aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/toco/tooling_util.h
blob: 5f4b8cb66a2c5471158f761f61e4e49c78a95584 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_CONTRIB_LITE_TOCO_TOOLING_UTIL_H_
#define TENSORFLOW_CONTRIB_LITE_TOCO_TOOLING_UTIL_H_

#include <algorithm>
#include <cmath>
#include <iostream>
#include <limits>
#include <memory>
#include <string>
#include <vector>

#include "absl/strings/string_view.h"
#include "tensorflow/core/platform/logging.h"
#if TOCO_SUPPORT_PORTABLE_PROTOS
#include "third_party/protobuf/include/google/protobuf/text_format.h"
#endif  // TOCO_SUPPORT_PORTABLE_PROTOS
#include "tensorflow/contrib/lite/kernels/internal/types.h"
#include "tensorflow/contrib/lite/toco/model.h"
#include "tensorflow/contrib/lite/toco/model_flags.pb.h"
#include "tensorflow/contrib/lite/toco/runtime/types.h"
#include "tensorflow/contrib/lite/toco/toco_flags.pb.h"
#include "tensorflow/contrib/lite/toco/types.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/status.h"

// TODO(aselle): Replace with using a container specific hash override instead.
namespace std {
template <>
struct hash<toco::OperatorType> {
  size_t operator()(const toco::OperatorType& op) const {
    return std::hash<size_t>()(static_cast<size_t>(op));
  }
};
}  // namespace std

namespace toco {

constexpr int kLogLevelModelChanged = 1;
constexpr int kLogLevelModelUnchanged = 2;

absl::string_view FindLongestCommonPrefix(absl::string_view a,
                                          absl::string_view b);
string LogName(const Operator& op);

string ArrayDataTypeName(ArrayDataType data_type);

// Returns true if the given array is specified as a model input array.
bool IsInputArray(const Model& model, const string& array_name);
// Returns true if the given array is specified as a model output array.
bool IsOutputArray(const Model& model, const string& array_name);

bool IsArrayConsumed(const Model& model, const string& name);
int CountTrueOutputs(const Model& model, const Operator& op);

int CountOpsWithInput(const Model& model, const string& array_name);
bool DeleteArrayIfUnused(const string& array_name, Model* model);
bool DeleteArrayIfUsedOnce(const string& array_name, Model* model);

// Deletes the op and any of its input and output arrays if they are unused
// after the op has been deleted.
void DeleteOpAndArraysIfUnused(Model* model, Operator* op);

std::vector<std::unique_ptr<Operator>>::const_iterator FindOpWithOutput(
    const Model& model, const string& array_name);
Operator* GetOpWithOutput(const Model& model, const string& array_name);

std::vector<std::unique_ptr<Operator>>::iterator FindOpWithOutput(
    Model& model, const string& array_name);

std::vector<std::unique_ptr<Operator>>::const_iterator FindOpWithInput(
    const Model& model, const string& array_name);

std::vector<std::unique_ptr<Operator>>::iterator FindOpWithInput(
    Model& model, const string& array_name);

Operator* GetOpWithInput(const Model& model, const string& array_name);
Operator* GetFirstOpWithInput(const Model& model, const string& array_name);

// Replaces all uses of the |old_array_name| with the |new_array_name|.
void ReplaceArrayUsage(Model* model, const string& old_array_name,
                       const string& new_array_name);

std::vector<std::unique_ptr<Operator>>::const_iterator FindOp(
    const Model& model, const Operator* op);
std::vector<std::unique_ptr<Operator>>::iterator FindOp(Model& model,
                                                        const Operator* op);

const char* OperatorTypeName(OperatorType type);
string HelpfulOperatorTypeName(const Operator& op);

// Whether the operator can be fused with an activation function. Note that this
// will return false by default for new operators; fusing support is opt-in.
bool OperatorSupportsFusedActivation(OperatorType type);

void DumpGraphvizVideoFrame(const Model& model);
void LogDump(int log_level, const string& message, const Model& model);
void LogSummary(int log_level, const string& message, const Model& model);

// TODO(b/36075966): Clean up when dims superseded by array shape.
void ExtendShape(Shape* shape, int new_shape_size);

// TODO(b/36075966): Clean up when dims superseded by array shape.
void UnextendShape(Shape* shape, int new_shape_size);

// Checks that all dimensions of 'shape' are at least 1. Note that scalars,
// lacking dimensions, satisfy this condition and are considered non-empty.
bool IsNonEmpty(const Shape& shape);

// Given two shapes with potentially different dimensionality and dimension
// arrays d0 and d1. Without loss of generality, assume that shape0 may have
// higher dimensionality (length(d0) >= length(d1)). Then shape0 and shape1
// "agree up to broadcasting" if:
// - When walking the d0 and d1 from back to front with indices i0, i1,
//   d0[i0] == d1[i1] or d0[i0] == 1 or d1[i1] == 1, for each dimension until
//   i1 == 0 (inclusive).
bool ShapesAgreeUpToBroadcasting(const Shape& shape0, const Shape& shape1);

// A stricter constraint than ShapesAgreeUpToBroadcasting().
//
// Given two shapes with potentially different dimensionality and dimension
// arrays d0 and d1. Without loss of generality, assume that shape0 may have
// higher dimensionality (length(d0) >= length(d1)). Then shape0 and shape1
// "agree up to extending" if:
// - When walking the d0 and d1 from back to front with indices i0, i1,
//   d0[i0] == d1[i1] for each dimension until i1 == 0 (inclusive).
// - For the remaining indices [0..i0), d0[i0] == 1.
bool ShapesAgreeUpToExtending(const Shape& shape0, const Shape& shape1);

inline ::tflite::RuntimeShape ToRuntimeShape(const Shape& shape) {
  return ::tflite::RuntimeShape(shape.dimensions_count(), shape.dims().data());
}

bool IsArrayFullyConnectedWeights(const Model& model, const string& name);

// If there is a wildcard dimension (-1), this may return a negative value.
int RequiredBufferSizeForShape(const Shape& shape);

bool IsConstantParameterArray(const Model& model, const string& name);

// Compares two constant parameter arrays for exact equality.
bool CompareConstantArrays(const Array& lhs_array, const Array& rhs_array);

void CheckNoMissingArray(const Model& model);
void CheckInvariants(const Model& model);

void CheckModelCounts(const Model& model);

void FixOperatorOrdering(Model* model);
void FixNoMissingArray(Model* model);
void FixNoOrphanedArray(Model* model);

// Fixes input/output arrays that may have issues during export or inference.
void FixEdgeArrays(Model* model);

// Finds and deduplicates large constant arrays in the model.
// After constant propagation runs it's possible to end up with several of the
// same large array (whether they be zeros or otherwise).
//
// |min_size| is used to adjust the minimum size in bytes of an array before
// it's considered for deduping. As deduping can make the graphs more difficult
// to read this helps prevent small arrays from spidering out.
void DedupeConstantArrays(Model* model, size_t min_size);

// Copies the contents of an array into another.
// Expects that the shape and data type match.
template <ArrayDataType A>
void CopyArrayBuffer(const Array& source_array, Array* target_array) {
  int source_buffer_size = RequiredBufferSizeForShape(source_array.shape());
  int target_buffer_size = RequiredBufferSizeForShape(target_array->shape());
  CHECK_EQ(source_buffer_size, target_buffer_size)
      << "Buffer sizes must match in element count";
  CHECK(source_array.data_type == target_array->data_type)
      << "Data types must match";
  if (source_array.buffer) {
    const auto& source_buffer = source_array.GetBuffer<A>();
    auto& target_buffer = target_array->GetMutableBuffer<A>();
    target_buffer.data = source_buffer.data;
  }
}

// Inserts a no-op reshape operator between the source array and the target
// array. This effectively just copies the data.
void InsertCopyOperator(Model* model, const string& source_array_name,
                        const string& target_array_name);

// Clones an array with all data and parameters.
void CloneArray(Model* model, const string& source_array_name,
                const string& target_array_name);

void ResolveModelFlags(const ModelFlags& model_flags, Model* model);

template <typename T>
T ConvertOperator(Operator* o, OperatorType type) {
  if (o != nullptr && o->type == type) {
    return static_cast<T>(o);
  }

  return nullptr;
}

void CheckIsReadyForQuantization(const Model& model);

bool ReshapeIsEquivalentToTranspose(const Model& model,
                                    const TensorFlowReshapeOperator* op,
                                    bool allow_extra_unary_dims);

inline int Offset(const Shape& shape, const std::vector<int>& indices) {
  DCHECK_EQ(shape.dimensions_count(), indices.size());
  const int dims_count = shape.dimensions_count();
  int offset = 0;
  for (int i = 0; i < dims_count; i++) {
    const int index = indices[i];
    DCHECK(index >= 0 && index < shape.dims(i));
    offset *= shape.dims(i);
    offset += index;
  }
  return offset;
}

inline std::vector<int> ReverseOffset(const Shape& shape, int index) {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, RequiredBufferSizeForShape(shape));
  const int dims_count = shape.dimensions_count();
  std::vector<int> indices(dims_count);
  int residual = index;
  for (int i = dims_count - 1; i >= 0; i--) {
    indices[i] = residual % shape.dims(i);
    residual /= shape.dims(i);
  }
  return indices;
}

int ElementSize(ArrayDataType data_type);

void DropMinMax(Model* model, const string& array_name);

bool IsAllocatableTransientArray(const Model& model, const string& array_name);

void CreateOrCheckRnnStateArray(const string& name, int size, Model* model);

string AvailableArrayName(const Model& model, const string& name);

// Formats a shape as a string: [ dims(0), dims(1), ..., dims(num_dims-1) ].
string ShapeToString(const Shape& shape);

void PrintArrayShape(Model* model, const string& name);

void MakeArrayDims(int num_dims, int batch, int height, int width, int depth,
                   std::vector<int>* out_dims);

// Defines a constant int32 array with the provided values formatted for use
// as op parameters.
string CreateInt32Array(Model* model, const string& param_name,
                        const std::vector<int>& value);

bool EstimateArithmeticOpsCount(const Model& model, int64* result);

int AxesCount(AxesOrder axes_order);

// Returns the permutation of the dimensions based on the input axes order and
// output axes order.
void GetShuffleShape(AxesOrder input_axes_order, AxesOrder output_axes_order,
                     std::vector<int>* shuffle);

// Extend shuffle is designed to match ExtendShape, which pads the shape with
// unit dimensions at the beginning.
void ExtendShuffle(const std::vector<int>& input_shuffle, int newdim,
                   std::vector<int>* extended_shuffle);

void ShuffleDims(const Shape& input_shape, AxesOrder input_axes_order,
                 AxesOrder output_axes_order, Shape* output_shape);
void ShuffleArray(const Shape& input_shape, AxesOrder input_axes_order,
                  AxesOrder output_axes_order, const Shape& output_shape,
                  const float* input_data, float* output_data);
void ShuffleArray(const Shape& input_shape, AxesOrder input_axes_order,
                  AxesOrder output_axes_order, const Shape& output_shape,
                  const uint8* input_data, uint8* output_data);

// Returns true if it may be OK for any graph transformation to ever discard
// that array. The idea is that we can't ever discard arrays that are either
// an input or an output of the whole graph, or that appear in RNN back-edges,
// as that would undercut explicit flags that the user might pass.
bool IsDiscardableArray(const Model& model, const string& array_name);

void CheckFinalDataTypesSatisfied(const Model& model);

ArrayDataType ConvertIODataTypeToArrayDataType(IODataType type);

// The process of building models varies according to the import format.
//
// (a) In some cases, such as model-proto format, the model should be fully
// specified. In these cases, no extra action should be taken by this function.
// (b) In other cases, such as TF graphdef format, the desired types of RNN
// arrays are not specified directly in the model, neither can they be inferred.
// However, we can set the types of RNN destination arrays to float. This breaks
// any cycles such as when resolution of the type of an RNN source array depends
// on the type of its destination array.
//
// This function is applied after the main import, after resolution of flags and
// after application of ArraysExtraInfo. It only defaults destination RNN arrays
// to float. If the model is subsequently quantized, it is assumed that the
// model contains sufficient information for that to be completed. If it is
// already quantized, then case (a) should hold.
void FinishBuildingRNNStates(Model* model);

void UseArraysExtraInfo(Model* model, bool quantize_output);

// Calculates the number of elements in tensor given a shape. Shape elements
// are assumed to be of type T, while the result total is of type U. If U
// doesn't have enough range to represent the sum of elements, an error is
// returned.
template <typename T, typename U>
tensorflow::Status NumElements(const std::vector<T>& shape, U* num_elements) {
  static_assert(
      std::numeric_limits<T>::max() <= std::numeric_limits<uint64_t>::max(),
      "vector type exceed capabilities of NumElements");

  *num_elements = 1;
  for (const T& dim : shape) {
    if (dim < 0) {
      // TensorFlow's shapes sometimes include -1 to represent an "unknown"
      // size but TOCO isn't able to create arrays of unknown sizes and will
      // crash in RequiredBufferSizeForShape().
      return tensorflow::errors::InvalidArgument(
          "Tensor shape should not include negative values");
    }
    if (static_cast<uint64_t>(dim) >
        std::numeric_limits<U>::max() / *num_elements) {
      *num_elements = 0;
      return tensorflow::errors::InvalidArgument("Tensor shape is too large");
    }
    *num_elements *= dim;
  }
  return tensorflow::Status::OK();
}

// A model file may have shuffled FC weights.
// When that happens, we want to de-shuffle them immediately on import,
// so that the rest of toco doesn't need to know about shuffled weights.
void UndoWeightsShuffling(Model* model);

// Copies minmax, quantization_params, and narrow_range.
void CopyMinMaxAndQuantizationRelatedFields(const Array& src, Array* dst);

}  // namespace toco

#endif  // TENSORFLOW_CONTRIB_LITE_TOCO_TOOLING_UTIL_H_