aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/tensorrt/segment/segment.cc
blob: cc42913ecadc3e15fbb4a4a322f125579f075da2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/contrib/tensorrt/segment/segment.h"

#include <set>
#include <unordered_map>
#include <vector>

#include "tensorflow/contrib/tensorrt/segment/union_find.h"
#include "tensorflow/core/graph/algorithm.h"
#include "tensorflow/core/graph/graph.h"
#include "tensorflow/core/graph/graph_constructor.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/types.h"

namespace tensorflow {
namespace tensorrt {
namespace segment {
using ::tensorflow::strings::StrAppend;
// A simple graph representation to mirror tensorflow::Graph. This structure
// helps saving memory since segmenter modifies the graph in place, preventing
// the need to create a copy of the graph. It is composed of edges and nodes.
// Nodes keep pointers to original TF nodes.
class SimpleNode;
class SimpleGraph;
class SimpleEdge {
 public:
  SimpleEdge(int id, SimpleNode* src, int src_port, SimpleNode* dst,
             int dst_port, bool is_control = false)
      : id_(id),
        src_(src),
        src_port_(src_port),
        dst_(dst),
        dst_port_(dst_port),
        control_(is_control) {}
  ~SimpleEdge() {}

  SimpleNode* src() const { return src_; }
  SimpleNode* dst() const { return dst_; }
  int src_output() const { return src_port_; }
  int dst_input() const { return dst_port_; }
  int id() const { return id_; }
  bool IsControlEdge() const { return control_; }

 private:
  int id_;
  SimpleNode* src_;
  int src_port_;
  SimpleNode* dst_;
  int dst_port_;
  bool control_;
};

class SimpleNode {
 public:
  SimpleNode(const tensorflow::Node* node, const int id);

  const std::vector<SimpleEdge*>& in_edges() const { return in_edges_; }
  const std::vector<SimpleEdge*>& out_edges() const { return out_edges_; }
  std::vector<SimpleNode*> in_nodes() const {
    std::vector<SimpleNode*> res;
    res.reserve(in_edges_.size());
    for (const auto e : in_edges_) {
      if (e) res.push_back(e->src());
    }
    return res;
  }
  const string& name() const { return node_->name(); }
  const tensorflow::Node* tf_node() const { return node_; }
  int id() const { return id_; }

 private:
  const tensorflow::Node* node_;
  std::vector<SimpleEdge*> in_edges_;
  std::vector<SimpleEdge*> out_edges_;
  int id_;

  friend class SimpleGraph;
};

class SimpleGraph {
 public:
  explicit SimpleGraph(const tensorflow::Graph* g);
  ~SimpleGraph();

  void AddControlEdge(SimpleNode* src, SimpleNode* dst);
  void AddEdge(SimpleNode* src, int out_port, SimpleNode* dst, int in_port);
  void RemoveEdge(const SimpleEdge*);
  SimpleNode* FindNodeId(int node_id) {
    if (node_id < 0 || node_id > static_cast<int>(nodes_.size())) {
      return nullptr;
    }
    return nodes_[node_id];
  }
  int num_node_ids() const { return nodes_.size(); }
  const SimpleNode* source_node() const {
    return nodes_[tensorflow::Graph::kSourceId];
  }
  const SimpleNode* sink_node() const {
    return nodes_[tensorflow::Graph::kSinkId];
  }

 private:
  const tensorflow::Graph* g_;
  std::vector<SimpleNode*> nodes_;
  std::vector<SimpleEdge*> edges_;
  // free_edge_ids_ and free_node_ids_ contain freed indices.
  std::set<int> free_edge_ids_;
  std::set<int> free_node_ids_;
};

SimpleNode::SimpleNode(const tensorflow::Node* node, const int id)
    : node_(node), id_(id) {
  if (node_) {
    in_edges_.reserve(node_->in_edges().size());
    out_edges_.reserve(node_->out_edges().size());
  }
}

SimpleGraph::SimpleGraph(const tensorflow::Graph* g) : g_(g) {
  int n_nodes = g_->num_node_ids();
  nodes_.resize(n_nodes, nullptr);
  nodes_[g->kSourceId] = new SimpleNode(g->source_node(), g->kSourceId);
  nodes_[g->kSinkId] = new SimpleNode(g->sink_node(), g->kSinkId);
  int n_edges = g->num_edge_ids();
  edges_.resize(n_edges, nullptr);
  for (int i = 2; i < n_nodes; i++) {
    const auto n = g->FindNodeId(i);
    if (n) {
      nodes_[i] = new SimpleNode(n, i);
    } else {
      free_node_ids_.insert(i);
    }
  }
  for (int i = 0; i < n_edges; i++) {
    const auto e = g->FindEdgeId(i);
    if (e) {
      const auto tfsrc = e->src();
      const auto tfdst = e->dst();
      bool is_control = e->IsControlEdge();
      auto src = nodes_[tfsrc->id()];
      auto dst = nodes_[tfdst->id()];
      auto edge = new SimpleEdge(i, src, e->src_output(), dst, e->dst_input(),
                                 is_control);
      edges_[i] = edge;
      src->out_edges_.push_back(edge);
      dst->in_edges_.push_back(edge);
    } else {
      free_edge_ids_.insert(i);
    }
  }
}

void SimpleGraph::AddEdge(SimpleNode* src, int out_port, SimpleNode* dst,
                          int in_port) {
  int i = edges_.size();
  if (!free_edge_ids_.empty()) {
    auto it = free_edge_ids_.begin();
    i = *it;
    free_edge_ids_.erase(it);
  } else {
    edges_.push_back(nullptr);
  }
  bool is_control = (out_port == tensorflow::Graph::kControlSlot);
  is_control |= (in_port == tensorflow::Graph::kControlSlot);
  auto edge = new SimpleEdge(i, src, out_port, dst, in_port, is_control);
  edges_[i] = edge;
  src->out_edges_.push_back(edge);
  dst->in_edges_.push_back(edge);
}

void SimpleGraph::AddControlEdge(SimpleNode* src, SimpleNode* dst) {
  AddEdge(src, tensorflow::Graph::kControlSlot, dst,
          tensorflow::Graph::kControlSlot);
}

void SimpleGraph::RemoveEdge(const SimpleEdge* edge) {
  auto src = edge->src();
  auto dst = edge->dst();
  for (auto it = src->out_edges_.begin(); it != src->out_edges_.end(); ++it) {
    if (*it == edge) {
      src->out_edges_.erase(it);
      break;
    }
  }
  for (auto it = dst->in_edges_.begin(); it != dst->in_edges_.end(); ++it) {
    if (*it == edge) {
      dst->in_edges_.erase(it);
      break;
    }
  }
}

SimpleGraph::~SimpleGraph() {
  for (auto x : nodes_) delete x;
  for (auto x : edges_) delete x;
}

namespace {

bool CheckCycles(const std::unique_ptr<SimpleGraph>& g, const SimpleNode* src,
                 const std::vector<SimpleNode*>& start) {
  // copied from TF ReverseDFS.
  struct Work {
    SimpleNode* node;
    bool leave;  // Are we entering or leaving n?
  };

  std::vector<Work> stack(start.size());
  for (int i = 0; i < start.size(); ++i) {
    stack[i] = Work{start[i], false};
  }

  std::vector<bool> visited(g->num_node_ids(), false);
  while (!stack.empty()) {
    Work w = stack.back();
    stack.pop_back();

    auto n = w.node;
    if (w.leave) {
      if (n == src) {
        return true;
      }
      continue;
    }

    if (visited[n->id()]) continue;
    visited[n->id()] = true;
    // Arrange to call leave(n) when all done with descendants.
    stack.push_back(Work{n, true});

    auto nodes = n->in_nodes();
    for (const auto node : nodes) {
      if (!visited[node->id()]) {
        stack.push_back(Work{node, false});
      }
    }
  }
  return false;
}

bool CanContractEdge(const SimpleEdge* edge,
                     const std::unique_ptr<SimpleGraph>& graph) {
  const auto src = edge->src();
  const auto dst = edge->dst();

  // Can't contract edge if doing so would cause a cycle in the
  // graph. So, if there is a directed path from 'src' to 'dst', other
  // than 'edge' (or any other direct edge from 'src' to 'dst'), then
  // combining 'src' and 'dst' will cause a cycle along that path.
  //
  // In practice, to avoid modifying the graph and to take advantage
  // of existing graph functions, we perform an equivalent.
  //   1. Get all nodes incoming to 'dst', excluding 'src'
  //   2. Reverse DFS from those nodes
  //   3. If reverse DFS reaches 'src' then we have a cycle
  std::vector<SimpleNode*> dfs_start_nodes;
  for (SimpleNode* node : dst->in_nodes()) {
    if (node != src) {
      dfs_start_nodes.push_back(node);
    }
  }

  bool is_cycle = CheckCycles(graph, src, dfs_start_nodes);
  return !is_cycle;
}
}  // namespace

void ContractEdge(SimpleEdge* edge, SimpleGraph* graph,
                  std::vector<const SimpleEdge*>* remove_edges) {
  // Transfer all inputs and outputs of 'dst' to 'src' except edges
  // connecting the two.
  auto src = edge->src();
  auto dst = edge->dst();

  // We can use '0' for input/output index because we don't need them
  // to be accurate for the way we are using the graph.
  std::vector<const SimpleEdge*> in_edges(dst->in_edges().begin(),
                                          dst->in_edges().end());
  for (const SimpleEdge* in_edge : in_edges) {
    if (in_edge->IsControlEdge()) {
      if (in_edge->src() != src) {
        SimpleEdge* e = const_cast<SimpleEdge*>(in_edge);
        graph->AddControlEdge(e->src(), src);
      }
    } else {
      if (in_edge->src() != src) {
        SimpleEdge* e = const_cast<SimpleEdge*>(in_edge);
        if (e->src() == graph->source_node()) {
          graph->AddEdge(e->src(), e->src_output(), src,
                         tensorflow::Graph::kControlSlot);
        } else {
          graph->AddEdge(e->src(), e->src_output(), src, 0 /* input index */);
        }
      }
    }
  }

  std::vector<const SimpleEdge*> out_edges(dst->out_edges().begin(),
                                           dst->out_edges().end());
  for (const SimpleEdge* out_edge : out_edges) {
    if (out_edge->IsControlEdge()) {
      SimpleEdge* e = const_cast<SimpleEdge*>(out_edge);
      graph->AddControlEdge(src, e->dst());
    } else {
      SimpleEdge* e = const_cast<SimpleEdge*>(out_edge);
      if (e->dst() == graph->sink_node()) {
        VLOG(1) << " edge to sink node " << src->name() << " -> "
                << e->dst()->name();
        graph->AddEdge(src, tensorflow::Graph::kControlSlot, e->dst(),
                       e->dst_input());
      } else {
        graph->AddEdge(src, 0 /* output index */, e->dst(), e->dst_input());
      }
    }
  }

  // Return the edges that must be removed to disconnect 'dst' from
  // the graph. We don't actually remove 'dst' since the caller holds
  // references to all the nodes.
  for (const auto& in_edge : dst->in_edges()) {
    remove_edges->push_back(in_edge);
  }
  for (const auto& out_edge : dst->out_edges()) {
    remove_edges->push_back(out_edge);
  }
}

tensorflow::Status SegmentGraph(
    const tensorflow::GraphDef& gdef,
    const std::function<bool(const tensorflow::Node*)>& candidate_fn,
    const SegmentOptions& options, SegmentNodesVector* segments) {
  // Create a Graph representation of the GraphDef.
  tensorflow::FunctionLibraryDefinition flib(tensorflow::OpRegistry::Global(),
                                             gdef.library());
  tensorflow::Graph graph(flib);
  TF_RETURN_IF_ERROR(tensorflow::ConvertGraphDefToGraph(
      tensorflow::GraphConstructorOptions(), gdef, &graph));
  return SegmentGraph(&graph, candidate_fn, options, segments);
}

tensorflow::Status SegmentGraph(
    tensorflow::Graph* tf_graph,
    const std::function<bool(const tensorflow::Node*)>& candidate_fn,
    const SegmentOptions& options, SegmentNodesVector* segments) {
  auto graph = std::unique_ptr<SimpleGraph>(new SimpleGraph(tf_graph));
  // Use a union-find to collect the nodes that belong to the same
  // segment. A node value of nullptr indicates that the node is not a candidate
  // for TRT.
  std::vector<UnionFind<SimpleNode*>> node_segments;
  for (int i = 0; i < graph->num_node_ids(); ++i) {
    SimpleNode* node = graph->FindNodeId(i);
    if (options.exclude_node_list.count(node->name()) != 0 ||
        !candidate_fn(node->tf_node())) {
      node = nullptr;
    }
    node_segments.emplace_back(node);
  }

  // The segmentation algorithm below visits nodes in reverse
  // topological order and attempts to merge nodes along output
  // edges. That means that subgraphs grow from the output-side of the
  // network towards the inputs. In general this is not guaranteed to
  // produce a globally optimal segmentation. In the future if we have
  // a measure of how beneficial it is to include a given node in a
  // TRT subgraph then we can revisit this algorithm to take advantage
  // of that information.
  std::vector<tensorflow::Node*> tforder;
  tensorflow::GetPostOrder(*tf_graph, &tforder);
  // use postorder implementation from tensorflow and construct mirror in
  // internal format
  std::vector<SimpleNode*> order;
  order.reserve(tforder.size());
  for (const auto tfnode : tforder) {
    order.push_back(graph->FindNodeId(tfnode->id()));
  }
  for (const SimpleNode* node : order) {
    // All output nodes of 'node' have been visited...
    VLOG(2) << "Trying node " << node->name() << " id=" << node->id();

    // 'node' must be a TRT candidate...
    if (node_segments[node->id()].Value() == nullptr) {
      VLOG(2) << "... not a TRT candidate";
      continue;
    }

    // Contract output edges to combine 'node' with output
    // nodes. Iterate since combining two nodes may unblock other
    // combining.
    while (true) {
      std::set<const SimpleEdge*> contract_edges;
      for (const SimpleEdge* out_edge : node->out_edges()) {
        VLOG(2) << "... out node " << out_edge->dst()->name() << " ( "
                << out_edge->dst()->id() << " <- " << node->id() << " )";
        if (out_edge->IsControlEdge()) {
          VLOG(2) << "... ... Control Edge, Skipping";
          continue;
        }
        // Out node must be TRT candidate...
        if (node_segments[out_edge->dst()->id()].Value() == nullptr) {
          VLOG(2) << "... ... not a TRT candidate";
          continue;
        }

        if (CanContractEdge(out_edge, graph)) {
          VLOG(2) << "... ... can contract";
          contract_edges.insert(out_edge);
        } else {
          VLOG(2) << "... ... cannot contract, would form cycle";
        }
      }

      if (contract_edges.empty()) {
        break;
      }

      // Contract edges and collect the adjacent nodes into the same
      // segment/subgraph.
      while (!contract_edges.empty()) {
        const SimpleEdge* contract_edge = *contract_edges.begin();
        const SimpleNode* src = contract_edge->src();
        const SimpleNode* dst = contract_edge->dst();

        VLOG(2) << "Merge " << src->name() << " <- " << dst->name() << " ("
                << src->id() << " <- " << dst->id();
        node_segments[src->id()].Merge(&node_segments[dst->id()]);

        // Contracting the edge leaves disconnected graph edges.
        // Remove these from the graph and from 'contract_edges' so we
        // don't visit them again.
        SimpleEdge* e = const_cast<SimpleEdge*>(contract_edge);
        std::vector<const SimpleEdge*> remove_edges;
        ContractEdge(e, graph.get(), &remove_edges);

        for (const SimpleEdge* r : remove_edges) {
          contract_edges.erase(r);
          graph->RemoveEdge(r);
        }
      }
    }
  }

  // Collect the segments/subgraphs. Each subgraph is represented by a
  // set of the names of the nodes in that subgraph.
  std::unordered_map<string, std::set<string>> sg_map;
  std::unordered_map<string, std::set<string>> device_maps;
  for (auto& u : node_segments) {
    if ((u.Value() != nullptr) && (u.ParentValue() != nullptr)) {
      sg_map[u.ParentValue()->name()].insert(u.Value()->name());
      auto tf_node = u.Value()->tf_node();
      // has_assigned_device_name() is expected to return true
      // when called from optimization pass. However, since graph
      // is converted back and forth between graph and graphdef,
      // assigned devices demoted to requested devices. If the graph
      // is passed directly to this module, assigned devices will be set.
      if (tf_node->has_assigned_device_name()) {
        device_maps[u.ParentValue()->name()].insert(
            tf_node->assigned_device_name());
      } else if (!tf_node->requested_device().empty()) {
        device_maps[u.ParentValue()->name()].insert(
            tf_node->requested_device());
      } else {
        VLOG(1) << "Node " << tf_node->name()
                << " has no device assigned requested device is: "
                << tf_node->requested_device();
      }
    }
  }

  // Convert the segments into the expected return format
  for (const auto& itr : sg_map) {
    const auto& segment_node_names = itr.second;
    if (VLOG_IS_ON(1)) {
      string s;
      for (const auto& name : segment_node_names) {
        s += " " + name;
      }
      VLOG(1) << "Segment " << segments->size() << ":" << s;
    }

    // Don't use small segments.
    if (static_cast<int>(segment_node_names.size()) <
        options.minimum_segment_size) {
      VLOG(1) << "Segment " << segments->size() << " has only "
              << segment_node_names.size() << " nodes, dropping";
      continue;
    }
    // TODO(sami): Make segmenter placement aware once trtscopes are in place
    const auto& dev_itr = device_maps.find(itr.first);
    if (dev_itr == device_maps.end() || dev_itr->second.empty()) {
      VLOG(1) << "No device assigned to segment " << segments->size();
      segments->emplace_back(std::make_pair(segment_node_names, string()));
    } else if (dev_itr->second.size() > 1) {
      string s("Segment ");
      StrAppend(&s, segments->size(), " has multiple devices attached: ");
      for (const auto& dev : dev_itr->second) {
        StrAppend(&s, dev, ", ");
      }
      LOG(WARNING) << s << " choosing " << *(dev_itr->second.begin());
      segments->emplace_back(
          std::make_pair(segment_node_names, *(dev_itr->second.begin())));
    } else {
      segments->emplace_back(
          std::make_pair(segment_node_names, *(dev_itr->second.begin())));
    }
  }
  if (VLOG_IS_ON(1)) {
    for (const auto& d : device_maps) {
      string s("Segment ");
      StrAppend(&s, ": '", d.first, "' ");
      for (const auto& dd : d.second) {
        StrAppend(&s, dd, ", ");
      }
      VLOG(1) << "Devices " << s;
    }
  }
  return tensorflow::Status::OK();
}

}  // namespace segment
}  // namespace tensorrt
}  // namespace tensorflow