aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/opt/python/training/delay_compensated_gradient_descent.py
blob: 5a5e67ef68e23c78b8860929509e3e4dc2b9e515 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""DelayCompensatedGradientDescentOptimizer for TensorFlow."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variables
from tensorflow.python.training import optimizer
from tensorflow.python.training import training_ops


class _RefVariableAsynchronousProcessor(optimizer._RefVariableProcessor):
  """Processor for Variable."""
  def update_op_asynchronous(self, optimizer, g, index):
    if isinstance(g, ops.Tensor):
      return optimizer._apply_dense(g, self._v, index)
    else:
      assert isinstance(g, ops.IndexedSlices), ("Gradient ", g, " is neither a "
                                                "tensor nor IndexedSlices.")
      # pylint: disable=protected-access
      return optimizer._apply_sparse_duplicate_indices(g, self._v, index)


class _DenseResourceVariableAsynchronousProcessor(optimizer._DenseResourceVariableProcessor):
  """Processor for dense ResourceVariables."""
  def update_op_asynchronous(self, optimizer, g, index):
    # pylint: disable=protected-access
    if isinstance(g, ops.IndexedSlices):
      return optimizer._resource_apply_sparse_duplicate_indices(
        g.values, self._v, g.indices, index)
    return optimizer._resource_apply_dense(g, self._v, index)


def _get_processor(v):
  """The processor of v."""
  if v.op.type == "VarHandleOp":
    return _DenseResourceVariableAsynchronousProcessor(v)
  if isinstance(v, variables.Variable):
    return _RefVariableAsynchronousProcessor(v)
  raise NotImplementedError("Trying to optimize unsupported type ", v)


class DelayCompensatedGradientDescentOptimizer(optimizer.Optimizer):
  """Optimizer that implements gradient descent with delay compensation.

  See [Zheng, Shuxin, et al., 2016](https://arxiv.org/abs/1609.08326)
  ([pdf](https://arxiv.org/pdf/1609.08326.pdf)).
  """

  def __init__(self, learning_rate, variance_parameter, num_workers=1,
               use_locking=False, name="DelayCompensatedGradientDescent"):
    """Construct a new gradient descent optimizer with delay compensation.

    Args:
      learning_rate: A Tensor or a floating point value.  The learning
        rate to use.
      variance_parameter: A Tensor or a floating point value. The lambda
        value to use.
      num_workers: A value to indicate number of workers computing gradients
        asynchronously.
      use_locking: If True use locks for update operations.
      name: Optional name prefix for the operations created when applying
        gradients. Defaults to "DelayCompensatedGradientDescent".
      """
    if num_workers <= 0:
      raise ValueError("num_workers must be positive: %s" % num_workers)
    super(DelayCompensatedGradientDescentOptimizer, self).__init__(
          use_locking, name)
    self._learning_rate = learning_rate
    self._lambda = variance_parameter
    self._num_workers = num_workers

  def minimize(self, loss, global_step=None, var_list=None,
               gate_gradients=optimizer.Optimizer.GATE_OP, aggregation_method=None,
               colocate_gradients_with_ops=False, name=None,
               grad_loss=None, worker_index=None):
    """Add operations to minimize `loss` by updating `var_list`.

    This method simply combines calls `compute_gradients()` and
    `apply_gradients()`. If you want to process the gradient before applying
    them call `compute_gradients()` and `apply_gradients()` explicitly instead
    of using this function.

    Args:
      loss: A `Tensor` containing the value to minimize.
      global_step: Optional `Variable` to increment by one after the
        variables have been updated.
      var_list: Optional list or tuple of `Variable` objects to update to
        minimize `loss`.  Defaults to the list of variables collected in
        the graph under the key `GraphKeys.TRAINABLE_VARIABLES`.
      gate_gradients: How to gate the computation of gradients.  Can be
        `GATE_NONE`, `GATE_OP`, or  `GATE_GRAPH`.
      aggregation_method: Specifies the method used to combine gradient terms.
        Valid values are defined in the class `AggregationMethod`.
      colocate_gradients_with_ops: If True, try colocating gradients with
        the corresponding op.
      name: Optional name for the returned operation.
      grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`.
      worker_index: Optional. A value to indicate the instance of worker
        minimizing if computing asynchronously.

    Returns:
      An Operation that updates the variables in `var_list`.  If `global_step`
      was not `None`, that operation also increments `global_step`.

    Raises:
      ValueError: If some of the variables are not `Variable` objects.
    """
    if (worker_index < 0 and worker_index is not None) or worker_index >= self._num_workers:
      raise ValueError("worker index must be in the range [0, num_workers): %s" %
                        worker_index)
    grads_and_vars = self.compute_gradients(
        loss, var_list=var_list, gate_gradients=gate_gradients,
        aggregation_method=aggregation_method,
        colocate_gradients_with_ops=colocate_gradients_with_ops,
        grad_loss=grad_loss)

    vars_with_grad = [v for g, v in grads_and_vars if g is not None]
    if not vars_with_grad:
      raise ValueError(
          "No gradients provided for any variable, check your graph for ops"
          " that do not support gradients, between variables %s and loss %s." %
          ([str(v) for _, v in grads_and_vars], loss))

    return self.apply_gradients(grads_and_vars, global_step=global_step,
                                name=name, worker_index=worker_index)

  def apply_gradients(self,
                      grads_and_vars,
                      global_step=None,
                      name=None,
                      worker_index=None):
    """Apply gradients to variables.

    This is the second part of `minimize()`. It returns an `Operation` that
    applies gradients.

    Args:
      grads_and_vars: List of (gradient, variable) pairs as returned by
        `compute_gradients()`.
      global_step: Optional `Variable` to increment by one after the
        variables have been updated.
      name: Optional name for the returned operation.  Default to the
        name passed to the `Optimizer` constructor.
      worker_index: Optional value to indicate the instance of worker
        minimizing if computing asynchronously.

    Returns:
      An `Operation` that applies the specified gradients. If `global_step`
      was not None, that operation also increments `global_step`.

    Raises:
      TypeError: If `grads_and_vars` is malformed.
      ValueError: If none of the variables have gradients.
    """
    # This is a default implementation of apply_gradients() that can be shared
    # by most optimizers.  It relies on the subclass implementing the following
    # methods: _create_slots(), _prepare(), _apply_dense(), and _apply_sparse().

    grads_and_vars = tuple(grads_and_vars)  # Make sure repeat iteration works.
    if not grads_and_vars:
      raise ValueError("No variables provided.")
    converted_grads_and_vars = []
    for g, v in grads_and_vars:
      if g is not None:
        try:
          # Convert the grad to Tensor or IndexedSlices if necessary.
          g = ops.convert_to_tensor_or_indexed_slices(g)
        except TypeError:
          raise TypeError(
              "Gradient must be convertible to a Tensor"
              " or IndexedSlices, or None: %s" % g)
        if not isinstance(g, (ops.Tensor, ops.IndexedSlices)):
          raise TypeError(
              "Gradient must be a Tensor, IndexedSlices, or None: %s" % g)
      p = _get_processor(v)
      converted_grads_and_vars.append((g, v, p))

    converted_grads_and_vars = tuple(converted_grads_and_vars)
    var_list = [v for g, v, _ in converted_grads_and_vars if g is not None]
    if not var_list:
      raise ValueError("No gradients provided for any variable: %s." %
                       ([str(v) for _, _, v in converted_grads_and_vars],))
    with ops.control_dependencies(None):
      self._create_slots([optimizer._get_variable_for(v) for v in var_list])
    update_ops = []
    with ops.name_scope(name, self._name) as name:
      self._prepare()
      for grad, var, processor in converted_grads_and_vars:
        if grad is None:
          continue
        # We colocate all ops created in _apply_dense or _apply_sparse
        # on the same device as the variable.
        with ops.name_scope("update_" + var.op.name), ops.colocate_with(var):
          if worker_index is None:
            update_ops.append(processor.update_op(self, grad))
          else:
            update_ops.append(processor.update_op_asynchronous(self, grad,
                                                               worker_index))
      if global_step is None:
        apply_updates = self._finish(update_ops, name)
      else:
        with ops.control_dependencies([self._finish(update_ops, "update")]):
          with ops.colocate_with(global_step):
            apply_updates = state_ops.assign_add(global_step, 1, name=name).op

      train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
      if apply_updates not in train_op:
        train_op.append(apply_updates)

      return apply_updates

  def _create_slots(self, var_list):
    """Initialize slots for all the vars of each worker to store
        the previous values of it
    """
    for index in range(self._num_workers):
      for v in var_list:
        var2 = array_ops.identity(v.initialized_value())
        self._get_or_make_slot(v, var2, "shadow_{0}".format(index),
                               self._name)

  def _resource_apply_dense(self, grad, var, worker_index=0):
    # Get previous value of the variable from the slot
    shadow = self.get_slot(var, "shadow_{0}".format(worker_index))
    return training_ops.apply_delay_compensated_gradient_descent(
        var.handle,
        math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
        grad,
        math_ops.cast(self._lambda_tensor, grad.dtype.base_dtype),
        shadow.handle,
        use_locking=self._use_locking)

  def _prepare(self):
    self._learning_rate_tensor = ops.convert_to_tensor(self._learning_rate,
                                                       name="learning_rate")
    self._lambda_tensor = ops.convert_to_tensor(self._lambda,
                                                name="lambda")