aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/opt/python/training/matrix_functions.py
blob: baab577638626fb39bfbd9b60d98b5848d481a1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Matrix functions contains iterative methods for M^p."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops


def matrix_square_root(mat_a, mat_a_size, iter_count=100, ridge_epsilon=1e-4):
  """Iterative method to get matrix square root.

  Stable iterations for the matrix square root, Nicholas J. Higham

  Page 231, Eq 2.6b
  http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.8799&rep=rep1&type=pdf

  Args:
    mat_a: the symmetric PSD matrix whose matrix square root be computed
    mat_a_size: size of mat_a.
    iter_count: Maximum number of iterations.
    ridge_epsilon: Ridge epsilon added to make the matrix positive definite.

  Returns:
    mat_a^0.5
  """

  def _iter_condition(i, unused_mat_y, unused_old_mat_y, unused_mat_z,
                      unused_old_mat_z, err, old_err):
    # This method require that we check for divergence every step.
    return math_ops.logical_and(i < iter_count, err < old_err)

  def _iter_body(i, mat_y, unused_old_mat_y, mat_z, unused_old_mat_z, err,
                 unused_old_err):
    current_iterate = 0.5 * (3.0 * identity - math_ops.matmul(mat_z, mat_y))
    current_mat_y = math_ops.matmul(mat_y, current_iterate)
    current_mat_z = math_ops.matmul(current_iterate, mat_z)
    # Compute the error in approximation.
    mat_sqrt_a = current_mat_y * math_ops.sqrt(norm)
    mat_a_approx = math_ops.matmul(mat_sqrt_a, mat_sqrt_a)
    residual = mat_a - mat_a_approx
    current_err = math_ops.sqrt(math_ops.reduce_sum(residual * residual)) / norm
    return i + 1, current_mat_y, mat_y, current_mat_z, mat_z, current_err, err

  identity = linalg_ops.eye(math_ops.to_int32(mat_a_size))
  mat_a = mat_a + ridge_epsilon * identity
  norm = math_ops.sqrt(math_ops.reduce_sum(mat_a * mat_a))
  mat_init_y = mat_a / norm
  mat_init_z = identity
  init_err = norm

  _, _, prev_mat_y, _, _, _, _ = control_flow_ops.while_loop(
      _iter_condition, _iter_body, [
          0, mat_init_y, mat_init_y, mat_init_z, mat_init_z, init_err,
          init_err + 1.0
      ])
  return prev_mat_y * math_ops.sqrt(norm)


def matrix_inverse_pth_root(mat_g,
                            mat_g_size,
                            alpha,
                            iter_count=100,
                            epsilon=1e-6,
                            ridge_epsilon=1e-6):
  """Computes mat_g^alpha, where alpha = -1/p, p a positive integer.

  We use an iterative Schur-Newton method from equation 3.2 on page 9 of:

  A Schur-Newton Method for the Matrix p-th Root and its Inverse
  by Chun-Hua Guo and Nicholas J. Higham
  SIAM Journal on Matrix Analysis and Applications,
  2006, Vol. 28, No. 3 : pp. 788-804
  https://pdfs.semanticscholar.org/0abe/7f77433cf5908bfe2b79aa91af881da83858.pdf

  Args:
    mat_g: the symmetric PSD matrix whose power it to be computed
    mat_g_size: size of mat_g.
    alpha: exponent, must be -1/p for p a positive integer.
    iter_count: Maximum number of iterations.
    epsilon: accuracy indicator, useful for early termination.
    ridge_epsilon: Ridge epsilon added to make the matrix positive definite.

  Returns:
    mat_g^alpha
  """

  identity = linalg_ops.eye(math_ops.to_int32(mat_g_size))

  def mat_power(mat_m, p):
    """Computes mat_m^p, for p a positive integer.

    Power p is known at graph compile time, so no need for loop and cond.
    Args:
      mat_m: a square matrix
      p: a positive integer

    Returns:
      mat_m^p
    """
    assert p == int(p) and p > 0
    power = None
    while p > 0:
      if p % 2 == 1:
        power = math_ops.matmul(mat_m, power) if power is not None else mat_m
      p //= 2
      mat_m = math_ops.matmul(mat_m, mat_m)
    return power

  def _iter_condition(i, mat_m, _):
    return math_ops.logical_and(
        i < iter_count,
        math_ops.reduce_max(math_ops.abs(mat_m - identity)) > epsilon)

  def _iter_body(i, mat_m, mat_x):
    mat_m_i = (1 - alpha) * identity + alpha * mat_m
    return (i + 1, math_ops.matmul(mat_power(mat_m_i, -1.0 / alpha), mat_m),
            math_ops.matmul(mat_x, mat_m_i))

  if mat_g_size == 1:
    mat_h = math_ops.pow(mat_g + ridge_epsilon, alpha)
  else:
    damped_mat_g = mat_g + ridge_epsilon * identity
    z = (1 - 1 / alpha) / (2 * linalg_ops.norm(damped_mat_g))
    # The best value for z is
    # (1 - 1/alpha) * (c_max^{-alpha} - c_min^{-alpha}) /
    #                 (c_max^{1-alpha} - c_min^{1-alpha})
    # where c_max and c_min are the largest and smallest singular values of
    # damped_mat_g.
    # The above estimate assumes that c_max > c_min * 2^p. (p = -1/alpha)
    # Can replace above line by the one below, but it is less accurate,
    # hence needs more iterations to converge.
    # z = (1 - 1/alpha) / math_ops.trace(damped_mat_g)
    # If we want the method to always converge, use z = 1 / norm(damped_mat_g)
    # or z = 1 / math_ops.trace(damped_mat_g), but these can result in many
    # extra iterations.
    _, _, mat_h = control_flow_ops.while_loop(
        _iter_condition, _iter_body,
        [0, damped_mat_g * z, identity * math_ops.pow(z, -alpha)])
  return mat_h