aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/toco/graph_transformations/quantization_util.cc
blob: 44733391f5a1d9ebf9a24f4f31b425a35354e1fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <memory>

#include "tensorflow/contrib/lite/toco/graph_transformations/graph_transformations.h"
#include "tensorflow/contrib/lite/toco/graph_transformations/quantization_util.h"
#include "tensorflow/contrib/lite/toco/model.h"
#include "tensorflow/contrib/lite/toco/tooling_util.h"
#include "tensorflow/core/platform/logging.h"

namespace toco {

bool InferQuantizedDataTypeFromFakeQuant(
    const FakeQuantOperator& op, ArrayDataType* out_quantized_data_type) {
  if (op.num_bits <= 8) {
    *out_quantized_data_type = ArrayDataType::kUint8;
    return true;
  } else if (op.num_bits <= 16) {
    *out_quantized_data_type = ArrayDataType::kInt16;
    return true;
  } else {
    *out_quantized_data_type = ArrayDataType::kNone;
    return false;
  }
}

bool GetQuantizedDataTypeNumericalRange(ArrayDataType data_type,
                                        double* out_min_value,
                                        double* out_max_value) {
  switch (data_type) {
    case ArrayDataType::kUint8:
      *out_min_value = 0;
      *out_max_value = 255;
      return true;
    case ArrayDataType::kInt16:
      *out_min_value = -32768;
      *out_max_value = 32767;
      return true;
    default:
      return false;
  }
}

ArrayDataType GetQuantizedDataType(const Array& array,
                                   ArrayDataType default_type) {
  switch (array.final_data_type) {
    case ArrayDataType::kInt8:
    case ArrayDataType::kUint8:
    case ArrayDataType::kInt16:
    case ArrayDataType::kUint16:
    case ArrayDataType::kInt32:
    case ArrayDataType::kUint32:
    case ArrayDataType::kInt64:
    case ArrayDataType::kUint64:
      return array.final_data_type;
    case ArrayDataType::kFloat:
    case ArrayDataType::kNone:
      return default_type;
    default:
      LOG(FATAL) << "Unhandled final quantization type "
                 << static_cast<int>(array.final_data_type);
  }
}

template <ArrayDataType A>
void ChooseQuantizationParamsForArrayAndQuantizedDataType(
    const Array& array, QuantizationParams* quantization_params) {
  *quantization_params = ::tflite::ChooseQuantizationParams<DataType<A>>(
      array.minmax->min, array.minmax->max, array.narrow_range);
}

void ChooseQuantizationParamsForArrayAndQuantizedDataType(
    const Array& array, ArrayDataType quantized_data_type,
    QuantizationParams* quantization_params) {
  switch (quantized_data_type) {
    case ArrayDataType::kInt8:
      ChooseQuantizationParamsForArrayAndQuantizedDataType<
          ArrayDataType::kInt8>(array, quantization_params);
      break;
    case ArrayDataType::kUint8:
      ChooseQuantizationParamsForArrayAndQuantizedDataType<
          ArrayDataType::kUint8>(array, quantization_params);
      break;
    case ArrayDataType::kInt16:
      ChooseQuantizationParamsForArrayAndQuantizedDataType<
          ArrayDataType::kInt16>(array, quantization_params);
      break;
    case ArrayDataType::kUint16:
      ChooseQuantizationParamsForArrayAndQuantizedDataType<
          ArrayDataType::kUint16>(array, quantization_params);
      break;
    case ArrayDataType::kInt32:
      ChooseQuantizationParamsForArrayAndQuantizedDataType<
          ArrayDataType::kInt32>(array, quantization_params);
      break;
    case ArrayDataType::kUint32:
      ChooseQuantizationParamsForArrayAndQuantizedDataType<
          ArrayDataType::kUint32>(array, quantization_params);
      break;
    case ArrayDataType::kInt64:
      ChooseQuantizationParamsForArrayAndQuantizedDataType<
          ArrayDataType::kInt64>(array, quantization_params);
      break;
    case ArrayDataType::kUint64:
      ChooseQuantizationParamsForArrayAndQuantizedDataType<
          ArrayDataType::kUint64>(array, quantization_params);
      break;
    case ArrayDataType::kFloat:
    case ArrayDataType::kNone:
    default:
      LOG(FATAL) << "Unhandled final quantization type "
                 << static_cast<int>(quantized_data_type);
  }
}

namespace {

template <ArrayDataType A>
std::unique_ptr<GenericBuffer> QuantizeBuffer(
    const Array& array, const QuantizationParams& quantization_params) {
  const GenericBuffer& buffer = *array.buffer;
  const auto inverse_scale = 1. / quantization_params.scale;
  CHECK(buffer.type == ArrayDataType::kFloat);
  const auto& float_buffer =
      static_cast<const Buffer<ArrayDataType::kFloat>&>(buffer);
  auto* quantized_buffer = new Buffer<A>;
  quantized_buffer->data.resize(float_buffer.data.size());
  for (std::size_t i = 0; i < float_buffer.data.size(); i++) {
    const float src_val = float_buffer.data[i];
    double scaled_val;  // Astonishingly, using 'float' degrades accuracy just
                        // enough to make a few tests fail!
    if (quantization_params.scale == 0) {
      CHECK_EQ(src_val, 0) << "The quantization scale for this array is 0, "
                           << "so all its values should be 0.";
      scaled_val = quantization_params.zero_point;
    } else {
      scaled_val = quantization_params.zero_point + inverse_scale * src_val;
    }
    auto integer_val = tflite::SafeCast<DataType<A>>(std::round(scaled_val));
    // In addition to its effect on the choice of quantization params upstream
    // of here, narrow_range also means nudge the min quantized value by +1,
    // so e.g. uint8 values get constrained to [1, 255].
    if (integer_val == std::numeric_limits<DataType<A>>::min() &&
        array.narrow_range) {
      integer_val++;
    }
    quantized_buffer->data[i] = integer_val;
  }
  return std::unique_ptr<GenericBuffer>(quantized_buffer);
}

template <ArrayDataType A>
void QuantizeArray(GraphTransformation* transformation, Model* model,
                   const string& name,
                   const QuantizationParams& quantization_params) {
  auto& array = model->GetArray(name);
  CHECK(array.data_type == ArrayDataType::kFloat);
  CHECK(!array.quantization_params);
  array.GetOrCreateQuantizationParams() = quantization_params;
  if (array.buffer) {
    array.buffer = QuantizeBuffer<A>(array, quantization_params);
  }
  array.data_type = A;
  array.final_data_type = A;
  transformation->AddMessageF(
      "Quantized array %s to %s zero_point=%g, scale=%g", name,
      ArrayDataTypeName(array.data_type), quantization_params.zero_point,
      quantization_params.scale);
}

}  // namespace

void QuantizeArray(GraphTransformation* transformation, Model* model,
                   const string& name, ArrayDataType quantized_data_type,
                   const QuantizationParams& quantization_params) {
  ArrayDataType adjusted_data_type = quantized_data_type;
  auto& array = model->GetArray(name);
  if (array.final_data_type == ArrayDataType::kInt16) {
    adjusted_data_type = array.final_data_type;
  }

  switch (adjusted_data_type) {
    case ArrayDataType::kUint8:
      return QuantizeArray<ArrayDataType::kUint8>(transformation, model, name,
                                                  quantization_params);
    case ArrayDataType::kInt16:
      return QuantizeArray<ArrayDataType::kInt16>(transformation, model, name,
                                                  quantization_params);
    case ArrayDataType::kInt32:
      return QuantizeArray<ArrayDataType::kInt32>(transformation, model, name,
                                                  quantization_params);
    default:
      LOG(FATAL) << "Unhandled case.";
  }
}

bool IsArrayQuantizedRangeSubset(GraphTransformation* transformation,
                                 const Array& array, double clamp_min,
                                 double clamp_max) {
  ArrayDataType quantized_data_type =
      GetQuantizedDataType(array, array.data_type);
  if (quantized_data_type == ArrayDataType::kNone ||
      quantized_data_type == ArrayDataType::kFloat) {
    // The array is not (or never will be) quantized.
    return false;
  }

  QuantizationParams quantization_params;
  if (!array.quantization_params) {
    if (!array.minmax) {
      transformation->AddMessageF("No quantization params and no minmax");
      return false;
    } else {
      // Work around cases where we are asking for this prior to the Quantize
      // transformation having added the quantization_params.
      ChooseQuantizationParamsForArrayAndQuantizedDataType(
          array, quantized_data_type, &quantization_params);
      transformation->AddMessageF(
          "No quantization params - infering from data type %s with minmax "
          "%g,%g as zero_point=%g, scale=%g",
          ArrayDataTypeName(quantized_data_type), array.minmax->min,
          array.minmax->max, quantization_params.zero_point,
          quantization_params.scale);
    }
  } else {
    quantization_params = array.GetQuantizationParams();
  }

  double quantized_min, quantized_max;
  CHECK(GetQuantizedDataTypeNumericalRange(quantized_data_type, &quantized_min,
                                           &quantized_max))
      << "Type is not quantized";

  bool has_nontrivial_min_bound = false;
  bool has_nontrivial_max_bound = false;

  double lowest_representable_output =
      (quantized_min - quantization_params.zero_point) *
      quantization_params.scale;
  if (lowest_representable_output < clamp_min) {
    has_nontrivial_min_bound = true;
    transformation->AddMessageF(
        "Quantized activation function is not trivial: "
        "the lowest representable output value %g"
        " less than the clamp min bound %g.",
        lowest_representable_output, clamp_min);
  }

  double highest_representable_output =
      (quantized_max - quantization_params.zero_point) *
      quantization_params.scale;
  if (highest_representable_output > clamp_max) {
    has_nontrivial_max_bound = true;
    transformation->AddMessageF(
        "Quantized activation function is not trivial: "
        "the highest representable output value %g"
        " is greater than the clamp max bound %g.",
        highest_representable_output, clamp_max);
  }

  return !has_nontrivial_min_bound && !has_nontrivial_max_bound;
}

}  // namespace toco