aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/seq2seq/python/ops/beam_search_decoder.py
blob: a5f7169c3106d12cd22e822dca96c6adf43a45fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A decoder that performs beam search."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import numpy as np

from tensorflow.contrib.seq2seq.python.ops import beam_search_ops
from tensorflow.contrib.seq2seq.python.ops import decoder
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.layers import base as layers_base
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import tensor_array_ops
from tensorflow.python.util import nest


__all__ = [
    "BeamSearchDecoderOutput",
    "BeamSearchDecoderState",
    "BeamSearchDecoder",
    "FinalBeamSearchDecoderOutput",
    "tile_batch",
]


class BeamSearchDecoderState(
    collections.namedtuple("BeamSearchDecoderState", ("cell_state", "log_probs",
                                                      "finished", "lengths"))):
  pass


class BeamSearchDecoderOutput(
    collections.namedtuple("BeamSearchDecoderOutput",
                           ("scores", "predicted_ids", "parent_ids"))):
  pass


class FinalBeamSearchDecoderOutput(
    collections.namedtuple("FinalBeamDecoderOutput",
                           ["predicted_ids", "beam_search_decoder_output"])):
  """Final outputs returned by the beam search after all decoding is finished.

  Args:
    predicted_ids: The final prediction. A tensor of shape
      `[batch_size, T, beam_width]` (or `[T, batch_size, beam_width]` if
      `output_time_major` is True). Beams are ordered from best to worst.
    beam_search_decoder_output: An instance of `BeamSearchDecoderOutput` that
      describes the state of the beam search.
  """
  pass


def _tile_batch(t, multiplier):
  """Core single-tensor implementation of tile_batch."""
  t = ops.convert_to_tensor(t, name="t")
  shape_t = array_ops.shape(t)
  if t.shape.ndims is None or t.shape.ndims < 1:
    raise ValueError("t must have statically known rank")
  tiling = [1] * (t.shape.ndims + 1)
  tiling[1] = multiplier
  tiled_static_batch_size = (
      t.shape[0].value * multiplier if t.shape[0].value is not None else None)
  tiled = array_ops.tile(array_ops.expand_dims(t, 1), tiling)
  tiled = array_ops.reshape(
      tiled, array_ops.concat(([shape_t[0] * multiplier], shape_t[1:]), 0))
  tiled.set_shape(
      tensor_shape.TensorShape(
          [tiled_static_batch_size]).concatenate(t.shape[1:]))
  return tiled


def tile_batch(t, multiplier, name=None):
  """Tile the batch dimension of a (possibly nested structure of) tensor(s) t.

  For each tensor t in a (possibly nested structure) of tensors,
  this function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed of
  minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape
  `[batch_size * multiplier, s0, s1, ...]` composed of minibatch entries
  `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
  `multiplier` times.

  Args:
    t: `Tensor` shaped `[batch_size, ...]`.
    multiplier: Python int.
    name: Name scope for any created operations.

  Returns:
    A (possibly nested structure of) `Tensor` shaped
    `[batch_size * multiplier, ...]`.

  Raises:
    ValueError: if tensor(s) `t` do not have a statically known rank or
    the rank is < 1.
  """
  flat_t = nest.flatten(t)
  with ops.name_scope(name, "tile_batch", flat_t + [multiplier]):
    return nest.map_structure(lambda t_: _tile_batch(t_, multiplier), t)


def _check_maybe(t):
  if isinstance(t, tensor_array_ops.TensorArray):
    raise TypeError(
        "TensorArray state is not supported by BeamSearchDecoder: %s" % t.name)
  if t.shape.ndims is None:
    raise ValueError(
        "Expected tensor (%s) to have known rank, but ndims == None." % t)


class BeamSearchDecoder(decoder.Decoder):
  """BeamSearch sampling decoder.

    **NOTE** If you are using the `BeamSearchDecoder` with a cell wrapped in
    `AttentionWrapper`, then you must ensure that:

    - The encoder output has been tiled to `beam_width` via
      @{tf.contrib.seq2seq.tile_batch} (NOT `tf.tile`).
    - The `batch_size` argument passed to the `zero_state` method of this
      wrapper is equal to `true_batch_size * beam_width`.
    - The initial state created with `zero_state` above contains a
      `cell_state` value containing properly tiled final state from the
      encoder.

    An example:

    ```
    tiled_encoder_outputs = tf.contrib.seq2seq.tile_batch(
        encoder_outputs, multiplier=beam_width)
    tiled_encoder_final_state = tf.conrib.seq2seq.tile_batch(
        encoder_final_state, multiplier=beam_width)
    tiled_sequence_length = tf.contrib.seq2seq.tile_batch(
        sequence_length, multiplier=beam_width)
    attention_mechanism = MyFavoriteAttentionMechanism(
        num_units=attention_depth,
        memory=tiled_inputs,
        memory_sequence_length=tiled_sequence_length)
    attention_cell = AttentionWrapper(cell, attention_mechanism, ...)
    decoder_initial_state = attention_cell.zero_state(
        dtype, batch_size=true_batch_size * beam_width)
    decoder_initial_state = decoder_initial_state.clone(
        cell_state=tiled_encoder_final_state)
    ```
  """

  def __init__(self,
               cell,
               embedding,
               start_tokens,
               end_token,
               initial_state,
               beam_width,
               output_layer=None,
               length_penalty_weight=0.0):
    """Initialize the BeamSearchDecoder.

    Args:
      cell: An `RNNCell` instance.
      embedding: A callable that takes a vector tensor of `ids` (argmax ids),
        or the `params` argument for `embedding_lookup`.
      start_tokens: `int32` vector shaped `[batch_size]`, the start tokens.
      end_token: `int32` scalar, the token that marks end of decoding.
      initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
      beam_width:  Python integer, the number of beams.
      output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
        `tf.layers.Dense`.  Optional layer to apply to the RNN output prior
        to storing the result or sampling.
      length_penalty_weight: Float weight to penalize length. Disabled with 0.0.

    Raises:
      TypeError: if `cell` is not an instance of `RNNCell`,
        or `output_layer` is not an instance of `tf.layers.Layer`.
      ValueError: If `start_tokens` is not a vector or
        `end_token` is not a scalar.
    """
    if not rnn_cell_impl._like_rnncell(cell):  # pylint: disable=protected-access
      raise TypeError("cell must be an RNNCell, received: %s" % type(cell))
    if (output_layer is not None
        and not isinstance(output_layer, layers_base.Layer)):
      raise TypeError(
          "output_layer must be a Layer, received: %s" % type(output_layer))
    self._cell = cell
    self._output_layer = output_layer

    if callable(embedding):
      self._embedding_fn = embedding
    else:
      self._embedding_fn = (
          lambda ids: embedding_ops.embedding_lookup(embedding, ids))

    self._start_tokens = ops.convert_to_tensor(
        start_tokens, dtype=dtypes.int32, name="start_tokens")
    if self._start_tokens.get_shape().ndims != 1:
      raise ValueError("start_tokens must be a vector")
    self._end_token = ops.convert_to_tensor(
        end_token, dtype=dtypes.int32, name="end_token")
    if self._end_token.get_shape().ndims != 0:
      raise ValueError("end_token must be a scalar")

    self._batch_size = array_ops.size(start_tokens)
    self._beam_width = beam_width
    self._length_penalty_weight = length_penalty_weight
    self._initial_cell_state = nest.map_structure(
        self._maybe_split_batch_beams,
        initial_state, self._cell.state_size)
    self._start_tokens = array_ops.tile(
        array_ops.expand_dims(self._start_tokens, 1), [1, self._beam_width])
    self._start_inputs = self._embedding_fn(self._start_tokens)
    
    self._finished = array_ops.one_hot(
        array_ops.zeros([self._batch_size], dtype=dtypes.int32),
        depth=self._beam_width, on_value=False,
        off_value=True, dtype=dtypes.bool)

  @property
  def batch_size(self):
    return self._batch_size

  def _rnn_output_size(self):
    size = self._cell.output_size
    if self._output_layer is None:
      return size
    else:
      # To use layer's compute_output_shape, we need to convert the
      # RNNCell's output_size entries into shapes with an unknown
      # batch size.  We then pass this through the layer's
      # compute_output_shape and read off all but the first (batch)
      # dimensions to get the output size of the rnn with the layer
      # applied to the top.
      output_shape_with_unknown_batch = nest.map_structure(
          lambda s: tensor_shape.TensorShape([None]).concatenate(s),
          size)
      layer_output_shape = self._output_layer.compute_output_shape(
          output_shape_with_unknown_batch)
      return nest.map_structure(lambda s: s[1:], layer_output_shape)

  @property
  def tracks_own_finished(self):
    """The BeamSearchDecoder shuffles its beams and their finished state.

    For this reason, it conflicts with the `dynamic_decode` function's
    tracking of finished states.  Setting this property to true avoids
    early stopping of decoding due to mismanagement of the finished state
    in `dynamic_decode`.

    Returns:
      `True`.
    """
    return True

  @property
  def output_size(self):
    # Return the cell output and the id
    return BeamSearchDecoderOutput(
        scores=tensor_shape.TensorShape([self._beam_width]),
        predicted_ids=tensor_shape.TensorShape([self._beam_width]),
        parent_ids=tensor_shape.TensorShape([self._beam_width]))

  @property
  def output_dtype(self):
    # Assume the dtype of the cell is the output_size structure
    # containing the input_state's first component's dtype.
    # Return that structure and int32 (the id)
    dtype = nest.flatten(self._initial_cell_state)[0].dtype
    return BeamSearchDecoderOutput(
        scores=nest.map_structure(lambda _: dtype, self._rnn_output_size()),
        predicted_ids=dtypes.int32,
        parent_ids=dtypes.int32)

  def initialize(self, name=None):
    """Initialize the decoder.

    Args:
      name: Name scope for any created operations.

    Returns:
      `(finished, start_inputs, initial_state)`.
    """
    finished, start_inputs = self._finished, self._start_inputs

    log_probs = array_ops.one_hot(  # shape(batch_sz, beam_sz)
        array_ops.zeros([self._batch_size], dtype=dtypes.int32),
        depth=self._beam_width, on_value=0.0, off_value=-np.Inf,
        dtype=nest.flatten(self._initial_cell_state)[0].dtype)


    initial_state = BeamSearchDecoderState(
        cell_state=self._initial_cell_state,
        log_probs=log_probs,
        finished=finished,
        lengths=array_ops.zeros(
            [self._batch_size, self._beam_width], dtype=dtypes.int64))

    return (finished, start_inputs, initial_state)

  def finalize(self, outputs, final_state, sequence_lengths):
    """Finalize and return the predicted_ids.

    Args:
      outputs: An instance of BeamSearchDecoderOutput.
      final_state: An instance of BeamSearchDecoderState. Passed through to the
        output.
      sequence_lengths: An `int64` tensor shaped `[batch_size, beam_width]`.
        The sequence lengths determined for each beam during decode.
        **NOTE** These are ignored; the updated sequence lengths are stored in
        `final_state.lengths`.

    Returns:
      outputs: An instance of `FinalBeamSearchDecoderOutput` where the
        predicted_ids are the result of calling _gather_tree.
      final_state: The same input instance of `BeamSearchDecoderState`.
    """
    del sequence_lengths
    # Get max_sequence_length across all beams for each batch.
    max_sequence_lengths = math_ops.to_int32(
        math_ops.reduce_max(final_state.lengths, axis=1))
    predicted_ids = beam_search_ops.gather_tree(
        outputs.predicted_ids,
        outputs.parent_ids,
        max_sequence_lengths=max_sequence_lengths,
        end_token=self._end_token)
    outputs = FinalBeamSearchDecoderOutput(
        beam_search_decoder_output=outputs, predicted_ids=predicted_ids)
    return outputs, final_state

  def _merge_batch_beams(self, t, s=None):
    """Merges the tensor from a batch of beams into a batch by beams.

    More exactly, t is a tensor of dimension [batch_size, beam_width, s]. We
    reshape this into [batch_size*beam_width, s]

    Args:
      t: Tensor of dimension [batch_size, beam_width, s]
      s: (Possibly known) depth shape.

    Returns:
      A reshaped version of t with dimension [batch_size * beam_width, s].
    """
    if isinstance(s, ops.Tensor):
      s = tensor_shape.as_shape(tensor_util.constant_value(s))
    else:
      s = tensor_shape.TensorShape(s)
    t_shape = array_ops.shape(t)
    static_batch_size = tensor_util.constant_value(self._batch_size)
    batch_size_beam_width = (
        None if static_batch_size is None
        else static_batch_size * self._beam_width)
    reshaped_t = array_ops.reshape(
        t, array_ops.concat(
            ([self._batch_size * self._beam_width], t_shape[2:]), 0))
    reshaped_t.set_shape(
        (tensor_shape.TensorShape([batch_size_beam_width]).concatenate(s)))
    return reshaped_t

  def _split_batch_beams(self, t, s=None):
    """Splits the tensor from a batch by beams into a batch of beams.

    More exactly, t is a tensor of dimension [batch_size*beam_width, s]. We
    reshape this into [batch_size, beam_width, s]

    Args:
      t: Tensor of dimension [batch_size*beam_width, s].
      s: (Possibly known) depth shape.

    Returns:
      A reshaped version of t with dimension [batch_size, beam_width, s].

    Raises:
      ValueError: If, after reshaping, the new tensor is not shaped
        `[batch_size, beam_width, s]` (assuming batch_size and beam_width
        are known statically).
    """
    if isinstance(s, ops.Tensor):
      s = tensor_shape.TensorShape(tensor_util.constant_value(s))
    else:
      s = tensor_shape.TensorShape(s)
    t_shape = array_ops.shape(t)
    reshaped_t = array_ops.reshape(
        t, array_ops.concat(
            ([self._batch_size, self._beam_width], t_shape[1:]), 0))
    static_batch_size = tensor_util.constant_value(self._batch_size)
    expected_reshaped_shape = tensor_shape.TensorShape(
        [static_batch_size, self._beam_width]).concatenate(s)
    if not reshaped_t.shape.is_compatible_with(expected_reshaped_shape):
      raise ValueError("Unexpected behavior when reshaping between beam width "
                       "and batch size.  The reshaped tensor has shape: %s.  "
                       "We expected it to have shape "
                       "(batch_size, beam_width, depth) == %s.  Perhaps you "
                       "forgot to create a zero_state with "
                       "batch_size=encoder_batch_size * beam_width?"
                       % (reshaped_t.shape, expected_reshaped_shape))
    reshaped_t.set_shape(expected_reshaped_shape)
    return reshaped_t

  def _maybe_split_batch_beams(self, t, s):
    """Maybe splits the tensor from a batch by beams into a batch of beams.

    We do this so that we can use nest and not run into problems with shapes.

    Args:
      t: `Tensor`, either scalar or shaped `[batch_size * beam_width] + s`.
      s: `Tensor`, Python int, or `TensorShape`.

    Returns:
      If `t` is a matrix or higher order tensor, then the return value is
      `t` reshaped to `[batch_size, beam_width] + s`.  Otherwise `t` is
      returned unchanged.

    Raises:
      TypeError: If `t` is an instance of `TensorArray`.
      ValueError: If the rank of `t` is not statically known.
    """
    _check_maybe(t)
    if t.shape.ndims >= 1:
      return self._split_batch_beams(t, s)
    else:
      return t

  def _maybe_merge_batch_beams(self, t, s):
    """Splits the tensor from a batch by beams into a batch of beams.

    More exactly, `t` is a tensor of dimension `[batch_size * beam_width] + s`,
    then we reshape it to `[batch_size, beam_width] + s`.

    Args:
      t: `Tensor` of dimension `[batch_size * beam_width] + s`.
      s: `Tensor`, Python int, or `TensorShape`.

    Returns:
      A reshaped version of t with shape `[batch_size, beam_width] + s`.

    Raises:
      TypeError: If `t` is an instance of `TensorArray`.
      ValueError:  If the rank of `t` is not statically known.
    """
    _check_maybe(t)
    if t.shape.ndims >= 2:
      return self._merge_batch_beams(t, s)
    else:
      return t

  def step(self, time, inputs, state, name=None):
    """Perform a decoding step.

    Args:
      time: scalar `int32` tensor.
      inputs: A (structure of) input tensors.
      state: A (structure of) state tensors and TensorArrays.
      name: Name scope for any created operations.

    Returns:
      `(outputs, next_state, next_inputs, finished)`.
    """
    batch_size = self._batch_size
    beam_width = self._beam_width
    end_token = self._end_token
    length_penalty_weight = self._length_penalty_weight

    with ops.name_scope(name, "BeamSearchDecoderStep", (time, inputs, state)):
      cell_state = state.cell_state
      inputs = nest.map_structure(
          lambda inp: self._merge_batch_beams(inp, s=inp.shape[2:]), inputs)
      cell_state = nest.map_structure(
          self._maybe_merge_batch_beams,
          cell_state, self._cell.state_size)
      cell_outputs, next_cell_state = self._cell(inputs, cell_state)
      cell_outputs = nest.map_structure(
          lambda out: self._split_batch_beams(out, out.shape[1:]), cell_outputs)
      next_cell_state = nest.map_structure(
          self._maybe_split_batch_beams,
          next_cell_state, self._cell.state_size)

      if self._output_layer is not None:
        cell_outputs = self._output_layer(cell_outputs)

      beam_search_output, beam_search_state = _beam_search_step(
          time=time,
          logits=cell_outputs,
          next_cell_state=next_cell_state,
          beam_state=state,
          batch_size=batch_size,
          beam_width=beam_width,
          end_token=end_token,
          length_penalty_weight=length_penalty_weight)

      finished = beam_search_state.finished
      sample_ids = beam_search_output.predicted_ids
      next_inputs = control_flow_ops.cond(
          math_ops.reduce_all(finished), lambda: self._start_inputs,
          lambda: self._embedding_fn(sample_ids))

    return (beam_search_output, beam_search_state, next_inputs, finished)


def _beam_search_step(time, logits, next_cell_state, beam_state, batch_size,
                      beam_width, end_token, length_penalty_weight):
  """Performs a single step of Beam Search Decoding.

  Args:
    time: Beam search time step, should start at 0. At time 0 we assume
      that all beams are equal and consider only the first beam for
      continuations.
    logits: Logits at the current time step. A tensor of shape
      `[batch_size, beam_width, vocab_size]`
    next_cell_state: The next state from the cell, e.g. an instance of
      AttentionWrapperState if the cell is attentional.
    beam_state: Current state of the beam search.
      An instance of `BeamSearchDecoderState`.
    batch_size: The batch size for this input.
    beam_width: Python int.  The size of the beams.
    end_token: The int32 end token.
    length_penalty_weight: Float weight to penalize length. Disabled with 0.0.

  Returns:
    A new beam state.
  """
  static_batch_size = tensor_util.constant_value(batch_size)

  # Calculate the current lengths of the predictions
  prediction_lengths = beam_state.lengths
  previously_finished = beam_state.finished

  # Calculate the total log probs for the new hypotheses
  # Final Shape: [batch_size, beam_width, vocab_size]
  step_log_probs = nn_ops.log_softmax(logits)
  step_log_probs = _mask_probs(step_log_probs, end_token, previously_finished)
  total_probs = array_ops.expand_dims(beam_state.log_probs, 2) + step_log_probs

  # Calculate the continuation lengths by adding to all continuing beams.
  vocab_size = logits.shape[-1].value or array_ops.shape(logits)[-1]
  lengths_to_add = array_ops.one_hot(
      indices=array_ops.fill([batch_size, beam_width], end_token),
      depth=vocab_size,
      on_value=np.int64(0), off_value=np.int64(1),
      dtype=dtypes.int64)
  add_mask = math_ops.to_int64(math_ops.logical_not(previously_finished))
  lengths_to_add *= array_ops.expand_dims(add_mask, 2)
  new_prediction_lengths = (
      lengths_to_add + array_ops.expand_dims(prediction_lengths, 2))

  # Calculate the scores for each beam
  scores = _get_scores(
      log_probs=total_probs,
      sequence_lengths=new_prediction_lengths,
      length_penalty_weight=length_penalty_weight)

  time = ops.convert_to_tensor(time, name="time")
  # During the first time step we only consider the initial beam
  scores_shape = array_ops.shape(scores)
  scores_flat = array_ops.reshape(scores, [batch_size, -1])

  # Pick the next beams according to the specified successors function
  next_beam_size = ops.convert_to_tensor(beam_width, dtype=dtypes.int32,
                                         name="beam_width")
  next_beam_scores, word_indices = nn_ops.top_k(scores_flat, k=next_beam_size)

  next_beam_scores.set_shape([static_batch_size, beam_width])
  word_indices.set_shape([static_batch_size, beam_width])

  # Pick out the probs, beam_ids, and states according to the chosen predictions
  next_beam_probs = _tensor_gather_helper(
      gather_indices=word_indices,
      gather_from=total_probs,
      batch_size=batch_size,
      range_size=beam_width * vocab_size,
      gather_shape=[-1],
      name="next_beam_probs")
  # Note: just doing the following
  #   math_ops.to_int32(word_indices % vocab_size,
  #       name="next_beam_word_ids")
  # would be a lot cleaner but for reasons unclear, that hides the results of
  # the op which prevents capturing it with tfdbg debug ops.
  raw_next_word_ids = math_ops.mod(word_indices, vocab_size,
                                   name="next_beam_word_ids")
  next_word_ids = math_ops.to_int32(raw_next_word_ids)
  next_beam_ids = math_ops.to_int32(word_indices / vocab_size,
                                    name="next_beam_parent_ids")

  # Append new ids to current predictions
  previously_finished = _tensor_gather_helper(
      gather_indices=next_beam_ids,
      gather_from=previously_finished,
      batch_size=batch_size,
      range_size=beam_width,
      gather_shape=[-1])
  next_finished = math_ops.logical_or(previously_finished,
                                      math_ops.equal(next_word_ids, end_token),
                                      name="next_beam_finished")

  # Calculate the length of the next predictions.
  # 1. Finished beams remain unchanged.
  # 2. Beams that are now finished (EOS predicted) have their length
  #    increased by 1.
  # 3. Beams that are not yet finished have their length increased by 1.
  lengths_to_add = math_ops.to_int64(math_ops.logical_not(previously_finished))
  next_prediction_len = _tensor_gather_helper(
      gather_indices=next_beam_ids,
      gather_from=beam_state.lengths,
      batch_size=batch_size,
      range_size=beam_width,
      gather_shape=[-1])
  next_prediction_len += lengths_to_add

  # Pick out the cell_states according to the next_beam_ids. We use a
  # different gather_shape here because the cell_state tensors, i.e.
  # the tensors that would be gathered from, all have dimension
  # greater than two and we need to preserve those dimensions.
  # pylint: disable=g-long-lambda
  next_cell_state = nest.map_structure(
      lambda gather_from: _maybe_tensor_gather_helper(
          gather_indices=next_beam_ids,
          gather_from=gather_from,
          batch_size=batch_size,
          range_size=beam_width,
          gather_shape=[batch_size * beam_width, -1]),
      next_cell_state)
  # pylint: enable=g-long-lambda

  next_state = BeamSearchDecoderState(
      cell_state=next_cell_state,
      log_probs=next_beam_probs,
      lengths=next_prediction_len,
      finished=next_finished)

  output = BeamSearchDecoderOutput(
      scores=next_beam_scores,
      predicted_ids=next_word_ids,
      parent_ids=next_beam_ids)

  return output, next_state


def _get_scores(log_probs, sequence_lengths, length_penalty_weight):
  """Calculates scores for beam search hypotheses.

  Args:
    log_probs: The log probabilities with shape
      `[batch_size, beam_width, vocab_size]`.
    sequence_lengths: The array of sequence lengths.
    length_penalty_weight: Float weight to penalize length. Disabled with 0.0.

  Returns:
    The scores normalized by the length_penalty.
  """
  length_penality_ = _length_penalty(
      sequence_lengths=sequence_lengths, penalty_factor=length_penalty_weight)
  return log_probs / length_penality_


def _length_penalty(sequence_lengths, penalty_factor):
  """Calculates the length penalty. See https://arxiv.org/abs/1609.08144.

  Returns the length penalty tensor:
  ```
  [(5+sequence_lengths)/6]**penalty_factor
  ```
  where all operations are performed element-wise.

  Args:
    sequence_lengths: `Tensor`, the sequence lengths of each hypotheses.
    penalty_factor: A scalar that weights the length penalty.

  Returns:
    If the penalty is `0`, returns the scalar `1.0`.  Otherwise returns
    the length penalty factor, a tensor with the same shape as
    `sequence_lengths`.
  """
  penalty_factor = ops.convert_to_tensor(penalty_factor, name="penalty_factor")
  penalty_factor.set_shape(())  # penalty should be a scalar.
  static_penalty = tensor_util.constant_value(penalty_factor)
  if static_penalty is not None and static_penalty == 0:
    return 1.0
  return math_ops.div((5. + math_ops.to_float(sequence_lengths))
                      **penalty_factor, (5. + 1.)**penalty_factor)


def _mask_probs(probs, eos_token, finished):
  """Masks log probabilities.

  The result is that finished beams allocate all probability mass to eos and
  unfinished beams remain unchanged.

  Args:
    probs: Log probabiltiies of shape `[batch_size, beam_width, vocab_size]`
    eos_token: An int32 id corresponding to the EOS token to allocate
      probability to.
    finished: A boolean tensor of shape `[batch_size, beam_width]` that
      specifies which elements in the beam are finished already.

  Returns:
    A tensor of shape `[batch_size, beam_width, vocab_size]`, where unfinished
    beams stay unchanged and finished beams are replaced with a tensor with all
    probability on the EOS token.
  """
  vocab_size = array_ops.shape(probs)[2]
  # All finished examples are replaced with a vector that has all
  # probability on EOS
  finished_row = array_ops.one_hot(
      eos_token,
      vocab_size,
      dtype=probs.dtype,
      on_value=0.,
      off_value=probs.dtype.min)
  finished_probs = array_ops.tile(
      array_ops.reshape(finished_row, [1, 1, -1]),
      array_ops.concat([array_ops.shape(finished), [1]], 0))
  finished_mask = array_ops.tile(
      array_ops.expand_dims(finished, 2), [1, 1, vocab_size])

  return array_ops.where(finished_mask, finished_probs, probs)


def _maybe_tensor_gather_helper(gather_indices, gather_from, batch_size,
                                range_size, gather_shape):
  """Maybe applies _tensor_gather_helper.

  This applies _tensor_gather_helper when the gather_from dims is at least as
  big as the length of gather_shape. This is used in conjunction with nest so
  that we don't apply _tensor_gather_helper to inapplicable values like scalars.

  Args:
    gather_indices: The tensor indices that we use to gather.
    gather_from: The tensor that we are gathering from.
    batch_size: The batch size.
    range_size: The number of values in each range. Likely equal to beam_width.
    gather_shape: What we should reshape gather_from to in order to preserve the
      correct values. An example is when gather_from is the attention from an
      AttentionWrapperState with shape [batch_size, beam_width, attention_size].
      There, we want to preserve the attention_size elements, so gather_shape is
      [batch_size * beam_width, -1]. Then, upon reshape, we still have the
      attention_size as desired.

  Returns:
    output: Gathered tensor of shape tf.shape(gather_from)[:1+len(gather_shape)]
      or the original tensor if its dimensions are too small.
  """
  _check_maybe(gather_from)
  if gather_from.shape.ndims >= len(gather_shape):
    return _tensor_gather_helper(
        gather_indices=gather_indices,
        gather_from=gather_from,
        batch_size=batch_size,
        range_size=range_size,
        gather_shape=gather_shape)
  else:
    return gather_from


def _tensor_gather_helper(gather_indices, gather_from, batch_size,
                          range_size, gather_shape, name=None):
  """Helper for gathering the right indices from the tensor.

  This works by reshaping gather_from to gather_shape (e.g. [-1]) and then
  gathering from that according to the gather_indices, which are offset by
  the right amounts in order to preserve the batch order.

  Args:
    gather_indices: The tensor indices that we use to gather.
    gather_from: The tensor that we are gathering from.
    batch_size: The input batch size.
    range_size: The number of values in each range. Likely equal to beam_width.
    gather_shape: What we should reshape gather_from to in order to preserve the
      correct values. An example is when gather_from is the attention from an
      AttentionWrapperState with shape [batch_size, beam_width, attention_size].
      There, we want to preserve the attention_size elements, so gather_shape is
      [batch_size * beam_width, -1]. Then, upon reshape, we still have the
      attention_size as desired.
    name: The tensor name for set of operations. By default this is
      'tensor_gather_helper'. The final output is named 'output'.

  Returns:
    output: Gathered tensor of shape tf.shape(gather_from)[:1+len(gather_shape)]
  """
  with ops.name_scope(name, "tensor_gather_helper"):
    range_ = array_ops.expand_dims(math_ops.range(batch_size) * range_size, 1)
    gather_indices = array_ops.reshape(gather_indices + range_, [-1])
    output = array_ops.gather(
        array_ops.reshape(gather_from, gather_shape), gather_indices)
    final_shape = array_ops.shape(gather_from)[:1 + len(gather_shape)]
    static_batch_size = tensor_util.constant_value(batch_size)
    final_static_shape = (tensor_shape.TensorShape([static_batch_size])
                          .concatenate(
                              gather_from.shape[1:1 + len(gather_shape)]))
    output = array_ops.reshape(output, final_shape, name="output")
    output.set_shape(final_static_shape)
    return output