes=[spec.shape for spec in input_specs],
          name='infeed-%s' % self.execution_mode)

      assert len(infeed_tensors) == len(infeed_layers), (
          'Infeed inputs did not match model: %s vs %s' % (infeed_layers,
                                                           infeed_tensors))

      tpu_targets = []
      tpu_input_map = {}

      # Sort infeed outputs into inputs and labels for calling our Keras model.
      for tensor, layer in zip(infeed_tensors, infeed_layers):
        if layer in self.model._input_layers:
          tpu_input_map[layer.name] = tensor
        if layer in self.model._output_layers:
          tpu_targets.append(tensor)

      # Clone our CPU model, running within the TPU device context.
      with TPURewriteContext(tpu_input_map):
        # TODO(power): Replicate variables.
        with ops.device('/device:TPU:0'):
          self._cloned_model = models.clone_model(self.model)

      # Create a copy of the optimizer for this graph.
      if isinstance(self.model.optimizer, keras_optimizers.TFOptimizer):
        cloned_optimizer = keras_optimizers.TFOptimizer(
            self.model.optimizer.optimizer)
      else:
        logging.info('Cloning %s %s', self.model.optimizer.__class__.__name__,
                     self._optimizer_config)
        cloned_optimizer = self.model.optimizer.__class__.from_config(
            self._optimizer_config)

      if is_training or is_test:
        self._cloned_model.compile(
            optimizer=_replicated_optimizer(cloned_optimizer),
            loss=self.model.loss,
            loss_weights=self.model.loss_weights,
            metrics=self.model.metrics,
            weighted_metrics=self.model.weighted_metrics,
            target_tensors=tpu_targets,
        )

      # Compute our outfeed depending on the execution mode
      if is_training:
        self._cloned_model._make_train_function()
        self._outfeed_spec = [
            tensor_spec.TensorSpec(tensor.shape, tensor.dtype, tensor.name)
            for tensor in self._cloned_model.train_function.outputs
        ]
        return [
            self._cloned_model.train_function.updates_op,
            tpu_ops.outfeed_enqueue_tuple(
                self._cloned_model.train_function.outputs,
                name='outfeed-enqueue-train')
        ]
      elif is_test:
        self._cloned_model._make_test_function()
        self._outfeed_spec = [
            tensor_spec.TensorSpec(tensor.shape, tensor.dtype, tensor.name)
            for tensor in self._cloned_model.test_function.outputs
        ]
        return [
            tpu_ops.outfeed_enqueue_tuple(
                self._cloned_model.test_function.outputs,
                name='outfeed-enqueue-test')
        ]
      elif is_predict:
        self._cloned_model._make_predict_function()
        self._outfeed_spec = [
            tensor_spec.TensorSpec(tensor.shape, tensor.dtype, tensor.name)
            for tensor in self._cloned_model.predict_function.outputs
        ]
        return [
            tpu_ops.outfeed_enqueue_tuple(
                self._cloned_model.predict_function.outputs,
                name='outfeed-enqueue-predict',
            )
        ]
      else:
        assert False, 'Unexpected execution mode: %s' % self.execution_mode

    # Capture outfeed metadata computed during the rewrite.
    self._outfeed_spec = None

    # Generate out TPU operations using `tpu.split_compile_and_replicate`.
    # `compile_op` can be used to test the TPU model compiles before execution.
    # `execute op` replicates `_model_fn` `num_replicas` times, with each shard
    # running on a different logical core.
    compile_op, execute_op = tpu.split_compile_and_replicate(
        _model_fn, inputs=[[]] * self._strategy.num_towers)

    # Generate CPU side operations to enqueue features/labels and dequeue
    # outputs from the model call.
    sized_infeed = infeed_manager.build_infeed_from_input_specs(
        input_specs, self.execution_mode)
    # Build output ops.
    outfeed_op = []
    for shard_id in range(self._strategy.num_towers):
      with ops.device('/device:CPU:0'):
        outfeed_op.extend(
            tpu_ops.outfeed_dequeue_tuple(
                dtypes=[spec.dtype for spec in self._outfeed_spec],
                shapes=[spec.shape for spec in self._outfeed_spec],
                name='outfeed-dequeue-%s-%d' % (self.execution_mode, shard_id),
                device_ordinal=shard_id))

    return TPUModelOp(
        compile_op,
        execute_op,
        infeed_tensors=sized_infeed.sharded_infeed_tensors,
        infeed_op=sized_infeed.infeed_ops,
        outfeed_op=outfeed_op)

  def _test_model_compiles(self, tpu_model_ops):
    """Verifies that the given TPUModelOp can be compiled via XLA."""
    logging.info('Started compiling')
    start_time = time.clock()

    result = K.get_session().run(tpu_model_ops.compile_op)
    proto = tpu_compilation_result.CompilationResultProto()
    proto.ParseFromString(result)
    if proto.status_error_message:
      raise RuntimeError('Compilation failed: {}'.format(
          proto.status_error_message))

    end_time = time.clock()
    logging.info('Finished compiling. Time elapsed: %s secs',
                 end_time - start_time)

  def __call__(self, inputs):
    assert isinstance(inputs, list)

    infeed_manager = None
    for x, mgr in self.model._numpy_to_infeed_manager_list:
      if inputs[0] is x:
        infeed_manager = mgr
        break
    if infeed_manager is None:
      infeed_manager = TPUNumpyInfeedManager(self.model._strategy)

    # Strip sample weight from inputs
    if (self.execution_mode == model_fn_lib.ModeKeys.TRAIN or
        self.execution_mode == model_fn_lib.ModeKeys.EVAL):
      input_tensors = self.model._feed_inputs + self.model._feed_targets
      inputs = inputs[:len(input_tensors)]
    else:
      input_tensors = self.model._feed_inputs

    infeed_instance = infeed_manager.make_infeed_instance(inputs)
    del inputs  # To avoid accident usage.
    input_specs = infeed_instance.make_input_specs(input_tensors)

    # XLA requires every operation in the graph has a fixed shape.  To
    # handle varying batch sizes we recompile a new sub-graph for each
    # unique input shape.
    shape_key = tuple([tuple(spec.shape.as_list()) for spec in input_specs])

    if shape_key not in self._compilation_cache:
      with self.model.tpu_session():
        logging.info('New input shapes; (re-)compiling: mode=%s, %s',
                     self.execution_mode, input_specs)
        new_tpu_model_ops = self._specialize_model(input_specs,
                                                   infeed_manager)
        self._compilation_cache[shape_key] = new_tpu_model_ops
        self._test_model_compiles(new_tpu_model_ops)

    # Initialize our TPU weights on the first compile.
    self.model._initialize_weights(self._cloned_model)
    tpu_model_ops = self._compilation_cache[shape_key]

    infeed_dict = infeed_instance.make_feed_dict(tpu_model_ops)

    with self.model.tpu_session() as session:
      _, _, outfeed_outputs = session.run([
          tpu_model_ops.infeed_op, tpu_model_ops.execute_op,
          tpu_model_ops.outfeed_op
      ], infeed_dict)

    # TODO(xiejw): Decide how to reduce outputs, or just discard all but first.
    if self.execution_mode == model_fn_lib.ModeKeys.PREDICT:
      outputs = [[]] * len(self._outfeed_spec)
      outputs_per_replica = len(self._outfeed_spec)

      for i in range(self._strategy.num_towers):
        output_group = outfeed_outputs[i * outputs_per_replica:(i + 1) *
                                       outputs_per_replica]
        for j in range(outputs_per_replica):
          outputs[j].append(output_group[j])

      return [np.concatenate(group) for group in outputs]
    else:
      return outfeed_outputs[:len(outfeed_outputs) // self._strategy.num_towers]


class KerasTPUModel(models.Model):
  """TPU compatible Keras model wrapper."""

  def __init__(self, cpu_model, tpu_name_or_address, strategy):
    super(models.Model, self).__init__(  # pylint: disable=bad-super-call
        inputs=cpu_model.inputs,
        outputs=cpu_model.outputs,
        name=cpu_model.name,
    )

    # Create a mapping from numpy arrays to infeed managers.
    # Note: uses a list of tuples instead of a map because numpy arrays are
    # not hashable.
    self._numpy_to_infeed_manager_list = []

    self.predict_function = None
    self.test_function = None
    self.train_function = None
    self._strategy = strategy

    self._tpu_name_or_address = tpu_name_or_address
    self._cpu_model = cpu_model
    self._tpu_model = None
    self._tpu_weights_initialized = False
    self._graph = ops.Graph()

    self._cluster_resolver = tpu_cluster_resolver.TPUClusterResolver(
        tpu_name_or_address)
    master = self._cluster_resolver.master()
    cluster_spec = self._cluster_resolver.cluster_spec()
    self._session = tf_session.Session(
        graph=self._graph,
        target=master,
        config=config_pb2.ConfigProto(isolate_session_state=True))

    # TODO(saeta): Confirm the lines below work in ClusterSpec propagation env.
    if cluster_spec:
      self._session.cluster_def.CopyFrom(cluster_spec.as_cluster_def())

    with self._graph.as_default():
      self._session.run(tpu.initialize_system())

    # If the input CPU model has already been compiled, compile our TPU model
    # immediately.
    if self._cpu_model.optimizer:
      self.compile(
          self._cpu_model.optimizer,
          self._cpu_model.loss,
          self._cpu_model.metrics,
          self._cpu_model.loss_weights,
          self._cpu_model.sample_weight_mode,
          self._cpu_model.weighted_metrics,
          self._cpu_model.target_tensors,
      )

  def get_config(self):
    return {
        'cpu_model': self._cpu_model,
        'tpu_name_or_address': self._tpu_name_or_address,
        'strategy': self._strategy,
    }

  def compile(self,
              optimizer,
              loss=None,
              metrics=None,
              loss_weights=None,
              sample_weight_mode=None,
              weighted_metrics=None,
              target_tensors=None,
              **kwargs):
    if sample_weight_mode:
      raise ValueError('sample_weight_mode not supported for TPU execution.')
    if weighted_metrics:
      raise ValueError('weighted_metrics not supported for TPU execution.')
    if target_tensors:
      raise ValueError('target_tensors is not supported for TPU execution.')

    super(KerasTPUModel, self).compile(optimizer, loss, metrics, loss_weights,
                                       sample_weight_mode, weighted_metrics,
                                       target_tensors, **kwargs)

    if not self._cpu_model.optimizer:
      self._cpu_model.compile(optimizer, loss, metrics, loss_weights,
                              sample_weight_mode, weighted_metrics,
                              target_tensors, **kwargs)

  def fit(self,
          x=None,
          y=None,
          batch_size=None,
          epochs=1,
          verbose=1,
          callbacks=None,
          validation_split=0.,
          validation_data=None,
          shuffle=True,
          class_weight=None,
          sample_weight=None,
          initial_epoch=0,
          steps_per_epoch=None,
          validation_steps=None,
          **kwargs):
    assert not self._numpy_to_infeed_manager_list  # Ensure empty.

    infeed_managers = []  # Managers to clean up at the end of the fit call.
    if isinstance(x, dataset_ops.Dataset):
      # TODO(b/111413240): Support taking a tf.data.Dataset directly.
      raise ValueError(
          'Taking a Dataset directly is not yet supported. Please '
          'wrap your dataset construction code in a function and '
          'pass that to fit instead. For examples, see: '
          'https://github.com/tensorflow/tpu/tree/master/models/experimental'
          '/keras')
    if callable(x):
      with self.tpu_session() as sess:
        dataset = x()
        if steps_per_epoch is None:
          raise ValueError('When using tf.data as input to a model, you '
                           'should specify the steps_per_epoch argument.')
        if y is not None:
          raise ValueError('When using tf.data as input to a model, y must be '
                           'None')
        infeed_manager = TPUDatasetInfeedManager(dataset, self._strategy, sess)
        # Use dummy numpy inputs for the rest of Keras' shape checking. We
        # intercept them when building the model.
        x = infeed_manager.dummy_x
        y = infeed_manager.dummy_y
        infeed_managers.append((x, infeed_manager))

    if isinstance(validation_data, dataset_ops.Dataset):
      # TODO(b/111413240): Support taking a tf.data.Dataset directly.
      raise ValueError(
          'Taking a Dataset directly is not yet supported. Please '
          'wrap your dataset construction code in a function and '
          'pass that to fit instead. For examples, see: '
          'https://github.com/tensorflow/tpu/tree/master/models/experimental'
          '/keras')
    if callable(validation_data):
      with self.tpu_session() as sess:
        dataset = validation_data()
        if validation_steps is None:
          raise ValueError('When using tf.data as validation for a model, you '
                           'should specify the validation_steps argument.')
        infeed_manager = TPUDatasetInfeedManager(dataset, self._strategy, sess)
        # Use dummy numpy inputs for the rest of Keras' shape checking. We
        # intercept them when building the model.
        val_x = infeed_manager.dummy_x
        val_y = infeed_manager.dummy_y
        infeed_managers.append((val_x, infeed_manager))
        validation_data = (val_x, val_y)

    self._numpy_to_infeed_manager_list = infeed_managers
    try:
      return super(KerasTPUModel, self).fit(
          x,
          y,
          batch_size,
          epochs,
          verbose,
          callbacks,
          validation_split,
          validation_data,
          shuffle,
          class_weight,
          sample_weight,
          initial_epoch,
          steps_per_epoch,
          validation_steps,
          **kwargs)
    finally:
      self._numpy_to_infeed_manager_list = []

  def _make_train_function(self):
    if not self.train_function:
      self.train_function = TPUFunction(
          self, model_fn_lib.ModeKeys.TRAIN, strategy=self._strategy)

    return self.train_function

  def _make_test_function(self):
    if not self.test_function:
      self.test_function = TPUFunction(
          self, model_fn_lib.ModeKeys.EVAL, strategy=self._strategy)
    return self.test_function

  def _make_predict_function(self):
    if not self.predict_function:
      self.predict_function = TPUFunction(
          self, model_fn_lib.ModeKeys.PREDICT, strategy=self._strategy)
    return self.predict_function

  def _initialize_weights(self, cloned_model):
    """Initialize TPU weights.

    This is called on the first compile of the TPU model (first call to
    fit/predict/evaluate).

    Args:
      cloned_model: `keras.Model`, TPU model to initialize.
    """
    if self._tpu_weights_initialized:
      return

    self._tpu_model = cloned_model
    self._tpu_weights_initialized = True

    weights = self._cpu_model.get_weights()
    with self.tpu_session():
      logging.info('Setting weights on TPU model.')
      cloned_model.set_weights(weights)

  def sync_to_cpu(self):
    """Copy weights from the CPU, returning a synchronized CPU model."""
    if self._tpu_weights_initialized:
      with self.tpu_session():
        logging.info('Copying TPU weights to the CPU')
        tpu_weights = self._tpu_model.get_weights()

      self._cpu_model.set_weights(tpu_weights)

    return self._cpu_model

  def get_weights(self):
    return self.sync_to_cpu().get_weights()

  def save_weights(self, *args, **kw):
    return self.sync_to_cpu().save_weights(*args, **kw)

  def save(self, *args, **kw):
    return self.sync_to_cpu().save(*args, **kw)

  def set_weights(self, weights):
    # We may not have a TPU model available if we haven't run fit/predict, so
    # we can't directly set the TPU weights here.
    # Instead, reset CPU model weights and force TPU re-initialization at the
    # next call.
    self._cpu_model.set_weights(weights)
    self._tpu_weights_initialized = False

  @contextlib.contextmanager
  def tpu_session(self):
    """Yields a TPU session and sets it as the default Keras session."""
    with self._graph.as_default():
      default_session = K.get_session()
      # N.B. We have to call `K.set_session()` AND set our session as the
      # TF default. `K.get_session()` surprisingly does not return the value
      # supplied by K.set_session otherwise.
      K.set_session(self._session)
      with self._session.as_default():
        yield self._session
      K.set_session(default_session)

  def shutdown(self):
    # TODO(b/111364423): Actually shut down the system.
    logging.info('Skipping shutting down TPU system.')
    # with self.tpu_session() as session:
    #   session.run(tpu.shutdown_system())
    self._session.close()


def _validate_shapes(model):
  """Validate that all layers in `model` have constant shape."""
  for layer in model.layers:
    if isinstance(layer.input_shape, tuple):
      input_shapes = [layer.input_shape]
    else:
      input_shapes = layer.input_shape

    if isinstance(layer.output_shape, tuple):
      output_shapes = [layer.output_shape]
    else:
      output_shapes = layer.output_shape

    for shape in input_shapes + output_shapes:
      for dim in shape[1:]:
        if dim is None:
          raise ValueError(
              """
Layer %(layer)s has a variable shape in a non-batch dimension.  TPU models must
have constant shapes for all operations.

You may have to specify `input_length` for RNN/TimeDistributed layers.

Layer: %(layer)s
Input shape: %(input_shape)s
Output shape: %(output_shape)s
  """ % {
      'layer': layer,
      'input_shape': layer.input_shape,
      'output_shape': layer.output_shape
  })


@experimental
def tpu_model(model, tpu_name_or_address=None, strategy=None):
  """Copy `model` along with weights to the TPU.  Returns a TPU model.

  Usage:
  ```
  a = Input(shape=(32,))
  b = Dense(32)(a)
  model = Model(inputs=a, outputs=b)

  # If `num_cores_per_host` is greater than one, batch parallelism will be used
  # to run on multiple TPU cores.
  strategy = keras_support.TPUDistributionStrategy(num_cores_per_host=8)
  model = keras_support.tpu_model(model, strategy)
  model.compile(
      optimizer=tf.train.GradientDescentOptimizer(learning_rate=1.0),
      ...)
  model.shutdown()
  ```

  Args:
    model: A `KerasTPUModel`.
    tpu_name_or_address: A string that is either the name of the Cloud TPU,
      the grpc address of the Cloud TPU, or (Googlers only) the BNS name of the
      Cloud TPU. If tpu_name_or_address is None, the TPUClusterResolver will
      examine the environment to determine a potential Cloud TPU to use.
    strategy: `TPUDistributionStrategy`.  The strategy to use for replicating
              model across multiple TPU cores.

  Returns:
    A new `KerasTPUModel` instance.
  """
  # Force initialization of the CPU model.
  model.get_weights()
  model.reset_states()

  _validate_shapes(model)
  # TODO(xiejw): Validate TPU model. TPUModel only?
  # TODO(xiejw): Validate replicas. Full or 1. Shall we allow subset?
  # TODO(xiejw): Adds reduction option.
  if strategy is None:
    strategy = TPUDistributionStrategy(num_cores_per_host=1)
  return KerasTPUModel(
      cpu_model=model,
      tpu_name_or_address=tpu_name_or_address,
      strategy=strategy)