aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/seq2seq/python/ops/attention_wrapper.py
blob: 1c9d179e3c55ad07fcf709f66028c91c20e8eea0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A powerful dynamic attention wrapper object."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import functools
import math

import numpy as np

from tensorflow.contrib.framework.python.framework import tensor_util
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.layers import base as layers_base
from tensorflow.python.layers import core as layers_core
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import clip_ops
from tensorflow.python.ops import functional_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import tensor_array_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.util import nest


__all__ = [
    "AttentionMechanism",
    "AttentionWrapper",
    "AttentionWrapperState",
    "LuongAttention",
    "BahdanauAttention",
    "hardmax",
    "safe_cumprod",
    "monotonic_attention",
    "BahdanauMonotonicAttention",
    "LuongMonotonicAttention",
]


_zero_state_tensors = rnn_cell_impl._zero_state_tensors  # pylint: disable=protected-access


class AttentionMechanism(object):

  @property
  def alignments_size(self):
    raise NotImplementedError

  @property
  def state_size(self):
    raise NotImplementedError


def _prepare_memory(memory, memory_sequence_length, check_inner_dims_defined):
  """Convert to tensor and possibly mask `memory`.

  Args:
    memory: `Tensor`, shaped `[batch_size, max_time, ...]`.
    memory_sequence_length: `int32` `Tensor`, shaped `[batch_size]`.
    check_inner_dims_defined: Python boolean.  If `True`, the `memory`
      argument's shape is checked to ensure all but the two outermost
      dimensions are fully defined.

  Returns:
    A (possibly masked), checked, new `memory`.

  Raises:
    ValueError: If `check_inner_dims_defined` is `True` and not
      `memory.shape[2:].is_fully_defined()`.
  """
  memory = nest.map_structure(
      lambda m: ops.convert_to_tensor(m, name="memory"), memory)
  if memory_sequence_length is not None:
    memory_sequence_length = ops.convert_to_tensor(
        memory_sequence_length, name="memory_sequence_length")
  if check_inner_dims_defined:
    def _check_dims(m):
      if not m.get_shape()[2:].is_fully_defined():
        raise ValueError("Expected memory %s to have fully defined inner dims, "
                         "but saw shape: %s" % (m.name, m.get_shape()))
    nest.map_structure(_check_dims, memory)
  if memory_sequence_length is None:
    seq_len_mask = None
  else:
    seq_len_mask = array_ops.sequence_mask(
        memory_sequence_length,
        maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
        dtype=nest.flatten(memory)[0].dtype)
    seq_len_batch_size = (
        memory_sequence_length.shape[0].value
        or array_ops.shape(memory_sequence_length)[0])
  def _maybe_mask(m, seq_len_mask):
    rank = m.get_shape().ndims
    rank = rank if rank is not None else array_ops.rank(m)
    extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
    m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
    if memory_sequence_length is not None:
      message = ("memory_sequence_length and memory tensor batch sizes do not "
                 "match.")
      with ops.control_dependencies([
          check_ops.assert_equal(
              seq_len_batch_size, m_batch_size, message=message)]):
        seq_len_mask = array_ops.reshape(
            seq_len_mask,
            array_ops.concat((array_ops.shape(seq_len_mask), extra_ones), 0))
        return m * seq_len_mask
    else:
      return m
  return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask), memory)


def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
  if memory_sequence_length is None:
    return score
  message = ("All values in memory_sequence_length must greater than zero.")
  with ops.control_dependencies(
      [check_ops.assert_positive(memory_sequence_length, message=message)]):
    score_mask = array_ops.sequence_mask(
        memory_sequence_length, maxlen=array_ops.shape(score)[1])
    score_mask_values = score_mask_value * array_ops.ones_like(score)
    return array_ops.where(score_mask, score, score_mask_values)


class _BaseAttentionMechanism(AttentionMechanism):
  """A base AttentionMechanism class providing common functionality.

  Common functionality includes:
    1. Storing the query and memory layers.
    2. Preprocessing and storing the memory.
  """

  def __init__(self,
               query_layer,
               memory,
               probability_fn,
               memory_sequence_length=None,
               memory_layer=None,
               check_inner_dims_defined=True,
               score_mask_value=None,
               name=None):
    """Construct base AttentionMechanism class.

    Args:
      query_layer: Callable.  Instance of `tf.layers.Layer`.  The layer's depth
        must match the depth of `memory_layer`.  If `query_layer` is not
        provided, the shape of `query` must match that of `memory_layer`.
      memory: The memory to query; usually the output of an RNN encoder.  This
        tensor should be shaped `[batch_size, max_time, ...]`.
      probability_fn: A `callable`.  Converts the score and previous alignments
        to probabilities. Its signature should be:
        `probabilities = probability_fn(score, state)`.
      memory_sequence_length (optional): Sequence lengths for the batch entries
        in memory.  If provided, the memory tensor rows are masked with zeros
        for values past the respective sequence lengths.
      memory_layer: Instance of `tf.layers.Layer` (may be None).  The layer's
        depth must match the depth of `query_layer`.
        If `memory_layer` is not provided, the shape of `memory` must match
        that of `query_layer`.
      check_inner_dims_defined: Python boolean.  If `True`, the `memory`
        argument's shape is checked to ensure all but the two outermost
        dimensions are fully defined.
      score_mask_value: (optional): The mask value for score before passing into
        `probability_fn`. The default is -inf. Only used if
        `memory_sequence_length` is not None.
      name: Name to use when creating ops.
    """
    if (query_layer is not None
        and not isinstance(query_layer, layers_base.Layer)):
      raise TypeError(
          "query_layer is not a Layer: %s" % type(query_layer).__name__)
    if (memory_layer is not None
        and not isinstance(memory_layer, layers_base.Layer)):
      raise TypeError(
          "memory_layer is not a Layer: %s" % type(memory_layer).__name__)
    self._query_layer = query_layer
    self._memory_layer = memory_layer
    self.dtype = memory_layer.dtype
    if not callable(probability_fn):
      raise TypeError("probability_fn must be callable, saw type: %s" %
                      type(probability_fn).__name__)
    if score_mask_value is None:
      score_mask_value = dtypes.as_dtype(
          self._memory_layer.dtype).as_numpy_dtype(-np.inf)
    self._probability_fn = lambda score, prev: (  # pylint:disable=g-long-lambda
        probability_fn(
            _maybe_mask_score(score, memory_sequence_length, score_mask_value),
            prev))
    with ops.name_scope(
        name, "BaseAttentionMechanismInit", nest.flatten(memory)):
      self._values = _prepare_memory(
          memory, memory_sequence_length,
          check_inner_dims_defined=check_inner_dims_defined)
      self._keys = (
          self.memory_layer(self._values) if self.memory_layer  # pylint: disable=not-callable
          else self._values)
      self._batch_size = (
          self._keys.shape[0].value or array_ops.shape(self._keys)[0])
      self._alignments_size = (self._keys.shape[1].value or
                               array_ops.shape(self._keys)[1])

  @property
  def memory_layer(self):
    return self._memory_layer

  @property
  def query_layer(self):
    return self._query_layer

  @property
  def values(self):
    return self._values

  @property
  def keys(self):
    return self._keys

  @property
  def batch_size(self):
    return self._batch_size

  @property
  def alignments_size(self):
    return self._alignments_size

  @property
  def state_size(self):
    return self._alignments_size

  def initial_alignments(self, batch_size, dtype):
    """Creates the initial alignment values for the `AttentionWrapper` class.

    This is important for AttentionMechanisms that use the previous alignment
    to calculate the alignment at the next time step (e.g. monotonic attention).

    The default behavior is to return a tensor of all zeros.

    Args:
      batch_size: `int32` scalar, the batch_size.
      dtype: The `dtype`.

    Returns:
      A `dtype` tensor shaped `[batch_size, alignments_size]`
      (`alignments_size` is the values' `max_time`).
    """
    max_time = self._alignments_size
    return _zero_state_tensors(max_time, batch_size, dtype)

  def initial_state(self, batch_size, dtype):
    """Creates the initial state values for the `AttentionWrapper` class.

    This is important for AttentionMechanisms that use the previous alignment
    to calculate the alignment at the next time step (e.g. monotonic attention).

    The default behavior is to return the same output as initial_alignments.

    Args:
      batch_size: `int32` scalar, the batch_size.
      dtype: The `dtype`.

    Returns:
      A structure of all-zero tensors with shapes as described by `state_size`.
    """
    return self.initial_alignments(batch_size, dtype)


def _luong_score(query, keys, scale):
  """Implements Luong-style (multiplicative) scoring function.

  This attention has two forms.  The first is standard Luong attention,
  as described in:

  Minh-Thang Luong, Hieu Pham, Christopher D. Manning.
  "Effective Approaches to Attention-based Neural Machine Translation."
  EMNLP 2015.  https://arxiv.org/abs/1508.04025

  The second is the scaled form inspired partly by the normalized form of
  Bahdanau attention.

  To enable the second form, call this function with `scale=True`.

  Args:
    query: Tensor, shape `[batch_size, num_units]` to compare to keys.
    keys: Processed memory, shape `[batch_size, max_time, num_units]`.
    scale: Whether to apply a scale to the score function.

  Returns:
    A `[batch_size, max_time]` tensor of unnormalized score values.

  Raises:
    ValueError: If `key` and `query` depths do not match.
  """
  depth = query.get_shape()[-1]
  key_units = keys.get_shape()[-1]
  if depth != key_units:
    raise ValueError(
        "Incompatible or unknown inner dimensions between query and keys.  "
        "Query (%s) has units: %s.  Keys (%s) have units: %s.  "
        "Perhaps you need to set num_units to the keys' dimension (%s)?"
        % (query, depth, keys, key_units, key_units))
  dtype = query.dtype

  # Reshape from [batch_size, depth] to [batch_size, 1, depth]
  # for matmul.
  query = array_ops.expand_dims(query, 1)

  # Inner product along the query units dimension.
  # matmul shapes: query is [batch_size, 1, depth] and
  #                keys is [batch_size, max_time, depth].
  # the inner product is asked to **transpose keys' inner shape** to get a
  # batched matmul on:
  #   [batch_size, 1, depth] . [batch_size, depth, max_time]
  # resulting in an output shape of:
  #   [batch_size, 1, max_time].
  # we then squeeze out the center singleton dimension.
  score = math_ops.matmul(query, keys, transpose_b=True)
  score = array_ops.squeeze(score, [1])

  if scale:
    # Scalar used in weight scaling
    g = variable_scope.get_variable(
        "attention_g", dtype=dtype,
        initializer=init_ops.ones_initializer, shape=())
    score = g * score
  return score


class LuongAttention(_BaseAttentionMechanism):
  """Implements Luong-style (multiplicative) attention scoring.

  This attention has two forms.  The first is standard Luong attention,
  as described in:

  Minh-Thang Luong, Hieu Pham, Christopher D. Manning.
  "Effective Approaches to Attention-based Neural Machine Translation."
  EMNLP 2015.  https://arxiv.org/abs/1508.04025

  The second is the scaled form inspired partly by the normalized form of
  Bahdanau attention.

  To enable the second form, construct the object with parameter
  `scale=True`.
  """

  def __init__(self,
               num_units,
               memory,
               memory_sequence_length=None,
               scale=False,
               probability_fn=None,
               score_mask_value=None,
               dtype=None,
               name="LuongAttention"):
    """Construct the AttentionMechanism mechanism.

    Args:
      num_units: The depth of the attention mechanism.
      memory: The memory to query; usually the output of an RNN encoder.  This
        tensor should be shaped `[batch_size, max_time, ...]`.
      memory_sequence_length: (optional) Sequence lengths for the batch entries
        in memory.  If provided, the memory tensor rows are masked with zeros
        for values past the respective sequence lengths.
      scale: Python boolean.  Whether to scale the energy term.
      probability_fn: (optional) A `callable`.  Converts the score to
        probabilities.  The default is @{tf.nn.softmax}. Other options include
        @{tf.contrib.seq2seq.hardmax} and @{tf.contrib.sparsemax.sparsemax}.
        Its signature should be: `probabilities = probability_fn(score)`.
      score_mask_value: (optional) The mask value for score before passing into
        `probability_fn`. The default is -inf. Only used if
        `memory_sequence_length` is not None.
      dtype: The data type for the memory layer of the attention mechanism.
      name: Name to use when creating ops.
    """
    # For LuongAttention, we only transform the memory layer; thus
    # num_units **must** match expected the query depth.
    if probability_fn is None:
      probability_fn = nn_ops.softmax
    if dtype is None:
      dtype = dtypes.float32
    wrapped_probability_fn = lambda score, _: probability_fn(score)
    super(LuongAttention, self).__init__(
        query_layer=None,
        memory_layer=layers_core.Dense(
            num_units, name="memory_layer", use_bias=False, dtype=dtype),
        memory=memory,
        probability_fn=wrapped_probability_fn,
        memory_sequence_length=memory_sequence_length,
        score_mask_value=score_mask_value,
        name=name)
    self._num_units = num_units
    self._scale = scale
    self._name = name

  def __call__(self, query, state):
    """Score the query based on the keys and values.

    Args:
      query: Tensor of dtype matching `self.values` and shape
        `[batch_size, query_depth]`.
      state: Tensor of dtype matching `self.values` and shape
        `[batch_size, alignments_size]`
        (`alignments_size` is memory's `max_time`).

    Returns:
      alignments: Tensor of dtype matching `self.values` and shape
        `[batch_size, alignments_size]` (`alignments_size` is memory's
        `max_time`).
    """
    with variable_scope.variable_scope(None, "luong_attention", [query]):
      score = _luong_score(query, self._keys, self._scale)
    alignments = self._probability_fn(score, state)
    next_state = alignments
    return alignments, next_state


def _bahdanau_score(processed_query, keys, normalize):
  """Implements Bahdanau-style (additive) scoring function.

  This attention has two forms.  The first is Bhandanau attention,
  as described in:

  Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio.
  "Neural Machine Translation by Jointly Learning to Align and Translate."
  ICLR 2015. https://arxiv.org/abs/1409.0473

  The second is the normalized form.  This form is inspired by the
  weight normalization article:

  Tim Salimans, Diederik P. Kingma.
  "Weight Normalization: A Simple Reparameterization to Accelerate
   Training of Deep Neural Networks."
  https://arxiv.org/abs/1602.07868

  To enable the second form, set `normalize=True`.

  Args:
    processed_query: Tensor, shape `[batch_size, num_units]` to compare to keys.
    keys: Processed memory, shape `[batch_size, max_time, num_units]`.
    normalize: Whether to normalize the score function.

  Returns:
    A `[batch_size, max_time]` tensor of unnormalized score values.
  """
  dtype = processed_query.dtype
  # Get the number of hidden units from the trailing dimension of keys
  num_units = keys.shape[2].value or array_ops.shape(keys)[2]
  # Reshape from [batch_size, ...] to [batch_size, 1, ...] for broadcasting.
  processed_query = array_ops.expand_dims(processed_query, 1)
  v = variable_scope.get_variable(
      "attention_v", [num_units], dtype=dtype)
  if normalize:
    # Scalar used in weight normalization
    g = variable_scope.get_variable(
        "attention_g", dtype=dtype,
        initializer=init_ops.constant_initializer(math.sqrt((1. / num_units))),
        shape=())
    # Bias added prior to the nonlinearity
    b = variable_scope.get_variable(
        "attention_b", [num_units], dtype=dtype,
        initializer=init_ops.zeros_initializer())
    # normed_v = g * v / ||v||
    normed_v = g * v * math_ops.rsqrt(
        math_ops.reduce_sum(math_ops.square(v)))
    return math_ops.reduce_sum(
        normed_v * math_ops.tanh(keys + processed_query + b), [2])
  else:
    return math_ops.reduce_sum(v * math_ops.tanh(keys + processed_query), [2])


class BahdanauAttention(_BaseAttentionMechanism):
  """Implements Bahdanau-style (additive) attention.

  This attention has two forms.  The first is Bahdanau attention,
  as described in:

  Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio.
  "Neural Machine Translation by Jointly Learning to Align and Translate."
  ICLR 2015. https://arxiv.org/abs/1409.0473

  The second is the normalized form.  This form is inspired by the
  weight normalization article:

  Tim Salimans, Diederik P. Kingma.
  "Weight Normalization: A Simple Reparameterization to Accelerate
   Training of Deep Neural Networks."
  https://arxiv.org/abs/1602.07868

  To enable the second form, construct the object with parameter
  `normalize=True`.
  """

  def __init__(self,
               num_units,
               memory,
               memory_sequence_length=None,
               normalize=False,
               probability_fn=None,
               score_mask_value=None,
               dtype=None,
               name="BahdanauAttention"):
    """Construct the Attention mechanism.

    Args:
      num_units: The depth of the query mechanism.
      memory: The memory to query; usually the output of an RNN encoder.  This
        tensor should be shaped `[batch_size, max_time, ...]`.
      memory_sequence_length (optional): Sequence lengths for the batch entries
        in memory.  If provided, the memory tensor rows are masked with zeros
        for values past the respective sequence lengths.
      normalize: Python boolean.  Whether to normalize the energy term.
      probability_fn: (optional) A `callable`.  Converts the score to
        probabilities.  The default is @{tf.nn.softmax}. Other options include
        @{tf.contrib.seq2seq.hardmax} and @{tf.contrib.sparsemax.sparsemax}.
        Its signature should be: `probabilities = probability_fn(score)`.
      score_mask_value: (optional): The mask value for score before passing into
        `probability_fn`. The default is -inf. Only used if
        `memory_sequence_length` is not None.
      dtype: The data type for the query and memory layers of the attention
        mechanism.
      name: Name to use when creating ops.
    """
    if probability_fn is None:
      probability_fn = nn_ops.softmax
    if dtype is None:
      dtype = dtypes.float32
    wrapped_probability_fn = lambda score, _: probability_fn(score)
    super(BahdanauAttention, self).__init__(
        query_layer=layers_core.Dense(
            num_units, name="query_layer", use_bias=False, dtype=dtype),
        memory_layer=layers_core.Dense(
            num_units, name="memory_layer", use_bias=False, dtype=dtype),
        memory=memory,
        probability_fn=wrapped_probability_fn,
        memory_sequence_length=memory_sequence_length,
        score_mask_value=score_mask_value,
        name=name)
    self._num_units = num_units
    self._normalize = normalize
    self._name = name

  def __call__(self, query, state):
    """Score the query based on the keys and values.

    Args:
      query: Tensor of dtype matching `self.values` and shape
        `[batch_size, query_depth]`.
      state: Tensor of dtype matching `self.values` and shape
        `[batch_size, alignments_size]`
        (`alignments_size` is memory's `max_time`).

    Returns:
      alignments: Tensor of dtype matching `self.values` and shape
        `[batch_size, alignments_size]` (`alignments_size` is memory's
        `max_time`).
    """
    with variable_scope.variable_scope(None, "bahdanau_attention", [query]):
      processed_query = self.query_layer(query) if self.query_layer else query
      score = _bahdanau_score(processed_query, self._keys, self._normalize)
    alignments = self._probability_fn(score, state)
    next_state = alignments
    return alignments, next_state


def safe_cumprod(x, *args, **kwargs):
  """Computes cumprod of x in logspace using cumsum to avoid underflow.

  The cumprod function and its gradient can result in numerical instabilities
  when its argument has very small and/or zero values.  As long as the argument
  is all positive, we can instead compute the cumulative product as
  exp(cumsum(log(x))).  This function can be called identically to tf.cumprod.

  Args:
    x: Tensor to take the cumulative product of.
    *args: Passed on to cumsum; these are identical to those in cumprod.
    **kwargs: Passed on to cumsum; these are identical to those in cumprod.
  Returns:
    Cumulative product of x.
  """
  with ops.name_scope(None, "SafeCumprod", [x]):
    x = ops.convert_to_tensor(x, name="x")
    tiny = np.finfo(x.dtype.as_numpy_dtype).tiny
    return math_ops.exp(math_ops.cumsum(
        math_ops.log(clip_ops.clip_by_value(x, tiny, 1)), *args, **kwargs))


def monotonic_attention(p_choose_i, previous_attention, mode):
  """Compute monotonic attention distribution from choosing probabilities.

  Monotonic attention implies that the input sequence is processed in an
  explicitly left-to-right manner when generating the output sequence.  In
  addition, once an input sequence element is attended to at a given output
  timestep, elements occurring before it cannot be attended to at subsequent
  output timesteps.  This function generates attention distributions according
  to these assumptions.  For more information, see `Online and Linear-Time
  Attention by Enforcing Monotonic Alignments`.

  Args:
    p_choose_i: Probability of choosing input sequence/memory element i.  Should
      be of shape (batch_size, input_sequence_length), and should all be in the
      range [0, 1].
    previous_attention: The attention distribution from the previous output
      timestep.  Should be of shape (batch_size, input_sequence_length).  For
      the first output timestep, preevious_attention[n] should be [1, 0, 0, ...,
      0] for all n in [0, ... batch_size - 1].
    mode: How to compute the attention distribution.  Must be one of
      'recursive', 'parallel', or 'hard'.
        * 'recursive' uses tf.scan to recursively compute the distribution.
          This is slowest but is exact, general, and does not suffer from
          numerical instabilities.
        * 'parallel' uses parallelized cumulative-sum and cumulative-product
          operations to compute a closed-form solution to the recurrence
          relation defining the attention distribution.  This makes it more
          efficient than 'recursive', but it requires numerical checks which
          make the distribution non-exact.  This can be a problem in particular
          when input_sequence_length is long and/or p_choose_i has entries very
          close to 0 or 1.
        * 'hard' requires that the probabilities in p_choose_i are all either 0
          or 1, and subsequently uses a more efficient and exact solution.

  Returns:
    A tensor of shape (batch_size, input_sequence_length) representing the
    attention distributions for each sequence in the batch.

  Raises:
    ValueError: mode is not one of 'recursive', 'parallel', 'hard'.
  """
  # Force things to be tensors
  p_choose_i = ops.convert_to_tensor(p_choose_i, name="p_choose_i")
  previous_attention = ops.convert_to_tensor(
      previous_attention, name="previous_attention")
  if mode == "recursive":
    # Use .shape[0].value when it's not None, or fall back on symbolic shape
    batch_size = p_choose_i.shape[0].value or array_ops.shape(p_choose_i)[0]
    # Compute [1, 1 - p_choose_i[0], 1 - p_choose_i[1], ..., 1 - p_choose_i[-2]]
    shifted_1mp_choose_i = array_ops.concat(
        [array_ops.ones((batch_size, 1)), 1 - p_choose_i[:, :-1]], 1)
    # Compute attention distribution recursively as
    # q[i] = (1 - p_choose_i[i - 1])*q[i - 1] + previous_attention[i]
    # attention[i] = p_choose_i[i]*q[i]
    attention = p_choose_i*array_ops.transpose(functional_ops.scan(
        # Need to use reshape to remind TF of the shape between loop iterations
        lambda x, yz: array_ops.reshape(yz[0]*x + yz[1], (batch_size,)),
        # Loop variables yz[0] and yz[1]
        [array_ops.transpose(shifted_1mp_choose_i),
         array_ops.transpose(previous_attention)],
        # Initial value of x is just zeros
        array_ops.zeros((batch_size,))))
  elif mode == "parallel":
    # safe_cumprod computes cumprod in logspace with numeric checks
    cumprod_1mp_choose_i = safe_cumprod(1 - p_choose_i, axis=1, exclusive=True)
    # Compute recurrence relation solution
    attention = p_choose_i*cumprod_1mp_choose_i*math_ops.cumsum(
        previous_attention /
        # Clip cumprod_1mp to avoid divide-by-zero
        clip_ops.clip_by_value(cumprod_1mp_choose_i, 1e-10, 1.), axis=1)
  elif mode == "hard":
    # Remove any probabilities before the index chosen last time step
    p_choose_i *= math_ops.cumsum(previous_attention, axis=1)
    # Now, use exclusive cumprod to remove probabilities after the first
    # chosen index, like so:
    # p_choose_i = [0, 0, 0, 1, 1, 0, 1, 1]
    # cumprod(1 - p_choose_i, exclusive=True) = [1, 1, 1, 1, 0, 0, 0, 0]
    # Product of above: [0, 0, 0, 1, 0, 0, 0, 0]
    attention = p_choose_i*math_ops.cumprod(
        1 - p_choose_i, axis=1, exclusive=True)
  else:
    raise ValueError("mode must be 'recursive', 'parallel', or 'hard'.")
  return attention


def _monotonic_probability_fn(score, previous_alignments, sigmoid_noise, mode,
                              seed=None):
  """Attention probability function for monotonic attention.

  Takes in unnormalized attention scores, adds pre-sigmoid noise to encourage
  the model to make discrete attention decisions, passes them through a sigmoid
  to obtain "choosing" probabilities, and then calls monotonic_attention to
  obtain the attention distribution.  For more information, see

  Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck,
  "Online and Linear-Time Attention by Enforcing Monotonic Alignments."
  ICML 2017.  https://arxiv.org/abs/1704.00784

  Args:
    score: Unnormalized attention scores, shape `[batch_size, alignments_size]`
    previous_alignments: Previous attention distribution, shape
      `[batch_size, alignments_size]`
    sigmoid_noise: Standard deviation of pre-sigmoid noise.  Setting this larger
      than 0 will encourage the model to produce large attention scores,
      effectively making the choosing probabilities discrete and the resulting
      attention distribution one-hot.  It should be set to 0 at test-time, and
      when hard attention is not desired.
    mode: How to compute the attention distribution.  Must be one of
      'recursive', 'parallel', or 'hard'.  See the docstring for
      `tf.contrib.seq2seq.monotonic_attention` for more information.
    seed: (optional) Random seed for pre-sigmoid noise.

  Returns:
    A `[batch_size, alignments_size]`-shape tensor corresponding to the
    resulting attention distribution.
  """
  # Optionally add pre-sigmoid noise to the scores
  if sigmoid_noise > 0:
    noise = random_ops.random_normal(array_ops.shape(score), dtype=score.dtype,
                                     seed=seed)
    score += sigmoid_noise*noise
  # Compute "choosing" probabilities from the attention scores
  if mode == "hard":
    # When mode is hard, use a hard sigmoid
    p_choose_i = math_ops.cast(score > 0, score.dtype)
  else:
    p_choose_i = math_ops.sigmoid(score)
  # Convert from choosing probabilities to attention distribution
  return monotonic_attention(p_choose_i, previous_alignments, mode)


class _BaseMonotonicAttentionMechanism(_BaseAttentionMechanism):
  """Base attention mechanism for monotonic attention.

  Simply overrides the initial_alignments function to provide a dirac
  distribution, which is needed in order for the monotonic attention
  distributions to have the correct behavior.
  """

  def initial_alignments(self, batch_size, dtype):
    """Creates the initial alignment values for the monotonic attentions.

    Initializes to dirac distributions, i.e. [1, 0, 0, ...memory length..., 0]
    for all entries in the batch.

    Args:
      batch_size: `int32` scalar, the batch_size.
      dtype: The `dtype`.

    Returns:
      A `dtype` tensor shaped `[batch_size, alignments_size]`
      (`alignments_size` is the values' `max_time`).
    """
    max_time = self._alignments_size
    return array_ops.one_hot(
        array_ops.zeros((batch_size,), dtype=dtypes.int32), max_time,
        dtype=dtype)


class BahdanauMonotonicAttention(_BaseMonotonicAttentionMechanism):
  """Monotonic attention mechanism with Bahadanau-style energy function.

  This type of attention enforces a monotonic constraint on the attention
  distributions; that is once the model attends to a given point in the memory
  it can't attend to any prior points at subsequence output timesteps.  It
  achieves this by using the _monotonic_probability_fn instead of softmax to
  construct its attention distributions.  Since the attention scores are passed
  through a sigmoid, a learnable scalar bias parameter is applied after the
  score function and before the sigmoid.  Otherwise, it is equivalent to
  BahdanauAttention.  This approach is proposed in

  Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck,
  "Online and Linear-Time Attention by Enforcing Monotonic Alignments."
  ICML 2017.  https://arxiv.org/abs/1704.00784
  """

  def __init__(self,
               num_units,
               memory,
               memory_sequence_length=None,
               normalize=False,
               score_mask_value=None,
               sigmoid_noise=0.,
               sigmoid_noise_seed=None,
               score_bias_init=0.,
               mode="parallel",
               dtype=None,
               name="BahdanauMonotonicAttention"):
    """Construct the Attention mechanism.

    Args:
      num_units: The depth of the query mechanism.
      memory: The memory to query; usually the output of an RNN encoder.  This
        tensor should be shaped `[batch_size, max_time, ...]`.
      memory_sequence_length (optional): Sequence lengths for the batch entries
        in memory.  If provided, the memory tensor rows are masked with zeros
        for values past the respective sequence lengths.
      normalize: Python boolean.  Whether to normalize the energy term.
      score_mask_value: (optional): The mask value for score before passing into
        `probability_fn`. The default is -inf. Only used if
        `memory_sequence_length` is not None.
      sigmoid_noise: Standard deviation of pre-sigmoid noise.  See the docstring
        for `_monotonic_probability_fn` for more information.
      sigmoid_noise_seed: (optional) Random seed for pre-sigmoid noise.
      score_bias_init: Initial value for score bias scalar.  It's recommended to
        initialize this to a negative value when the length of the memory is
        large.
      mode: How to compute the attention distribution.  Must be one of
        'recursive', 'parallel', or 'hard'.  See the docstring for
        `tf.contrib.seq2seq.monotonic_attention` for more information.
      dtype: The data type for the query and memory layers of the attention
        mechanism.
      name: Name to use when creating ops.
    """
    # Set up the monotonic probability fn with supplied parameters
    if dtype is None:
      dtype = dtypes.float32
    wrapped_probability_fn = functools.partial(
        _monotonic_probability_fn, sigmoid_noise=sigmoid_noise, mode=mode,
        seed=sigmoid_noise_seed)
    super(BahdanauMonotonicAttention, self).__init__(
        query_layer=layers_core.Dense(
            num_units, name="query_layer", use_bias=False, dtype=dtype),
        memory_layer=layers_core.Dense(
            num_units, name="memory_layer", use_bias=False, dtype=dtype),
        memory=memory,
        probability_fn=wrapped_probability_fn,
        memory_sequence_length=memory_sequence_length,
        score_mask_value=score_mask_value,
        name=name)
    self._num_units = num_units
    self._normalize = normalize
    self._name = name
    self._score_bias_init = score_bias_init

  def __call__(self, query, state):
    """Score the query based on the keys and values.

    Args:
      query: Tensor of dtype matching `self.values` and shape
        `[batch_size, query_depth]`.
      state: Tensor of dtype matching `self.values` and shape
        `[batch_size, alignments_size]`
        (`alignments_size` is memory's `max_time`).

    Returns:
      alignments: Tensor of dtype matching `self.values` and shape
        `[batch_size, alignments_size]` (`alignments_size` is memory's
        `max_time`).
    """
    with variable_scope.variable_scope(
        None, "bahdanau_monotonic_attention", [query]):
      processed_query = self.query_layer(query) if self.query_layer else query
      score = _bahdanau_score(processed_query, self._keys, self._normalize)
      score_bias = variable_scope.get_variable(
          "attention_score_bias", dtype=processed_query.dtype,
          initializer=self._score_bias_init)
      score += score_bias
    alignments = self._probability_fn(score, state)
    next_state = alignments
    return alignments, next_state


class LuongMonotonicAttention(_BaseMonotonicAttentionMechanism):
  """Monotonic attention mechanism with Luong-style energy function.

  This type of attention enforces a monotonic constraint on the attention
  distributions; that is once the model attends to a given point in the memory
  it can't attend to any prior points at subsequence output timesteps.  It
  achieves this by using the _monotonic_probability_fn instead of softmax to
  construct its attention distributions.  Otherwise, it is equivalent to
  LuongAttention.  This approach is proposed in

  Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck,
  "Online and Linear-Time Attention by Enforcing Monotonic Alignments."
  ICML 2017.  https://arxiv.org/abs/1704.00784
  """

  def __init__(self,
               num_units,
               memory,
               memory_sequence_length=None,
               scale=False,
               score_mask_value=None,
               sigmoid_noise=0.,
               sigmoid_noise_seed=None,
               score_bias_init=0.,
               mode="parallel",
               dtype=None,
               name="LuongMonotonicAttention"):
    """Construct the Attention mechanism.

    Args:
      num_units: The depth of the query mechanism.
      memory: The memory to query; usually the output of an RNN encoder.  This
        tensor should be shaped `[batch_size, max_time, ...]`.
      memory_sequence_length (optional): Sequence lengths for the batch entries
        in memory.  If provided, the memory tensor rows are masked with zeros
        for values past the respective sequence lengths.
      scale: Python boolean.  Whether to scale the energy term.
      score_mask_value: (optional): The mask value for score before passing into
        `probability_fn`. The default is -inf. Only used if
        `memory_sequence_length` is not None.
      sigmoid_noise: Standard deviation of pre-sigmoid noise.  See the docstring
        for `_monotonic_probability_fn` for more information.
      sigmoid_noise_seed: (optional) Random seed for pre-sigmoid noise.
      score_bias_init: Initial value for score bias scalar.  It's recommended to
        initialize this to a negative value when the length of the memory is
        large.
      mode: How to compute the attention distribution.  Must be one of
        'recursive', 'parallel', or 'hard'.  See the docstring for
        `tf.contrib.seq2seq.monotonic_attention` for more information.
      dtype: The data type for the query and memory layers of the attention
        mechanism.
      name: Name to use when creating ops.
    """
    # Set up the monotonic probability fn with supplied parameters
    if dtype is None:
      dtype = dtypes.float32
    wrapped_probability_fn = functools.partial(
        _monotonic_probability_fn, sigmoid_noise=sigmoid_noise, mode=mode,
        seed=sigmoid_noise_seed)
    super(LuongMonotonicAttention, self).__init__(
        query_layer=None,
        memory_layer=layers_core.Dense(
            num_units, name="memory_layer", use_bias=False, dtype=dtype),
        memory=memory,
        probability_fn=wrapped_probability_fn,
        memory_sequence_length=memory_sequence_length,
        score_mask_value=score_mask_value,
        name=name)
    self._num_units = num_units
    self._scale = scale
    self._score_bias_init = score_bias_init
    self._name = name

  def __call__(self, query, state):
    """Score the query based on the keys and values.

    Args:
      query: Tensor of dtype matching `self.values` and shape
        `[batch_size, query_depth]`.
      state: Tensor of dtype matching `self.values` and shape
        `[batch_size, alignments_size]`
        (`alignments_size` is memory's `max_time`).

    Returns:
      alignments: Tensor of dtype matching `self.values` and shape
        `[batch_size, alignments_size]` (`alignments_size` is memory's
        `max_time`).
    """
    with variable_scope.variable_scope(None, "luong_monotonic_attention",
                                       [query]):
      score = _luong_score(query, self._keys, self._scale)
      score_bias = variable_scope.get_variable(
          "attention_score_bias", dtype=query.dtype,
          initializer=self._score_bias_init)
      score += score_bias
    alignments = self._probability_fn(score, state)
    next_state = alignments
    return alignments, next_state


class AttentionWrapperState(
    collections.namedtuple("AttentionWrapperState",
                           ("cell_state", "attention", "time", "alignments",
                            "alignment_history", "attention_state"))):
  """`namedtuple` storing the state of a `AttentionWrapper`.

  Contains:

    - `cell_state`: The state of the wrapped `RNNCell` at the previous time
      step.
    - `attention`: The attention emitted at the previous time step.
    - `time`: int32 scalar containing the current time step.
    - `alignments`: A single or tuple of `Tensor`(s) containing the alignments
       emitted at the previous time step for each attention mechanism.
    - `alignment_history`: (if enabled) a single or tuple of `TensorArray`(s)
       containing alignment matrices from all time steps for each attention
       mechanism. Call `stack()` on each to convert to a `Tensor`.
    - `attention_state`: A single or tuple of nested objects
       containing attention mechanism state for each attention mechanism.
       The objects may contain Tensors or TensorArrays.
  """

  def clone(self, **kwargs):
    """Clone this object, overriding components provided by kwargs.

    The new state fields' shape must match original state fields' shape. This
    will be validated, and original fields' shape will be propagated to new
    fields.

    Example:

    ```python
    initial_state = attention_wrapper.zero_state(dtype=..., batch_size=...)
    initial_state = initial_state.clone(cell_state=encoder_state)
    ```

    Args:
      **kwargs: Any properties of the state object to replace in the returned
        `AttentionWrapperState`.

    Returns:
      A new `AttentionWrapperState` whose properties are the same as
      this one, except any overridden properties as provided in `kwargs`.
    """
    def with_same_shape(old, new):
      """Check and set new tensor's shape."""
      if isinstance(old, ops.Tensor) and isinstance(new, ops.Tensor):
        return tensor_util.with_same_shape(old, new)
      return new

    return nest.map_structure(
        with_same_shape,
        self,
        super(AttentionWrapperState, self)._replace(**kwargs))


def hardmax(logits, name=None):
  """Returns batched one-hot vectors.

  The depth index containing the `1` is that of the maximum logit value.

  Args:
    logits: A batch tensor of logit values.
    name: Name to use when creating ops.
  Returns:
    A batched one-hot tensor.
  """
  with ops.name_scope(name, "Hardmax", [logits]):
    logits = ops.convert_to_tensor(logits, name="logits")
    if logits.get_shape()[-1].value is not None:
      depth = logits.get_shape()[-1].value
    else:
      depth = array_ops.shape(logits)[-1]
    return array_ops.one_hot(
        math_ops.argmax(logits, -1), depth, dtype=logits.dtype)


def _compute_attention(attention_mechanism, cell_output, attention_state,
                       attention_layer):
  """Computes the attention and alignments for a given attention_mechanism."""
  alignments, next_attention_state = attention_mechanism(
      cell_output, state=attention_state)

  # Reshape from [batch_size, memory_time] to [batch_size, 1, memory_time]
  expanded_alignments = array_ops.expand_dims(alignments, 1)
  # Context is the inner product of alignments and values along the
  # memory time dimension.
  # alignments shape is
  #   [batch_size, 1, memory_time]
  # attention_mechanism.values shape is
  #   [batch_size, memory_time, memory_size]
  # the batched matmul is over memory_time, so the output shape is
  #   [batch_size, 1, memory_size].
  # we then squeeze out the singleton dim.
  context = math_ops.matmul(expanded_alignments, attention_mechanism.values)
  context = array_ops.squeeze(context, [1])

  if attention_layer is not None:
    attention = attention_layer(array_ops.concat([cell_output, context], 1))
  else:
    attention = context

  return attention, alignments, next_attention_state


class AttentionWrapper(rnn_cell_impl.RNNCell):
  """Wraps another `RNNCell` with attention.
  """

  def __init__(self,
               cell,
               attention_mechanism,
               attention_layer_size=None,
               alignment_history=False,
               cell_input_fn=None,
               output_attention=True,
               initial_cell_state=None,
               name=None,
               attention_layer=None):
    """Construct the `AttentionWrapper`.

    **NOTE** If you are using the `BeamSearchDecoder` with a cell wrapped in
    `AttentionWrapper`, then you must ensure that:

    - The encoder output has been tiled to `beam_width` via
      @{tf.contrib.seq2seq.tile_batch} (NOT `tf.tile`).
    - The `batch_size` argument passed to the `zero_state` method of this
      wrapper is equal to `true_batch_size * beam_width`.
    - The initial state created with `zero_state` above contains a
      `cell_state` value containing properly tiled final state from the
      encoder.

    An example:

    ```
    tiled_encoder_outputs = tf.contrib.seq2seq.tile_batch(
        encoder_outputs, multiplier=beam_width)
    tiled_encoder_final_state = tf.conrib.seq2seq.tile_batch(
        encoder_final_state, multiplier=beam_width)
    tiled_sequence_length = tf.contrib.seq2seq.tile_batch(
        sequence_length, multiplier=beam_width)
    attention_mechanism = MyFavoriteAttentionMechanism(
        num_units=attention_depth,
        memory=tiled_inputs,
        memory_sequence_length=tiled_sequence_length)
    attention_cell = AttentionWrapper(cell, attention_mechanism, ...)
    decoder_initial_state = attention_cell.zero_state(
        dtype, batch_size=true_batch_size * beam_width)
    decoder_initial_state = decoder_initial_state.clone(
        cell_state=tiled_encoder_final_state)
    ```

    Args:
      cell: An instance of `RNNCell`.
      attention_mechanism: A list of `AttentionMechanism` instances or a single
        instance.
      attention_layer_size: A list of Python integers or a single Python
        integer, the depth of the attention (output) layer(s). If None
        (default), use the context as attention at each time step. Otherwise,
        feed the context and cell output into the attention layer to generate
        attention at each time step. If attention_mechanism is a list,
        attention_layer_size must be a list of the same length. If
        attention_layer is set, this must be None.
      alignment_history: Python boolean, whether to store alignment history
        from all time steps in the final output state (currently stored as a
        time major `TensorArray` on which you must call `stack()`).
      cell_input_fn: (optional) A `callable`.  The default is:
        `lambda inputs, attention: array_ops.concat([inputs, attention], -1)`.
      output_attention: Python bool.  If `True` (default), the output at each
        time step is the attention value.  This is the behavior of Luong-style
        attention mechanisms.  If `False`, the output at each time step is
        the output of `cell`.  This is the behavior of Bhadanau-style
        attention mechanisms.  In both cases, the `attention` tensor is
        propagated to the next time step via the state and is used there.
        This flag only controls whether the attention mechanism is propagated
        up to the next cell in an RNN stack or to the top RNN output.
      initial_cell_state: The initial state value to use for the cell when
        the user calls `zero_state()`.  Note that if this value is provided
        now, and the user uses a `batch_size` argument of `zero_state` which
        does not match the batch size of `initial_cell_state`, proper
        behavior is not guaranteed.
      name: Name to use when creating ops.
      attention_layer: A list of `tf.layers.Layer` instances or a
        single `tf.layers.Layer` instance taking the context and cell output as
        inputs to generate attention at each time step. If None (default), use
        the context as attention at each time step. If attention_mechanism is a
        list, attention_layer must be a list of the same length. If
        attention_layers_size is set, this must be None.

    Raises:
      TypeError: `attention_layer_size` is not None and (`attention_mechanism`
        is a list but `attention_layer_size` is not; or vice versa).
      ValueError: if `attention_layer_size` is not None, `attention_mechanism`
        is a list, and its length does not match that of `attention_layer_size`;
        if `attention_layer_size` and `attention_layer` are set simultaneously.
    """
    super(AttentionWrapper, self).__init__(name=name)
    rnn_cell_impl.assert_like_rnncell("cell", cell)
    if isinstance(attention_mechanism, (list, tuple)):
      self._is_multi = True
      attention_mechanisms = attention_mechanism
      for attention_mechanism in attention_mechanisms:
        if not isinstance(attention_mechanism, AttentionMechanism):
          raise TypeError(
              "attention_mechanism must contain only instances of "
              "AttentionMechanism, saw type: %s"
              % type(attention_mechanism).__name__)
    else:
      self._is_multi = False
      if not isinstance(attention_mechanism, AttentionMechanism):
        raise TypeError(
            "attention_mechanism must be an AttentionMechanism or list of "
            "multiple AttentionMechanism instances, saw type: %s"
            % type(attention_mechanism).__name__)
      attention_mechanisms = (attention_mechanism,)

    if cell_input_fn is None:
      cell_input_fn = (
          lambda inputs, attention: array_ops.concat([inputs, attention], -1))
    else:
      if not callable(cell_input_fn):
        raise TypeError(
            "cell_input_fn must be callable, saw type: %s"
            % type(cell_input_fn).__name__)

    if attention_layer_size is not None and attention_layer is not None:
      raise ValueError("Only one of attention_layer_size and attention_layer "
                       "should be set")

    if attention_layer_size is not None:
      attention_layer_sizes = tuple(
          attention_layer_size
          if isinstance(attention_layer_size, (list, tuple))
          else (attention_layer_size,))
      if len(attention_layer_sizes) != len(attention_mechanisms):
        raise ValueError(
            "If provided, attention_layer_size must contain exactly one "
            "integer per attention_mechanism, saw: %d vs %d"
            % (len(attention_layer_sizes), len(attention_mechanisms)))
      self._attention_layers = tuple(
          layers_core.Dense(
              attention_layer_size,
              name="attention_layer",
              use_bias=False,
              dtype=attention_mechanisms[i].dtype)
          for i, attention_layer_size in enumerate(attention_layer_sizes))
      self._attention_layer_size = sum(attention_layer_sizes)
    elif attention_layer is not None:
      self._attention_layers = tuple(
          attention_layer
          if isinstance(attention_layer, (list, tuple))
          else (attention_layer,))
      if len(self._attention_layers) != len(attention_mechanisms):
        raise ValueError(
            "If provided, attention_layer must contain exactly one "
            "layer per attention_mechanism, saw: %d vs %d"
            % (len(self._attention_layers), len(attention_mechanisms)))
      self._attention_layer_size = sum(
          layer.compute_output_shape(
              [None,
               cell.output_size + mechanism.values.shape[-1].value])[-1].value
          for layer, mechanism in zip(
              self._attention_layers, attention_mechanisms))
    else:
      self._attention_layers = None
      self._attention_layer_size = sum(
          attention_mechanism.values.get_shape()[-1].value
          for attention_mechanism in attention_mechanisms)

    self._cell = cell
    self._attention_mechanisms = attention_mechanisms
    self._cell_input_fn = cell_input_fn
    self._output_attention = output_attention
    self._alignment_history = alignment_history
    with ops.name_scope(name, "AttentionWrapperInit"):
      if initial_cell_state is None:
        self._initial_cell_state = None
      else:
        final_state_tensor = nest.flatten(initial_cell_state)[-1]
        state_batch_size = (
            final_state_tensor.shape[0].value
            or array_ops.shape(final_state_tensor)[0])
        error_message = (
            "When constructing AttentionWrapper %s: " % self._base_name +
            "Non-matching batch sizes between the memory "
            "(encoder output) and initial_cell_state.  Are you using "
            "the BeamSearchDecoder?  You may need to tile your initial state "
            "via the tf.contrib.seq2seq.tile_batch function with argument "
            "multiple=beam_width.")
        with ops.control_dependencies(
            self._batch_size_checks(state_batch_size, error_message)):
          self._initial_cell_state = nest.map_structure(
              lambda s: array_ops.identity(s, name="check_initial_cell_state"),
              initial_cell_state)

  def _batch_size_checks(self, batch_size, error_message):
    return [check_ops.assert_equal(batch_size,
                                   attention_mechanism.batch_size,
                                   message=error_message)
            for attention_mechanism in self._attention_mechanisms]

  def _item_or_tuple(self, seq):
    """Returns `seq` as tuple or the singular element.

    Which is returned is determined by how the AttentionMechanism(s) were passed
    to the constructor.

    Args:
      seq: A non-empty sequence of items or generator.

    Returns:
       Either the values in the sequence as a tuple if AttentionMechanism(s)
       were passed to the constructor as a sequence or the singular element.
    """
    t = tuple(seq)
    if self._is_multi:
      return t
    else:
      return t[0]

  @property
  def output_size(self):
    if self._output_attention:
      return self._attention_layer_size
    else:
      return self._cell.output_size

  @property
  def state_size(self):
    """The `state_size` property of `AttentionWrapper`.

    Returns:
      An `AttentionWrapperState` tuple containing shapes used by this object.
    """
    return AttentionWrapperState(
        cell_state=self._cell.state_size,
        time=tensor_shape.TensorShape([]),
        attention=self._attention_layer_size,
        alignments=self._item_or_tuple(
            a.alignments_size for a in self._attention_mechanisms),
        attention_state=self._item_or_tuple(
            a.state_size for a in self._attention_mechanisms),
        alignment_history=self._item_or_tuple(
            a.alignments_size if self._alignment_history else ()
            for a in self._attention_mechanisms))  # sometimes a TensorArray

  def zero_state(self, batch_size, dtype):
    """Return an initial (zero) state tuple for this `AttentionWrapper`.

    **NOTE** Please see the initializer documentation for details of how
    to call `zero_state` if using an `AttentionWrapper` with a
    `BeamSearchDecoder`.

    Args:
      batch_size: `0D` integer tensor: the batch size.
      dtype: The internal state data type.

    Returns:
      An `AttentionWrapperState` tuple containing zeroed out tensors and,
      possibly, empty `TensorArray` objects.

    Raises:
      ValueError: (or, possibly at runtime, InvalidArgument), if
        `batch_size` does not match the output size of the encoder passed
        to the wrapper object at initialization time.
    """
    with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
      if self._initial_cell_state is not None:
        cell_state = self._initial_cell_state
      else:
        cell_state = self._cell.zero_state(batch_size, dtype)
      error_message = (
          "When calling zero_state of AttentionWrapper %s: " % self._base_name +
          "Non-matching batch sizes between the memory "
          "(encoder output) and the requested batch size.  Are you using "
          "the BeamSearchDecoder?  If so, make sure your encoder output has "
          "been tiled to beam_width via tf.contrib.seq2seq.tile_batch, and "
          "the batch_size= argument passed to zero_state is "
          "batch_size * beam_width.")
      with ops.control_dependencies(
          self._batch_size_checks(batch_size, error_message)):
        cell_state = nest.map_structure(
            lambda s: array_ops.identity(s, name="checked_cell_state"),
            cell_state)
      initial_alignments = [
          attention_mechanism.initial_alignments(batch_size, dtype)
          for attention_mechanism in self._attention_mechanisms]
      return AttentionWrapperState(
          cell_state=cell_state,
          time=array_ops.zeros([], dtype=dtypes.int32),
          attention=_zero_state_tensors(self._attention_layer_size, batch_size,
                                        dtype),
          alignments=self._item_or_tuple(initial_alignments),
          attention_state=self._item_or_tuple(
              attention_mechanism.initial_state(batch_size, dtype)
              for attention_mechanism in self._attention_mechanisms),
          alignment_history=self._item_or_tuple(
              tensor_array_ops.TensorArray(
                  dtype,
                  size=0,
                  dynamic_size=True,
                  element_shape=alignment.shape)
              if self._alignment_history else ()
              for alignment in initial_alignments))

  def call(self, inputs, state):
    """Perform a step of attention-wrapped RNN.

    - Step 1: Mix the `inputs` and previous step's `attention` output via
      `cell_input_fn`.
    - Step 2: Call the wrapped `cell` with this input and its previous state.
    - Step 3: Score the cell's output with `attention_mechanism`.
    - Step 4: Calculate the alignments by passing the score through the
      `normalizer`.
    - Step 5: Calculate the context vector as the inner product between the
      alignments and the attention_mechanism's values (memory).
    - Step 6: Calculate the attention output by concatenating the cell output
      and context through the attention layer (a linear layer with
      `attention_layer_size` outputs).

    Args:
      inputs: (Possibly nested tuple of) Tensor, the input at this time step.
      state: An instance of `AttentionWrapperState` containing
        tensors from the previous time step.

    Returns:
      A tuple `(attention_or_cell_output, next_state)`, where:

      - `attention_or_cell_output` depending on `output_attention`.
      - `next_state` is an instance of `AttentionWrapperState`
         containing the state calculated at this time step.

    Raises:
      TypeError: If `state` is not an instance of `AttentionWrapperState`.
    """
    if not isinstance(state, AttentionWrapperState):
      raise TypeError("Expected state to be instance of AttentionWrapperState. "
                      "Received type %s instead."  % type(state))

    # Step 1: Calculate the true inputs to the cell based on the
    # previous attention value.
    cell_inputs = self._cell_input_fn(inputs, state.attention)
    cell_state = state.cell_state
    cell_output, next_cell_state = self._cell(cell_inputs, cell_state)

    cell_batch_size = (
        cell_output.shape[0].value or array_ops.shape(cell_output)[0])
    error_message = (
        "When applying AttentionWrapper %s: " % self.name +
        "Non-matching batch sizes between the memory "
        "(encoder output) and the query (decoder output).  Are you using "
        "the BeamSearchDecoder?  You may need to tile your memory input via "
        "the tf.contrib.seq2seq.tile_batch function with argument "
        "multiple=beam_width.")
    with ops.control_dependencies(
        self._batch_size_checks(cell_batch_size, error_message)):
      cell_output = array_ops.identity(
          cell_output, name="checked_cell_output")

    if self._is_multi:
      previous_attention_state = state.attention_state
      previous_alignment_history = state.alignment_history
    else:
      previous_attention_state = [state.attention_state]
      previous_alignment_history = [state.alignment_history]

    all_alignments = []
    all_attentions = []
    all_attention_states = []
    maybe_all_histories = []
    for i, attention_mechanism in enumerate(self._attention_mechanisms):
      attention, alignments, next_attention_state = _compute_attention(
          attention_mechanism, cell_output, previous_attention_state[i],
          self._attention_layers[i] if self._attention_layers else None)
      alignment_history = previous_alignment_history[i].write(
          state.time, alignments) if self._alignment_history else ()

      all_attention_states.append(next_attention_state)
      all_alignments.append(alignments)
      all_attentions.append(attention)
      maybe_all_histories.append(alignment_history)

    attention = array_ops.concat(all_attentions, 1)
    next_state = AttentionWrapperState(
        time=state.time + 1,
        cell_state=next_cell_state,
        attention=attention,
        attention_state=self._item_or_tuple(all_attention_states),
        alignments=self._item_or_tuple(all_alignments),
        alignment_history=self._item_or_tuple(maybe_all_histories))

    if self._output_attention:
      return attention, next_state
    else:
      return cell_output, next_state