aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/quantization/tools/quantize_graph.py
blob: 0a814dadaefece37f8f0498e5c72c4f5bfd2b5c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Transforms a float-trained graph into an equivalent quantized version.

An example of command-line usage is:
bazel build tensorflow/contrib/quantization/tools:quantize_graph \
&& bazel-bin/tensorflow/contrib/quantization/tools/quantize_graph \
--input=tensorflow_inception_graph.pb
--output_node_names="softmax2" --print_nodes --output=/tmp/quantized_graph.pb \
--mode=eightbit --logtostderr

"""


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re
import numpy as np
import tensorflow as tf

from tensorflow.python.framework import graph_util
from tensorflow.python.framework import tensor_util

# TODO(petewarden) - Remove this ugly hack to get around Python linking problems
# with Bazel.
# pylint: disable=g-bad-import-order
from tensorflow.contrib.quantization import load_quantized_ops_so
from tensorflow.contrib.quantization.kernels import load_quantized_kernels_so


flags = tf.app.flags
FLAGS = flags.FLAGS

flags.DEFINE_boolean("print_nodes", False, """Lists all nodes in the model.""")
flags.DEFINE_string("input", "", """TensorFlow 'GraphDef' file to load.""")
flags.DEFINE_string("output_node_names", "",
                    """Output node names, comma separated.""")
flags.DEFINE_string("output", "", """File to save the output graph to.""")
flags.DEFINE_integer("bitdepth", 8,
                     """How many bits to quantize the graph to.""")
flags.DEFINE_string("mode", "round",
                    """What transformation to apply (round, quantize,"""
                    """ eightbit, weights, or weights_rounded).""")
flags.DEFINE_string("test_input_dims", "1,224,224,3",
                    """The size of the input tensor to use when testing a"""
                    """ graph loaded from a file.""")
flags.DEFINE_boolean("strip_redundant_quantization", True,
                     """Removes redundant dequantize/quantize pairs.""")
flags.DEFINE_boolean("load_quantization_so", True,
                     """Explicitly load the quantization ops library""")


def print_input_nodes(current_node, nodes_map, indent, already_visited):
  print(" " * indent + current_node.op + ":" + current_node.name)
  already_visited[current_node.name] = True
  for input_node_name in current_node.input:
    if input_node_name in already_visited:
      continue
    input_node = nodes_map[input_node_name]
    print_input_nodes(input_node, nodes_map, indent + 1, already_visited)


def create_node(op, name, inputs):
  new_node = tf.NodeDef()
  new_node.op = op
  new_node.name = name
  for input_name in inputs:
    new_node.input.extend([input_name])
  return new_node


def create_constant_node(name, value, dtype, shape=None):
  node = create_node("Const", name, [])
  set_attr_dtype(node, "dtype", dtype)
  set_attr_tensor(node, "value", value, dtype, shape)
  return node


def copy_attr(node, key, attr_value):
  try:
    node.attr[key].CopyFrom(attr_value)
  except KeyError:
    pass


def set_attr_dtype(node, key, value):
  try:
    node.attr[key].CopyFrom(tf.AttrValue(type=value.as_datatype_enum))
  except KeyError:
    pass


def set_attr_tensor(node, key, value, dtype, shape=None):
  try:
    node.attr[key].CopyFrom(tf.AttrValue(
        tensor=tensor_util.make_tensor_proto(value,
                                             dtype=dtype,
                                             shape=shape)))
  except KeyError:
    pass


def set_attr_string(node, key, value):
  try:
    node.attr[key].CopyFrom(tf.AttrValue(s=value))
  except KeyError:
    pass


def set_attr_int_list(node, key, value):
  list_value = tf.AttrValue.ListValue(i=value)
  try:
    node.attr[key].CopyFrom(tf.AttrValue(list=list_value))
  except KeyError:
    pass


def set_attr_bool(node, key, value):
  try:
    node.attr[key].CopyFrom(tf.AttrValue(b=value))
  except KeyError:
    pass


def set_attr_int(node, key, value):
  try:
    node.attr[key].CopyFrom(tf.AttrValue(i=value))
  except KeyError:
    pass


def set_attr_float(node, key, value):
  try:
    node.attr[key].CopyFrom(tf.AttrValue(f=value))
  except KeyError:
    pass


def node_name_from_input(node_name):
  """Strips off ports and other decorations to get the underlying node name."""
  if node_name.startswith("^"):
    node_name = node_name[1:]
  m = re.search(r"(.*):\d+$", node_name)
  if m:
    node_name = m.group(1)
  return node_name


def ensure_tensor_name_has_port(node_name):
  """Makes sure that a tensor name has :0 if no explicit port exists."""
  m = re.search(r"(.*):\d+$", node_name)
  if m:
    name_with_port = node_name
  else:
    name_with_port = node_name + ":0"
  return name_with_port


def unique_node_name_from_input(node_name):
  """Replaces invalid characters in input names to get a unique node name."""
  return node_name.replace(":", "__port__").replace("^", "__hat__")


def quantize_array(arr, num_buckets):
  """Quantizes a numpy array.

  This function maps each scalar in arr to the center of one of num_buckets
  buckets. For instance,
  quantize_array([0, 0.3, 0.6, 1], 2) => [0.25, 0.25, 0.75, 0.75]

  Args:
    arr: The numpy array to quantize.
    num_buckets: The number of buckets to map "var" to.
  Returns:
    The quantized numpy array.
  Raises:
    ValueError: when num_buckets < 1.
  """
  if num_buckets < 1:
    raise ValueError("num_buckets must be >= 1")
  arr_max = arr.max()
  arr_min = arr.min()
  if arr_max == arr_min:
    return arr
  bucket_width = (arr_max - arr_min) / num_buckets
  # Map scalars to bucket indices. Take special care of max(arr).
  bucket_indices = np.floor((arr - arr_min) / bucket_width)
  bucket_indices[bucket_indices == num_buckets] = num_buckets - 1
  # Map each scalar to the center of a bucket.
  arr = arr_min + bucket_width * (bucket_indices + 0.5)
  return arr


def quantize_weight_rounded(input_node):
  """Returns a replacement node for input_node containing bucketed floats."""
  input_tensor = input_node.attr["value"].tensor
  tensor_value = tensor_util.MakeNdarray(input_tensor)
  tensor_shape = input_tensor.tensor_shape
  # Currently, the parameter FLAGS.bitdepth is used to compute the
  # number of buckets as 1 << FLAGS.bitdepth, meaning the number of
  # buckets can only be a power of 2.
  # This could be fixed by intorducing a new parameter, num_buckets,
  # which would allow for more flexibility in chosing the right model
  # size/accuracy tradeoff. But I didn't want to add more parameters
  # to this script than absolutely necessary.
  num_buckets = 1 << FLAGS.bitdepth
  tensor_value_rounded = quantize_array(tensor_value, num_buckets)
  tensor_shape_list = tensor_util.TensorShapeProtoToList(tensor_shape)
  return [create_constant_node(input_node.name, tensor_value_rounded,
                               tf.float32, shape=tensor_shape_list)]


def quantize_weight_eightbit(input_node, quantization_mode):
  """Returns replacement nodes for input_node using the Dequantize op."""
  base_name = input_node.name + "_"
  quint8_const_name = base_name + "quint8_const"
  min_name = base_name + "min"
  max_name = base_name + "max"
  float_tensor = tensor_util.MakeNdarray(
      input_node.attr["value"].tensor)
  min_value = np.min(float_tensor.flatten())
  max_value = np.max(float_tensor.flatten())
  # min_value == max_value is a tricky case. It can occur for general
  # tensors, and of course for scalars. The quantized ops cannot deal
  # with this case, so we set max_value to something else.
  # It's a tricky question what is the numerically best solution to
  # deal with this degeneracy.
  # TODO(petewarden): Better use a tolerance than a hard comparison?
  if min_value == max_value:
    if abs(min_value) < 0.000001:
      max_value = min_value + 1.0
    elif min_value > 0:
      max_value = 2 * min_value
    else:
      max_value = min_value / 2.0

  sess = tf.Session()
  with sess.as_default():
    quantize_op = tf.contrib.quantization.python.quantize_v2(
        float_tensor,
        min_value,
        max_value,
        tf.quint8,
        mode=quantization_mode)
    quint8_tensor = quantize_op[0].eval()
  shape = tensor_util.TensorShapeProtoToList(input_node.attr[
      "value"].tensor.tensor_shape)
  quint8_const_node = create_constant_node(quint8_const_name,
                                           quint8_tensor,
                                           tf.quint8,
                                           shape=shape)
  min_node = create_constant_node(min_name, min_value, tf.float32)
  max_node = create_constant_node(max_name, max_value, tf.float32)
  dequantize_node = create_node("Dequantize", input_node.name,
                                [quint8_const_name, min_name, max_name])
  set_attr_dtype(dequantize_node, "T", tf.quint8)
  set_attr_string(dequantize_node, "mode", quantization_mode)
  return [quint8_const_node, min_node, max_node, dequantize_node]


class GraphRewriter(object):
  """Takes a float graph, and rewrites it in quantized form."""

  def __init__(self, input_graph, mode):
    """Sets up the class to rewrite a float graph.

    Args:
      input_graph: A float graph to transform.
      mode: A string controlling how quantization is performed -
        round, quantize, eightbit, or weights.

    Raises:
      ValueError: Two nodes with the same name were found in the graph.
    """
    self.input_graph = input_graph
    self.nodes_map = self.create_nodes_map(input_graph)
    self.output_graph = None
    self.mode = mode
    if FLAGS.load_quantization_so:
      load_quantized_ops_so.Load()
      load_quantized_kernels_so.Load()

  def create_nodes_map(self, graph):
    """Builds a mapping of node names to their defs from the graph."""
    nodes_map = {}
    for node in graph.node:
      if node.name not in nodes_map.keys():
        nodes_map[node.name] = node
      else:
        raise ValueError("Duplicate node names detected.")
    return nodes_map

  def rewrite(self, output_node_names):
    """Triggers rewriting of the float graph.

    Args:
      output_node_names: A list of names of the nodes that produce the final
        results.

    Returns:
      A quantized version of the float graph.
    """
    self.output_graph = tf.GraphDef()
    output_nodes = [self.nodes_map[output_node_name]
                    for output_node_name in output_node_names]
    if self.mode == "round":
      self.already_visited = {}
      for output_node in output_nodes:
        self.round_nodes_recursively(output_node)
    elif self.mode == "quantize":
      self.already_visited = {}
      self.already_quantized = {}
      for output_node in output_nodes:
        self.quantize_nodes_recursively(output_node)
    elif self.mode == "eightbit":
      self.set_input_graph(graph_util.remove_training_nodes(self.input_graph))
      self.already_visited = {}
      self.layers_eightbitized = []
      for output_node in output_nodes:
        self.eightbitize_nodes_recursively(output_node)
      self.output_graph = self.quantize_weights(self.output_graph, b"MIN_FIRST")
      if FLAGS.strip_redundant_quantization:
        self.output_graph = self.remove_redundant_quantization(
            self.output_graph)
        self.remove_dead_nodes(output_node_names)
    elif self.mode == "weights":
      self.output_graph = self.quantize_weights(self.input_graph,
                                                b"MIN_COMBINED")
      self.remove_dead_nodes(output_node_names)
    elif self.mode == "weights_rounded":
      self.output_graph = self.quantize_weights(self.input_graph, self.mode)
      self.remove_dead_nodes(output_node_names)
    else:
      print("Bad mode - " + self.mode + ".")
    return self.output_graph

  def round_nodes_recursively(self, current_node):
    """The entry point for simple rounding quantization."""
    self.already_visited[current_node.name] = True
    for input_node_name in current_node.input:
      input_node_name = node_name_from_input(input_node_name)
      if input_node_name in self.already_visited:
        continue
      input_node = self.nodes_map[input_node_name]
      self.round_nodes_recursively(input_node)
    nodes_to_quantize = ["Conv2D", "BiasAdd", "MatMul"]
    if any(current_node.op in s for s in nodes_to_quantize):
      new_node = tf.NodeDef()
      new_node.CopyFrom(current_node)
      new_node.name = current_node.name + "_original"
      self.add_output_graph_node(new_node)
      levels = 1 << FLAGS.bitdepth
      constant_name = current_node.name + "_round_depth"
      constant_tensor = tf.constant(levels, dtype=tf.int32, name=constant_name)
      constant_node = constant_tensor.op.node_def
      self.add_output_graph_node(constant_node)
      quantize_node = tf.NodeDef()
      quantize_node.op = "RoundToSteps"
      quantize_node.name = current_node.name
      quantize_node.input.extend([current_node.name + "_original"])
      quantize_node.input.extend([constant_node.name])
      self.add_output_graph_node(quantize_node)
    else:
      new_node = tf.NodeDef()
      new_node.CopyFrom(current_node)
      self.add_output_graph_node(new_node)

  def quantize_nodes_recursively(self, current_node):
    """The entry point for quantizing nodes to eight bit and back."""
    self.already_visited[current_node.name] = True
    for input_node_name in current_node.input:
      input_node_name = node_name_from_input(input_node_name)
      if input_node_name in self.already_visited:
        continue
      input_node = self.nodes_map[input_node_name]
      self.quantize_nodes_recursively(input_node)
    nodes_to_quantize = ["Conv2D", "BiasAdd", "MatMul"]
    if any(current_node.op in s for s in nodes_to_quantize):
      for input_name in current_node.input:
        input_name = node_name_from_input(input_name)
        input_node = self.nodes_map[input_name]
        self.quantize_node(input_node)
      self.quantize_node(current_node)
    else:
      new_node = tf.NodeDef()
      new_node.CopyFrom(current_node)
      self.add_output_graph_node(new_node)

  def quantize_node(self, input_node):
    """Handles quantizing a single node."""
    input_name = input_node.name
    if input_name in self.already_quantized:
      return
    self.already_quantized[input_name] = True
    original_input_name = input_name + "_original"
    reshape_name = input_name + "_reshape"
    reshape_dims_name = input_name + "_reshape_dims"
    max_name = input_name + "_max"
    min_name = input_name + "_min"
    dims_name = input_name + "_dims"
    quantize_name = input_name + "_quantize"
    dequantize_name = input_name
    original_input_node = tf.NodeDef()
    original_input_node.CopyFrom(input_node)
    original_input_node.name = original_input_name
    self.add_output_graph_node(original_input_node)
    reshape_dims_node = create_constant_node(reshape_dims_name, -1, tf.int32,
                                             [1])
    self.add_output_graph_node(reshape_dims_node)
    reshape_node = create_node("Reshape", reshape_name, [original_input_name,
                                                         reshape_dims_name])
    set_attr_dtype(reshape_node, "T", tf.float32)
    self.add_output_graph_node(reshape_node)
    dims_node = create_constant_node(dims_name, 0, tf.int32, [1])
    self.add_output_graph_node(dims_node)
    max_node = create_node("Max", max_name, [reshape_name, dims_name])
    set_attr_dtype(max_node, "T", tf.float32)
    set_attr_bool(max_node, "keep_dims", False)
    self.add_output_graph_node(max_node)
    min_node = create_node("Min", min_name, [reshape_name, dims_name])
    set_attr_dtype(min_node, "T", tf.float32)
    set_attr_bool(min_node, "keep_dims", False)
    self.add_output_graph_node(min_node)
    quantize_node = create_node("Quantize", quantize_name, [original_input_name,
                                                            min_name, max_name])
    set_attr_dtype(quantize_node, "T", tf.quint8)
    set_attr_string(quantize_node, "mode", b"MIN_FIRST")
    self.add_output_graph_node(quantize_node)
    dequantize_node = create_node("Dequantize", dequantize_name,
                                  [quantize_name, min_name, max_name])
    set_attr_dtype(dequantize_node, "T", tf.quint8)
    set_attr_string(dequantize_node, "mode", b"MIN_FIRST")
    self.add_output_graph_node(dequantize_node)

  def eightbitize_nodes_recursively(self, current_node):
    """The entry point for transforming a graph into full eight bit."""
    self.already_visited[current_node.name] = True
    for input_node_name in current_node.input:
      input_node_name = node_name_from_input(input_node_name)
      if input_node_name in self.already_visited:
        continue
      input_node = self.nodes_map[input_node_name]
      self.eightbitize_nodes_recursively(input_node)
    if current_node.op == "MatMul":
      self.eightbitize_mat_mul_node(current_node)
    elif current_node.op == "Conv2D":
      self.eightbitize_conv_node(current_node)
      self.layers_eightbitized.append(current_node.name)
    elif current_node.op == "BiasAdd":
      self.eightbitize_bias_add_node(current_node)
    elif current_node.op == "MaxPool" or current_node.op == "AvgPool":
      self.eightbitize_single_input_tensor_node(current_node,
                                                self.add_pool_function)
    elif current_node.op == "Relu" or current_node.op == "Relu6":
      self.eightbitize_single_input_tensor_node(current_node,
                                                self.add_relu_function)
    elif current_node.op == "Concat":
      self.eightbitize_concat_node(current_node)
    elif current_node.op == "BatchNormWithGlobalNormalization":
      self.eightbitize_batch_norm_node(current_node)
    else:
      new_node = tf.NodeDef()
      new_node.CopyFrom(current_node)
      self.add_output_graph_node(new_node)

  def add_eightbit_prologue_nodes(self, original_node):
    """Adds input conversion nodes to handle quantizing the underlying node."""
    namespace_prefix = original_node.name + "_eightbit"
    reshape_dims_name, reduction_dims_name = self.add_common_quantization_nodes(
        namespace_prefix)
    input_names = []
    min_max_names = []
    for original_input_name in original_node.input:
      quantize_input_name, min_input_name, max_input_name = (
          self.eightbitize_input_to_node(namespace_prefix, original_input_name,
                                         reshape_dims_name,
                                         reduction_dims_name))
      input_names.append(quantize_input_name)
      min_max_names.append(min_input_name)
      min_max_names.append(max_input_name)
    all_input_names = []
    all_input_names.extend(input_names)
    all_input_names.extend(min_max_names)
    return all_input_names

  def add_common_quantization_nodes(self, namespace_prefix):
    """Builds constant nodes needed for quantization of inputs."""
    reshape_dims_name = namespace_prefix + "_reshape_dims"
    reduction_dims_name = namespace_prefix + "_reduction_dims"

    reshape_dims_node = create_constant_node(reshape_dims_name, -1, tf.int32,
                                             [1])
    self.add_output_graph_node(reshape_dims_node)
    reduction_dims_node = create_constant_node(reduction_dims_name, 0, tf.int32,
                                               [1])
    self.add_output_graph_node(reduction_dims_node)
    return reshape_dims_name, reduction_dims_name

  def eightbitize_input_to_node(self, namespace_prefix, original_input_name,
                                reshape_dims_name, reduction_dims_name):
    """Takes one float input to an op, and converts it to quantized form."""
    unique_input_name = unique_node_name_from_input(original_input_name)
    reshape_input_name = namespace_prefix + "_reshape_" + unique_input_name
    min_input_name = namespace_prefix + "_min_" + unique_input_name
    max_input_name = namespace_prefix + "_max_" + unique_input_name
    quantize_input_name = namespace_prefix + "_quantize_" + unique_input_name
    reshape_input_node = create_node("Reshape", reshape_input_name,
                                     [original_input_name, reshape_dims_name])
    set_attr_dtype(reshape_input_node, "T", tf.float32)
    self.add_output_graph_node(reshape_input_node)
    min_input_node = create_node("Min", min_input_name, [reshape_input_name,
                                                         reduction_dims_name])
    set_attr_dtype(min_input_node, "T", tf.float32)
    set_attr_bool(min_input_node, "keep_dims", False)
    self.add_output_graph_node(min_input_node)
    max_input_node = create_node("Max", max_input_name, [reshape_input_name,
                                                         reduction_dims_name])
    set_attr_dtype(max_input_node, "T", tf.float32)
    set_attr_bool(max_input_node, "keep_dims", False)
    self.add_output_graph_node(max_input_node)
    quantize_input_node = create_node("QuantizeV2", quantize_input_name,
                                      [original_input_name, min_input_name,
                                       max_input_name])
    set_attr_dtype(quantize_input_node, "T", tf.quint8)
    set_attr_string(quantize_input_node, "mode", b"MIN_FIRST")
    self.add_output_graph_node(quantize_input_node)
    min_output_name = quantize_input_name + ":1"
    max_output_name = quantize_input_name + ":2"
    return quantize_input_name, min_output_name, max_output_name

  def add_quantize_down_node(self, original_node, quantized_output_name):
    quantize_down_name = original_node.name + "_eightbit_quantize_down"
    quantize_down_node = create_node(
        "QuantizeDownAndShrinkRange", quantize_down_name,
        [quantized_output_name, quantized_output_name + ":1",
         quantized_output_name + ":2"])
    set_attr_dtype(quantize_down_node, "Tinput", tf.qint32)
    set_attr_dtype(quantize_down_node, "out_type", tf.quint8)
    self.add_output_graph_node(quantize_down_node)
    return quantize_down_name

  def add_dequantize_result_node(self, quantized_output_name,
                                 original_node_name):
    dequantize_name = original_node_name
    dequantize_node = create_node("Dequantize", dequantize_name,
                                  [quantized_output_name,
                                   quantized_output_name + ":1",
                                   quantized_output_name + ":2"])
    set_attr_dtype(dequantize_node, "T", tf.quint8)
    set_attr_string(dequantize_node, "mode", b"MIN_FIRST")
    self.add_output_graph_node(dequantize_node)

  def eightbitize_mat_mul_node(self, original_node):
    """Replaces a MatMul node with the eight bit equivalent sub-graph."""
    quantized_mat_mul_name = original_node.name + "_eightbit_quantized_bias_add"
    all_input_names = self.add_eightbit_prologue_nodes(original_node)
    quantized_mat_mul_node = create_node(
        "QuantizedMatMul", quantized_mat_mul_name,
        all_input_names)
    set_attr_dtype(quantized_mat_mul_node, "T1", tf.quint8)
    set_attr_dtype(quantized_mat_mul_node, "T2", tf.quint8)
    set_attr_dtype(quantized_mat_mul_node, "Toutput", tf.qint32)
    copy_attr(quantized_mat_mul_node, "transpose_a",
              original_node.attr["transpose_a"])
    copy_attr(quantized_mat_mul_node, "transpose_b",
              original_node.attr["transpose_b"])
    self.add_output_graph_node(quantized_mat_mul_node)
    quantize_down_name = self.add_quantize_down_node(original_node,
                                                     quantized_mat_mul_name)
    self.add_dequantize_result_node(quantize_down_name, original_node.name)

  def eightbitize_conv_node(self, original_node):
    """Replaces a Conv2D node with the eight bit equivalent sub-graph."""
    all_input_names = self.add_eightbit_prologue_nodes(original_node)
    quantized_conv_name = original_node.name + "_eightbit_quantized_conv"
    quantized_conv_node = create_node("QuantizedConv2D", quantized_conv_name,
                                      all_input_names)
    copy_attr(quantized_conv_node, "strides", original_node.attr["strides"])
    copy_attr(quantized_conv_node, "padding", original_node.attr["padding"])
    set_attr_dtype(quantized_conv_node, "Tinput", tf.quint8)
    set_attr_dtype(quantized_conv_node, "Tfilter", tf.quint8)
    set_attr_dtype(quantized_conv_node, "out_type", tf.qint32)
    self.add_output_graph_node(quantized_conv_node)
    quantize_down_name = self.add_quantize_down_node(original_node,
                                                     quantized_conv_name)
    self.add_dequantize_result_node(quantize_down_name, original_node.name)

  def eightbitize_bias_add_node(self, original_node):
    """Replaces a BiasAdd node with the eight bit equivalent sub-graph."""
    quantized_bias_add_name = (original_node.name +
                               "_eightbit_quantized_bias_add")
    all_input_names = self.add_eightbit_prologue_nodes(original_node)
    quantized_bias_add_node = create_node(
        "QuantizedBiasAdd", quantized_bias_add_name,
        all_input_names)
    set_attr_dtype(quantized_bias_add_node, "T1", tf.quint8)
    set_attr_dtype(quantized_bias_add_node, "T2", tf.quint8)
    set_attr_dtype(quantized_bias_add_node, "out_type", tf.qint32)
    self.add_output_graph_node(quantized_bias_add_node)
    quantize_down_name = self.add_quantize_down_node(original_node,
                                                     quantized_bias_add_name)
    self.add_dequantize_result_node(quantize_down_name, original_node.name)

  def eightbitize_single_input_tensor_node(self, original_node,
                                           add_op_function):
    """Replaces a single-tensor node with the eight bit equivalent sub-graph.

    Converts a node like this:

       Shape(f)   Input(f)
         |          |
         +--------v v
                Operation
                    |
                    v
                   (f)

     Into a quantized equivalent:

                    Input(f)              ReshapeDims
                       +------v v-------------+
                       |    Reshape
                       |      |
                       |      |          ReductionDims
                       |      +-----+         |
                       |      | +---c---------+
                       |      v v   v v-------+
                       |      Min   Max
                       |  +----+      |
                       v  v  v--------+
                      Quantize
                          |
                          v
                   QuantizedOperation
                      |   |   |
                      v   v   v
                      Dequantize
                          |
                          v
                         (f)


    Args:
      original_node: Float node to be converted.
      add_op_function: Function to create the actual node.

    Returns:
      Subgraph representing the quantized version of the original node.

    """
    quantized_op_name = original_node.name + "_eightbit_quantized"
    quantized_op_type = "Quantized" + original_node.op
    all_input_names = self.add_eightbit_prologue_nodes(original_node)
    quantized_op_node = create_node(
        quantized_op_type, quantized_op_name, all_input_names)
    add_op_function(original_node, quantized_op_node)
    self.add_output_graph_node(quantized_op_node)
    self.add_dequantize_result_node(quantized_op_name, original_node.name)

  def add_pool_function(self, original_node, quantized_op_node):
    set_attr_dtype(quantized_op_node, "T", tf.quint8)
    copy_attr(quantized_op_node, "ksize", original_node.attr["ksize"])
    copy_attr(quantized_op_node, "strides", original_node.attr["strides"])
    copy_attr(quantized_op_node, "padding", original_node.attr["padding"])

  def add_relu_function(self, unused_arg_node, quantized_op_node):
    set_attr_dtype(quantized_op_node, "Tinput", tf.quint8)

  def eightbitize_concat_node(self, original_node):
    """Replaces a Concat node with the eight bit equivalent sub-graph.

    Converts a node like this:

       Shape(f)   Input0(f)   Input1(f)
         |          |            |
         +--------v v v----------+
                  Concat
                    |
                    v
                   (f)

     Into a quantized equivalent:

       Shape(f)     Input0(f)             ReshapeDims                  Input1(f)
         |             +------v v--------------+------------------v v------+
         |             |    Reshape                             Reshape    |
         |             |      |                                     |      |
         |             |      |           ReductionDims             |      |
         |             |      +------+         |           +--------+      |
         |             |      |  +---c---------+-----------c-----+  |      |
         |             |      +v v   v v-------+---------v v     v v+      |
         |             |       Min   Max                 Min     Max       |
         |             |  +----+      |                   |       +-----+  |
         |             v  v  v--------+                   +----------v  v  v
         |            Quantize                                       Quantize
         |                +------------------+   +----------------------+
         +-------------------------------+   |   |
                                         v   v   v
                                      QuantizedConcat
                                         |   |   |
                                         v   v   v
                                        Dequantize
                                             |
                                             v
                                            (f)
    Args:
      original_node: Float node to be converted.

    Returns:
      Subgraph representing the quantized version of the original node.

    """
    namespace_prefix = original_node.name + "_eightbit"
    quantized_concat_name = namespace_prefix + "_quantized_concat"
    reshape_dims_name, reduction_dims_name = self.add_common_quantization_nodes(
        namespace_prefix)
    shape_input_name = original_node.input[0]
    original_inputs = original_node.input[1:]
    input_names = []
    min_names = []
    max_names = []
    for original_input_name in original_inputs:
      quantize_input_name, min_input_name, max_input_name = (
          self.eightbitize_input_to_node(namespace_prefix, original_input_name,
                                         reshape_dims_name,
                                         reduction_dims_name))
      input_names.append(quantize_input_name)
      min_names.append(min_input_name)
      max_names.append(max_input_name)
    all_input_names = [shape_input_name]
    all_input_names.extend(input_names)
    all_input_names.extend(min_names)
    all_input_names.extend(max_names)
    quantized_concat_node = create_node(
        "QuantizedConcat", quantized_concat_name, all_input_names)
    set_attr_int(quantized_concat_node, "N", len(original_inputs))
    set_attr_dtype(quantized_concat_node, "T", tf.quint8)
    self.add_output_graph_node(quantized_concat_node)
    self.add_dequantize_result_node(quantized_concat_name, original_node.name)

  def eightbitize_batch_norm_node(self, original_node):
    """Replaces a MatMul node with the eight bit equivalent sub-graph."""
    namespace_prefix = original_node.name + "_eightbit"
    original_input_name = original_node.input[0]
    original_mean_name = original_node.input[1]
    original_variance_name = original_node.input[2]
    original_beta_name = original_node.input[3]
    original_gamma_name = original_node.input[4]
    quantized_batch_norm_name = namespace_prefix + "_quantized_batch_norm"

    reshape_dims_name, reduction_dims_name = self.add_common_quantization_nodes(
        namespace_prefix)
    quantize_input_name, min_input_name, max_input_name = (
        self.eightbitize_input_to_node(namespace_prefix, original_input_name,
                                       reshape_dims_name, reduction_dims_name))
    quantize_mean_name, min_mean_name, max_mean_name = (
        self.eightbitize_input_to_node(namespace_prefix, original_mean_name,
                                       reshape_dims_name, reduction_dims_name))
    quantize_variance_name, min_variance_name, max_variance_name = (
        self.eightbitize_input_to_node(namespace_prefix, original_variance_name,
                                       reshape_dims_name, reduction_dims_name))
    quantize_beta_name, min_beta_name, max_beta_name = (
        self.eightbitize_input_to_node(namespace_prefix, original_beta_name,
                                       reshape_dims_name, reduction_dims_name))
    quantize_gamma_name, min_gamma_name, max_gamma_name = (
        self.eightbitize_input_to_node(namespace_prefix, original_gamma_name,
                                       reshape_dims_name, reduction_dims_name))
    quantized_batch_norm_node = create_node(
        "QuantizedBatchNormWithGlobalNormalization", quantized_batch_norm_name,
        [quantize_input_name, min_input_name, max_input_name,
         quantize_mean_name, min_mean_name, max_mean_name,
         quantize_variance_name, min_variance_name, max_variance_name,
         quantize_beta_name, min_beta_name, max_beta_name, quantize_gamma_name,
         min_gamma_name, max_gamma_name])
    set_attr_dtype(quantized_batch_norm_node, "Tinput", tf.quint8)
    set_attr_dtype(quantized_batch_norm_node, "out_type", tf.qint32)
    copy_attr(quantized_batch_norm_node, "scale_after_normalization",
              original_node.attr["scale_after_normalization"])
    copy_attr(quantized_batch_norm_node, "variance_epsilon",
              original_node.attr["variance_epsilon"])
    self.add_output_graph_node(quantized_batch_norm_node)
    quantize_down_name = self.add_quantize_down_node(original_node,
                                                     quantized_batch_norm_name)
    self.add_dequantize_result_node(quantize_down_name, original_node.name)

  def add_output_graph_node(self, output_node):
    """Inserts one node into the new graph."""
    self.output_graph.node.extend([output_node])

  def remove_redundant_quantization(self, old_graph):
    """Removes unneeded pairs of quantize/dequantize ops from the graph.

    This is a bit of a tricky function, because it's attempting to spot the
    pattern of dequantizing from eight-bit up to float, and then immediately
    quantizing back down to eight bits again, that's introduced by previous
    passes that do 'key-hole' conversions of individual nodes but have to
    convert back to float to match the previous output interface, since they
    don't know that the next op can handle quantized tensors.
    It works by:
     - Looking for Quantize nodes.
     - Checking to see if their first input is a Dequantize node.
     - Seeing if their min/max inputs come from Min/Max nodes.
     - Making sure those Min/Max nodes are being fed from the same Dequantize.
     - Or that the Min is indirectly being fed from the same Dequantize as Max.
     - Making sure the Dequantize is going through a Reshape (which we add
       during the previous pass when we create the quantize sub-graph).
     - Looking for the dims Const op for the Min/Max dims.
    If all of these conditions are met, then it's a sub-graph pattern that
    we know how to optimize out (and is likely the common one we've introduced).
    We then rewire the graph to skip it entirely, and then rely on the dead node
    removal pass to get rid of any nodes that are no longer needed.

    Args:
      old_graph: The model we'll be stripping redundant nodes from.

    Returns:
      A graph with the unnecessary nodes removed.

    Raises:
      ValueError: Two nodes with the same name were found in the graph.
    """
    old_nodes_map = self.create_nodes_map(old_graph)
    self.output_graph = tf.GraphDef()
    inputs_to_rename = {}
    # We go through all the nodes, looking for any that match the patterns we
    # know how to optimize away.
    for node in old_graph.node:
      # We always start with a Quantize node, and examine its inputs to see if
      # they are in a form that can be removed.
      if node.op not in ["Quantize", "QuantizeV2"]:
        continue
      dequantize_node_name = node_name_from_input(node.input[0])
      if dequantize_node_name not in old_nodes_map:
        raise ValueError("Input node name '" + dequantize_node_name +
                         "' not found in node '" + node.name + "'")
      dequantize_node = old_nodes_map[dequantize_node_name]
      # Do we have a Dequantize feeding in, with the same type as the Quantize?
      if dequantize_node.op != "Dequantize":
        continue
      if node.attr["T"] != dequantize_node.attr["T"]:
        continue
      # Now look at the other inputs, and ensure they're Min/Max nodes.
      min_node_name = node_name_from_input(node.input[1])
      max_node_name = node_name_from_input(node.input[2])
      min_node = old_nodes_map[min_node_name]
      max_node = old_nodes_map[max_node_name]
      is_min_right_type = (min_node.op in ["Min", "Dequantize"])
      is_max_right_type = (max_node.op in ["Max", "Dequantize"])
      if not is_min_right_type or not is_max_right_type:
        print("Didn't find expected types on inputs : %s, %s." % (
            min_node.op, max_node.op))
        continue
      min_node_input_name = node_name_from_input(min_node.input[0])
      max_node_input_name = node_name_from_input(max_node.input[0])
      # There are two different patterns for Min nodes we can recognize, one
      # where the input comes directly from the same one as the Max, and
      # another where we run it through another Min first, so check for both.
      is_same_input = False
      if min_node_input_name == max_node_input_name:
        is_same_input = True
      else:
        first_min_node_input = old_nodes_map[min_node_input_name]
        if first_min_node_input.op == "Concat":
          second_min_node_name = node_name_from_input(
              first_min_node_input.input[1])
          second_min_node = old_nodes_map[second_min_node_name]
          if second_min_node.op == "Min":
            second_min_node_input_name = node_name_from_input(
                second_min_node.input[0])
            is_same_input = (second_min_node_input_name == max_node_input_name)
      if not is_same_input:
        print("Different min/max inputs: " + min_node_input_name)
        continue
      # We recognize this pattern, so mark the graph edges to be rewired to
      # route around it entirely, since we know it's a no-op.
      dequantize_source_name = node_name_from_input(dequantize_node.input[0])
      node_tensor_name = ensure_tensor_name_has_port(node.name)
      min_tensor_name = node.name + ":1"
      max_tensor_name = node.name + ":2"
      inputs_to_rename[node_tensor_name] = dequantize_source_name
      inputs_to_rename[min_tensor_name] = dequantize_node.input[1]
      inputs_to_rename[max_tensor_name] = dequantize_node.input[2]
    # Finally we apply all the rewiring we've marked to the graph.
    for node in old_graph.node:
      for index, input_full_name in enumerate(node.input):
        input_name = ensure_tensor_name_has_port(input_full_name)
        if input_name in inputs_to_rename:
          node.input[index] = inputs_to_rename[input_name]
      self.add_output_graph_node(node)
    return self.output_graph

  def remove_dead_nodes(self, output_names):
    """Removes nodes that are no longer needed for inference from the graph."""
    old_output_graph = self.output_graph
    self.output_graph = graph_util.extract_sub_graph(old_output_graph,
                                                     output_names)

  def quantize_weights(self, input_graph, quantization_mode):
    """Quantize float Const ops.

    There are two modes of operations, both replace float Const ops with
    quantized values.
    1. If quantization_mode is "weights_rounded", this function replaces float
    Const ops with quantized float Const ops - same as the original op, but
    float values being mapped to the center of one of 1<<FLAGS.bitdepth buckets.
    This does not change the raw model size, but compression algorithms such as
    zip (as used for compressing apks) or bzip2 will achieve a very good
    compression ratio.
    2. For other quantization modes ("MIN_COMBINED" or "MIN_FIRST"), float
    Const ops are quantized and replaced by a tuple of four ops to perform
    the dequantization at runtime:
    * eight-bit Const (bucket indices, same shape as original float Const op
    * two float Const ops (min and max value of original float Const op)
    * Dequantize op to convert the eight-bit consts to float tensors.
    The quantization mode is important because we see accuracy problems when
    quantizing weights for different situations depending on the algorithm
    used. We haven't figured out exactly what the underlying cause is yet,
    unfortunately.

    Args:
      input_graph: A GraphDef of the model containing float Const ops.
      quantization_mode: How to quantize and dequantize the values.

    Returns:
      A GraphDef of the converted graph.

    Raises:
      ValueError: If quantization_mode is unsupported.
    """
    output_graph = tf.GraphDef()
    for input_node in input_graph.node:
      should_quantize = False
      if input_node.op == "Const":
        dtype = tf.as_dtype(input_node.attr["dtype"].type)
        if dtype == tf.float32:
          should_quantize = True
      if should_quantize:
        if quantization_mode == "weights_rounded":
          output_graph.node.extend(quantize_weight_rounded(input_node))
        elif quantization_mode in (b"MIN_COMBINED", b"MIN_FIRST"):
          output_graph.node.extend(quantize_weight_eightbit(input_node,
                                                            quantization_mode))
        else:
          raise ValueError("Unsupported quantization mode %s." %
                           quantization_mode)
      else:
        output_node = tf.NodeDef()
        output_node.CopyFrom(input_node)
        output_graph.node.extend([output_node])
    return output_graph

  def set_input_graph(self, new_input_graph):
    self.input_graph = new_input_graph
    self.nodes_map = self.create_nodes_map(self.input_graph)


def main(unused_args):
  if not tf.gfile.Exists(FLAGS.input):
    print("Input graph file '" + FLAGS.input + "' does not exist!")
    return -1

  known_modes = ["round", "quantize", "eightbit", "weights", "test",
                 "weights_rounded"]
  if not any(FLAGS.mode in s for s in known_modes):
    print("mode is '" + FLAGS.mode + "', not in " + ", ".join(known_modes) +
          ".")
    return -1

  tf_graph = tf.GraphDef()
  with tf.gfile.Open(FLAGS.input, "r") as f:
    data = f.read()
    tf_graph.ParseFromString(data)

  graph = tf.Graph()
  with graph.as_default():
    tf.import_graph_def(tf_graph, input_map={}, name="")

  rewriter = GraphRewriter(tf_graph, FLAGS.mode)

  output_graph = rewriter.rewrite(FLAGS.output_node_names.split(","))

  f = tf.gfile.FastGFile(FLAGS.output, "w")
  f.write(output_graph.SerializeToString())

  return 0


if __name__ == "__main__":
  tf.app.run()