aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/seq2seq/python/ops/decoder_fn.py
blob: d02efdc52143d8f1c6d0446cfa4b954891e63169 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Seq2seq loss operations for use in neural networks.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import rnn_cell
from tensorflow.python.util import nest

__all__ = ["simple_decoder_fn_train",
           "simple_decoder_fn_inference"]

def simple_decoder_fn_train(encoder_state, name=None):
  """ Simple decoder function for a sequence-to-sequence model used in the
  `dynamic_rnn_decoder`.

  The `simple_decoder_fn_train` is a simple training function for a
  sequence-to-sequence model. It should be used when `dynamic_rnn_decoder` is
  in the training mode.

  The `simple_decoder_fn_train` is called with a set of the user arguments and
  returns the `decoder_fn`, which can be passed to the `dynamic_rnn_decoder`,
  such that

  ```
  dynamic_fn_train = simple_decoder_fn_train(encoder_state)
  outputs_train, state_train = dynamic_rnn_decoder(
      decoder_fn=dynamic_fn_train, ...)
  ```

  Further usage can be found in the `kernel_tests/seq2seq_test.py`.

  Args:
    encoder_state: The encoded state to initialize the `dynamic_rnn_decoder`.
    name: (default: `None`) NameScope for the decoder function;
      defaults to "simple_decoder_fn_train"

  Returns:
    A decoder function with the required interface of `dynamic_rnn_decoder`
    intended for training.
  """
  with ops.name_scope(name, "simple_decoder_fn_train", [encoder_state]):
    pass

  def decoder_fn(time, cell_state, cell_input, cell_output, context_state):
    """ Decoder function used in the `dynamic_rnn_decoder` with the purpose of
    training.

    Args:
      time: positive integer constant reflecting the current timestep.
      cell_state: state of RNNCell.
      cell_input: input provided by `dynamic_rnn_decoder`.
      cell_output: output of RNNCell.
      context_state: context state provided by `dynamic_rnn_decoder`.

    Returns:
      A tuple (done, next state, next input, emit output, next context state)
      where:

      done: `None`, which is used by the `dynamic_rnn_decoder` to indicate
      that `sequence_lengths` in `dynamic_rnn_decoder` should be used.

      next state: `cell_state`, this decoder function does not modify the
      given state.

      next input: `cell_input`, this decoder function does not modify the
      given input. The input could be modified when applying e.g. attention.

      emit output: `cell_output`, this decoder function does not modify the
      given output.

      next context state: `context_state`, this decoder function does not
      modify the given context state. The context state could be modified when
      applying e.g. beam search.
  """
    with ops.name_scope(name, "simple_decoder_fn_train",
                        [time, cell_state, cell_input, cell_output,
                         context_state]):
      if cell_state is None:  # first call, return encoder_state
        return (None, encoder_state, cell_input, cell_output, context_state)
      else:
        return (None, cell_state, cell_input, cell_output, context_state)
  return decoder_fn


def simple_decoder_fn_inference(output_fn, encoder_state, embeddings,
                                start_of_sequence_id, end_of_sequence_id,
                                maximum_length, num_decoder_symbols,
                                dtype=dtypes.int32, name=None):
  """ Simple decoder function for a sequence-to-sequence model used in the
  `dynamic_rnn_decoder`.

  The `simple_decoder_fn_inference` is a simple inference function for a
  sequence-to-sequence model. It should be used when `dynamic_rnn_decoder` is
  in the inference mode.

  The `simple_decoder_fn_inference` is called with a set of the user arguments
  and returns the `decoder_fn`, which can be passed to the
  `dynamic_rnn_decoder`, such that

  ```
  dynamic_fn_inference = simple_decoder_fn_inference(...)
  outputs_inference, state_inference = dynamic_rnn_decoder(
      decoder_fn=dynamic_fn_inference, ...)
  ```

  Further usage can be found in the `kernel_tests/seq2seq_test.py`.

  Args:
    output_fn: An output function to project your `cell_output` onto class
    logits.

    An example of an output function;

    ```
      tf.variable_scope("decoder") as varscope
        output_fn = lambda x: layers.linear(x, num_decoder_symbols,
                                            scope=varscope)

        outputs_train, state_train = seq2seq.dynamic_rnn_decoder(...)
        logits_train = output_fn(outputs_train)

        varscope.reuse_variables()
        logits_inference, state_inference = seq2seq.dynamic_rnn_decoder(
            output_fn=output_fn, ...)
    ```

    If `None` is supplied it will act as an identity function, which
    might be wanted when using the RNNCell `OutputProjectionWrapper`.

    encoder_state: The encoded state to initialize the `dynamic_rnn_decoder`.
    embeddings: The embeddings matrix used for the decoder sized
    `[num_decoder_symbols, embedding_size]`.
    start_of_sequence_id: The start of sequence ID in the decoder embeddings.
    end_of_sequence_id: The end of sequence ID in the decoder embeddings.
    maximum_length: The maximum allowed of time steps to decode.
    num_decoder_symbols: The number of classes to decode at each time step.
    dtype: (default: `dtypes.int32`) The default data type to use when
    handling integer objects.
    name: (default: `None`) NameScope for the decoder function;
      defaults to "simple_decoder_fn_inference"

  Returns:
    A decoder function with the required interface of `dynamic_rnn_decoder`
    intended for inference.
  """
  with ops.name_scope(name, "simple_decoder_fn_inference",
                      [output_fn, encoder_state, embeddings,
                       start_of_sequence_id, end_of_sequence_id,
                       maximum_length, num_decoder_symbols, dtype]):
    start_of_sequence_id = ops.convert_to_tensor(start_of_sequence_id, dtype)
    end_of_sequence_id = ops.convert_to_tensor(end_of_sequence_id, dtype)
    maximum_length = ops.convert_to_tensor(maximum_length, dtype)
    num_decoder_symbols = ops.convert_to_tensor(num_decoder_symbols, dtype)
    encoder_info = nest.flatten(encoder_state)[0]
    batch_size = encoder_info.get_shape()[0].value
    if output_fn is None:
      output_fn = lambda x: x
    if batch_size is None:
      batch_size = array_ops.shape(encoder_info)[0]

  def decoder_fn(time, cell_state, cell_input, cell_output, context_state):
    """ Decoder function used in the `dynamic_rnn_decoder` with the purpose of
    inference.

    The main difference between this decoder function and the `decoder_fn` in
    `simple_decoder_fn_train` is how `next_cell_input` is calculated. In this
    decoder function we calculate the next input by applying an argmax across
    the feature dimension of the output from the decoder. This is a
    greedy-search approach. (Bahdanau et al., 2014) & (Sutskever et al., 2014)
    use beam-search instead.

    Args:
      time: positive integer constant reflecting the current timestep.
      cell_state: state of RNNCell.
      cell_input: input provided by `dynamic_rnn_decoder`.
      cell_output: output of RNNCell.
      context_state: context state provided by `dynamic_rnn_decoder`.

    Returns:
      A tuple (done, next state, next input, emit output, next context state)
      where:

      done: A boolean vector to indicate which sentences has reached a
      `end_of_sequence_id`. This is used for early stopping by the
      `dynamic_rnn_decoder`. When `time>=maximum_length` a boolean vector with
      all elements as `true` is returned.

      next state: `cell_state`, this decoder function does not modify the
      given state.

      next input: The embedding from argmax of the `cell_output` is used as
      `next_input`.

      emit output: If `output_fn is None` the supplied `cell_output` is
      returned, else the `output_fn` is used to update the `cell_output`
      before calculating `next_input` and returning `cell_output`.

      next context state: `context_state`, this decoder function does not
      modify the given context state. The context state could be modified when
      applying e.g. beam search.
  """
    with ops.name_scope(name, "simple_decoder_fn_inference",
                        [time, cell_state, cell_input, cell_output,
                         context_state]):
      if cell_input is not None:
        raise ValueError("Expected cell_input to be None, but saw: %s" %
                         cell_input)
      if cell_output is None:
        # invariant that this is time == 0
        next_input_id = array_ops.ones([batch_size,], dtype=dtype) * (
            start_of_sequence_id)
        done = array_ops.zeros([batch_size,], dtype=dtypes.bool)
        cell_state = encoder_state
        cell_output = array_ops.zeros([num_decoder_symbols],
                                      dtype=dtypes.float32)
      else:
        cell_output = output_fn(cell_output)
        next_input_id = math_ops.cast(
            math_ops.argmax(cell_output, 1), dtype=dtype)
        done = math_ops.equal(next_input_id, end_of_sequence_id)
      next_input = array_ops.gather(embeddings, next_input_id)
      # if time > maxlen, return all true vector
      done = control_flow_ops.cond(math_ops.greater(time, maximum_length),
          lambda: array_ops.ones([batch_size,], dtype=dtypes.bool),
          lambda: done)
      return (done, cell_state, next_input, cell_output, context_state)
  return decoder_fn