aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/python/op_hint.py
blob: 8c920132e5c2dd33b61904b83fda1368dc7bfa2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Define tflite op hints (intrinsic operations).

This essentially allows defining a TensorFlow API for tflite operations in
Python with hints on how they are represented in TensorFlow Lite. This basically
is a form of tflite intrinsic. It wraps a subpart of a TensorFlow execution
graph and is useful for LSTMs and other complicated TensorFlow constructions
that are difficult to pattern match in TOCO, but are represented by a single
accelerated tflite op.

Example:
  def tflite_cool_activation(input):
    # A cool activation function.
    custom = tf.contrib.lite.OpHint("cool_activation")
    input, = custom.add_inputs(input)
    output = tf.sigmoid(input) * input
    output, = custom.add_outputs(output)
    return output

  image = tf.placeholder(tf.float32, (1, 16, 16, 1))
  output = tf.identity(tflite_cool_activation(image))

  session = tf.Session()

  graphdef_to_convert = tf.contrib.lite.convert_op_hints_to_stubs(session)
  tflite_graph = tf.contrib.lite.toco_convert(graphdef_to_convert,
                                              [image], [output])
                                              [image], [output])
  with open("/tmp/graph.fb", "wb") as fp:
    fp.write(tflite_graph)

How does it work?:

OpHint is a helper that you use when defining a vanilla python function.
It allows you to wrap arguments with tf.identities with some custom attributes.
These attributes allow you to find the original block of ops that was created.
For example, if you use cool_activation above you essentially get:

a_input = tf.identity()
result = tf.multiply(tf.sigmoid(a_input), a_input)
output = tf.identity()

a_input, output are identities that have parameters representing
what argument they are, what the name of the function they should turn into
in tf lite as well as a guid that uniquely identifies a particular invocation.

Once you have built your whole tensorflow graph, you can run it and train it
as usual, but after you have done that, you need to convert the graph into
a form that replaces these subgraphs wrapped in identities to stub ops. These
ops don't actually exist in the normal TensorFlow runtime, but will be
understood by toco later.
"""

# TODO(aselle): Make this use generic graph transformations.
# TODO(aselle): _tensor_name_base should be called _tensor_name_to_op_name.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections as _collections
import copy as _copy
import uuid as _uuid
import six as _six

from tensorflow.core.framework import attr_value_pb2 as _attr_value_pb2
from tensorflow.core.framework import graph_pb2 as _graph_pb2
from tensorflow.core.framework import node_def_pb2 as _node_def_pb2
from tensorflow.python.framework import ops as _ops
# TODO(aselle): publicize these apis if we continue to use these.
from tensorflow.python.framework.graph_util_impl import _bfs_for_reachable_nodes
from tensorflow.python.framework.graph_util_impl import _extract_graph_summary
from tensorflow.python.ops import array_ops as _array_ops
from tensorflow.python.util import compat as _compat
from tensorflow.python.util.all_util import remove_undocumented


class OpHint(object):
  """A class that helps build tflite function invocations.

  It allows you to take a bunch of TensorFlow ops and annotate the construction
  such that toco knows how to convert it to tflite. This embeds a pseudo
  function in a TensorFlow graph. This allows embedding high-level API usage
  information in a lower level TensorFlow implementation so that an alternative
  implementation can be substituted later.

  Essentially, any "input" into this pseudo op is fed into an identity, and
  attributes are added to that input before being used by the constituent ops
  that make up the pseudo op. A similar process is done to any output that
  is to be exported from the current op.

  TODO(aselle): When TensorFlow functions functionality works for arbitrary
  constructs, this mechanism can be retired and changed to use python defun's.
  """

  # Attr constants that are used for representation in the GraphDef. These
  # will be used on every Identity op that is involved in a total OpHint.

  # Name of the OpHint function (cosmetic).
  FUNCTION_NAME_ATTR = "_tflite_function_name"
  # UUID of the function (each OpHint gets a new uuid).
  FUNCTION_UUID_ATTR = "_tflite_function_uuid"
  # The index index of the input (or nothing if it is an output).
  FUNCTION_INPUT_INDEX_ATTR = "_tflite_function_input_index"
  # The output index of the output (or nothing if it is an input).
  FUNCTION_OUTPUT_INDEX_ATTR = "_tflite_function_output_index"
  # An index that orders aggregate arguments. Aggregate arguments are ones
  # that are separate but will be fused horizontally. For example a static LSTM
  # has a lstm cell for each time step. Each one has a separate opHint, but a
  # fused SequentialLSTM will treat this as a single tensor.
  FUNCTION_SORT_INDEX_ATTR = "_tflite_function_sort_index"
  # The way in which multiple parts of the aggregate argument will be joined
  # into a fused operand. Valid options are OpHint.AGGREGATE_FIRST,
  # OpHint.AGGREGATE_LAST, OpHint.AGGREGATE_STACK.
  FUNCTION_AGGREGATE_ATTR = "_tflite_function_aggregate"
  # On fused OpHint stub, the order of inputs that the final LSTM call will
  # have. What this means is that the TensorFlow order might be
  # "foo", "bar", "stuff" and you might want the TF lite op order to be
  # "stuff", "foo", "bar", -1 (where -1 is unused). So you would set this
  # attribute to [2, 0, 1, -1].
  TFLITE_INPUT_INDICES = "_tflite_input_indices"

  # Types of aggregations
  #  stack: stacks all ophints with matching tags. i.e. for a static rnn.
  #   specifically, this is good for an input or output to a static rnn cell.
  AGGREGATE_STACK = _compat.as_bytes("stack")
  # first: only takes the first output (one with lowest sort index)
  # of matching tags. This is good for the input state to an RNN.
  AGGREGATE_FIRST = _compat.as_bytes("first")
  # aggregation last takes only the last tag (one with highest sort index).
  # This is good for an output value on the last stack item of a
  # static rnn.
  AGGREGATE_LAST = _compat.as_bytes("last")

  class OpHintArgumentTracker(object):
    """Conceptually tracks indices of arguments of "OpHint functions".

    The inputs and arguments of these functions both use an instance
    of the class so they can have independent numbering."""

    def __init__(self, function_name, unique_function_id, node_name_prefix,
                 attr_name):
      """Initialize ophint argument.

      Args:
        function_name: Name of the function that this tracks arguments for.
        unique_function_id: UUID of function that this tracks arguments for.
        node_name_prefix: How identities that are created are named.
        attr_name: Name of attribute to use to store the index for this hint.
          i.e. FUNCTION_INPUT_INDEX or FUNCTION_OUTPUT_INDEX
      """

      # The global index is the argument index of the op. This is in contrast
      # to the sort index which is the sequence number of a particular instance
      # of a given global index. For example, you may have called add hint
      # twice with the tag "foo". Then the global index will be 0 for both
      # and the sort index will be 0 for the first added and 1 for the second.
      self._function_name = function_name
      self._unique_function_id = unique_function_id
      self._next_global_index = 0  # The absolute global index
      self._used_global_indices = set()
      self._tag_to_global_index = {}  # The argument index a given tag maps to
      self._tag_to_next_sort_index = {}  # The current index for each tag
      self._node_name_prefix = node_name_prefix
      self._attr_name = attr_name

    def _get_new_global_index(self, index_override):
      """Return the next unused argument index in order or use an override.

      Args:
        index_override: An index to use instead of the next available or None
          to use the next available.

      Returns:
        A valid global_index to use for the next hint argument.

      Raises:
        ValueError: If the index_override is already used by another hint.
      """
      if index_override is None:
        global_index = self._next_global_index
      else:
        if index_override in self._used_global_indices:
          raise ValueError("Index %d was already used by another call to add")
        global_index = index_override
      # Make next_global_index valid
      self._used_global_indices.add(global_index)
      while self._next_global_index in self._used_global_indices:
        self._next_global_index += 1
      return global_index

    def add(self, arg, tag=None, name=None, aggregate=None,
            index_override=None):
      """Return a wrapped tensor of an input tensor as an argument.

      Args:
        arg: A TensorFlow tensor that should be considered an argument.
        tag: String tag to identify arguments that should be packed.
        name: Name of argument. This is included in the Identity hint op names.
        aggregate: Strategy to aggregate.
        Acceptable values are OpHint.AGGREGATE_FIRST, OpHint.AGGREGATE_LAST,
          and OpHint.AGGREGATE_STACK.
          Note, aggregate is only valid if tag is specified.
        index_override: Specify what input/output index should this be in the
          final stub. i.e. add(arg0, index=1); add(arg1, index=0) wil make the
          final stub be as stub_func(inputs[arg1, arg0], outputs=[]) rather than
          the default call order based ordering.

      Returns:
        A tensor representing the wrapped argument.

      Raises:
        ValueError: When indices are not consistent.
      """

      # Find the appropriate index
      if tag is None:
        if aggregate is not None:
          raise ValueError("You must specify `tag` if using aggregate.")
        global_index = self._get_new_global_index(index_override)
        sort_index = None
      else:
        if aggregate is None:
          raise ValueError("You must specify `aggregate` if using tag.")
        if tag not in self._tag_to_global_index:
          self._tag_to_global_index[tag] = (
              self._get_new_global_index(index_override))
          self._tag_to_next_sort_index[tag] = 0
        elif (index_override and
              index_override != self._tag_to_global_index[tag]):
          raise ValueError(
              "Tag %r was called with two indices %r and %r" %
              (tag, index_override, self._tag_to_global_index[tag]))
        global_index = self._tag_to_global_index[tag]
        sort_index = self._tag_to_next_sort_index[tag]
        self._tag_to_next_sort_index[tag] += 1

      uuid = self._unique_function_id
      name = "%s-%s-%s-%r-%r-%s" % (self._node_name_prefix, self._function_name,
                                    uuid, global_index, sort_index, name)
      identity_op = _array_ops.identity(arg, name=name)

      # pylint: disable=protected-access
      identity_op.op._set_attr(
          OpHint.FUNCTION_NAME_ATTR,
          _attr_value_pb2.AttrValue(
              s=_compat.as_bytes(self._function_name)))
      identity_op.op._set_attr(
          OpHint.FUNCTION_UUID_ATTR,
          _attr_value_pb2.AttrValue(
              s=_compat.as_bytes(self._unique_function_id)))
      identity_op.op._set_attr(
          self._attr_name, _attr_value_pb2.AttrValue(i=global_index))
      if sort_index is not None:
        identity_op.op._set_attr(
            OpHint.FUNCTION_SORT_INDEX_ATTR,
            _attr_value_pb2.AttrValue(i=sort_index))
      if aggregate is not None:
        identity_op.op._set_attr(
            OpHint.FUNCTION_AGGREGATE_ATTR,
            _attr_value_pb2.AttrValue(s=_compat.as_bytes((aggregate))))
      # pylint: enable=protected-access
      return identity_op

  def __init__(self, function_name, **kwargs):
    """Create a OpHint.

    Args:
      function_name: Name of the function (the custom op name in tflite)
      **kwargs: Keyword arguments of any constant attributes for the function.
    """
    self._function_name = function_name
    self._unique_function_id = _uuid.uuid1().hex  # TODO(aselle): Unique enough?
    self._attrs_to_store_later = kwargs
    self._stored_attrs = False
    self._inputs = OpHint.OpHintArgumentTracker(
        self._function_name, self._unique_function_id, "InputHint",
        OpHint.FUNCTION_INPUT_INDEX_ATTR)
    self._outputs = OpHint.OpHintArgumentTracker(
        self._function_name, self._unique_function_id, "OutputHint",
        OpHint.FUNCTION_OUTPUT_INDEX_ATTR)

  def _setattr(self, dest_op, name, value):
    tensor_value = _ops.convert_to_tensor(value)
    # pylint: disable=protected-access
    dest_op.op._set_attr(name, _attr_value_pb2.AttrValue(
        tensor=tensor_value.op.node_def.attr["value"].tensor))
    # pylint: enable=protected-access

  def add_input(self, *args, **kwargs):
    """Add a wrapped input argument to the hint.

    Args:
      *args: The input tensor.
      **kwargs:
        "name" label
        "tag" a tag to group multiple arguments that will be aggregated. I.e.
          a string like 'cool_input'. Basically multiple inputs can be added
          to the same hint for parallel operations that will eventually be
          combined. An example would be static_rnn which creates multiple copies
          of state or inputs.
        "aggregate" aggregation strategy that is valid only for tag non None.
          Acceptable values are OpHint.AGGREGATE_FIRST, OpHint.AGGREGATE_LAST,
          and OpHint.AGGREGATE_STACK.
        "index_override" The global index to use. This corresponds to the
          argument order in the final stub that will be generated.
    Returns:
      The wrapped input tensor.
    """
    return self._inputs.add(*args, **kwargs)

  def add_output(self, *args, **kwargs):
    """Add a wrapped output argument to the hint.

    Args:
      *args: The output tensor.
      **kwargs:
        "name" label
        "tag" a tag to group multiple arguments that will be aggregated. I.e.
          a string like 'cool_input'. Basically multiple inputs can be added
          to the same hint for parallel operations that will eventually be
          combined. An example would be static_rnn which creates multiple copies
          of state or inputs.
        "aggregate" aggregation strategy that is valid only for tag non None.
          Acceptable values are OpHint.AGGREGATE_FIRST, OpHint.AGGREGATE_LAST,
          and OpHint.AGGREGATE_STACK.
        "index_override" The global index to use. This corresponds to the
          argument order in the final stub that will be generated.
    Returns:
      The wrapped output tensor.
    """
    return self._outputs.add(*args, **kwargs)

  def add_inputs(self, *args, **kwargs):
    """Add a sequence of inputs to the function invocation.

    Args:
      *args: List of inputs to be converted (should be Tf.Tensor).
      **kwargs: This allows 'names' which should be a list of names.
    Returns:
      Wrapped inputs (identity standins that have additional metadata). These
      are also are also tf.Tensor's.
    """
    if "names" in kwargs:
      return [
          self._inputs.add(arg, name=name)
          for arg, name in zip(args, kwargs["names"])
      ]
    else:
      return [self._inputs.add(arg) for arg in args]

  def add_outputs(self, *args, **kwargs):
    """Add a sequence of outputs to the function invocation.

    Args:
      *args: List of outputs to be converted (should be tf.Tensor).
      **kwargs: See
    Returns:
      Wrapped outputs (identity standins that have additional metadata). These
      are also tf.Tensor's.
    """
    if "names" in kwargs:
      return [
          self._outputs.add(arg, name=name)
          for arg, name in zip(args, kwargs["names"])
      ]
    else:
      return [self._outputs.add(arg) for arg in args]


class _LiteOperand(object):
  """Abstract operand for a tflite hint function.

  This is a base class that handles representing arguments to an OpHint.
  It also is able to serialize operands to the stubbed graph_def.
  Child classes are responsible for being able to
  store information about the hint identity operators. They are also responsible
  for knowing how to serialize to output graphdefs.

  Typically this will be implemented by holding one or more identity nodes
  that were previously discovered as hints.
  """

  def aggregate_and_return_name_for_input(self, out_graphdef):
    """This adds the node(s) to out_graphdef and returns the input node name.

    Args:
      out_graphdef: A graphdef that is ready to have this input added.

    Returns:
      The the output that the stub should use as an input for this operand.

    Raises:
      RuntimeError: if the method is not implemented.
    """
    del out_graphdef
    raise RuntimeError("Unimplemented abstract method.")

  def aggregate_and_return_name_for_output(self, fused_op_name, output_index,
                                           out_graphdef):
    """Add node(s) to graph representing output operands and returns type.

    Args:
      fused_op_name: name of the fused op stub name.
      output_index: Output index that we are currently processing from stub.
      out_graphdef: The destination graphdef we are currently building up.

    Returns:
      The datatype of this identity.

    Raises:
      RuntimeError: if the method is not implemented.
    """
    del fused_op_name, output_index, out_graphdef
    raise RuntimeError("Unimplemented abstract method.")


class _LiteSingleOperand(_LiteOperand):
  """A simple operand that is non-aggregated (i.e. most hints)."""

  def __init__(self, node):
    _LiteOperand.__init__(self)
    self.node = node
    self.name = _tensor_name_base(node.name)

  def flatten(self):
    return [self.name]

  def aggregate_and_return_name_for_input(self, out_graphdef):
    return self.name

  def aggregate_and_return_name_for_output(self, fused_op_name, index,
                                           out_graphdef):
    output_node = _copy.deepcopy(self.node)
    del output_node.input[:]
    output_node.input.append(_tensorflow_output_name(fused_op_name, index))
    out_graphdef.node.extend([output_node])
    return self.node.attr["type"].i

  def __str__(self):
    return str(self.name)


class _LiteAggregateOperand(_LiteOperand):
  """An operand for a tflite hint function that is aggregated from many.

  For example, an LSTM is a grid of operators that are all related. Inputs
  going into them may need to be fused, so they should all be tracked as
  related arguments.
  """

  def __init__(self, aggregation):
    _LiteOperand.__init__(self)
    self.aggregation = aggregation
    self.names = {}
    self.nodes = {}
    self.flattened = None

  def add(self, sort, node):
    self.names[sort] = _tensor_name_base(node.name)
    self.nodes[sort] = node

  def flatten_nodes(self):
    """Return a list of all the node protos in aggregation sorted order."""
    if not self.flattened:
      self.flattened = [None] * len(self.nodes)
      for idx, node in _six.iteritems(self.nodes):
        self.flattened[idx] = node
      for n in self.nodes:
        if n is None:
          raise RuntimeError("Aggregate was missing argument.")
      if self.aggregation == OpHint.AGGREGATE_FIRST:
        self.flattened = self.flattened[:1]
      elif self.aggregation == OpHint.AGGREGATE_LAST:
        self.flattened = self.flattened[-1:]
      elif self.aggregation == OpHint.AGGREGATE_STACK:
        pass
      else:
        raise ValueError(
            "Invalid aggregation type %r specified" % self.aggregation)
    return self.flattened

  def flatten(self):
    """Return a list of all node names in aggregation sorted sorter."""
    return [_tensor_name_base(x.name) for x in self.flatten_nodes()]

  def aggregate_and_return_name_for_input(self, out_graphdef):
    """This adds the nodes to out_graphdef and returns an aggregated output.

    In particular, if you have 4 inputs to a hint stub, this will be the
    node that you can use as an output. I.e. you have 4 timesteps from a
    static rnn, then a fused UnidriecitonalLSTM will expect 1 input with
    all 4 time steps. So here we make a pack and return the output name of
    that pack.

    Args:
      out_graphdef: A graphdef that is ready to have this input added.

    Returns:
      The name of a pack that aggregates this node.
    """
    flattened = self.flatten_nodes()
    if len(flattened) == 1:
      return _tensor_name_base(flattened[0].name)
    else:
      new_node = _node_def_pb2.NodeDef()
      new_node.op = "Pack"
      new_node.name = "OpHintStack-%s" % flattened[0].name
      new_node.attr["N"].i = len(flattened)
      new_node.attr["T"].type = flattened[0].attr["T"].type
      for discrete in flattened:
        new_node.input.append(_tensor_name_base(discrete.name))
      out_graphdef.node.extend([new_node])
      return new_node.name

  def aggregate_and_return_name_for_output(self, fused_op_name, output_index,
                                           out_graphdef):
    """This adds to `out_graphdef` all the unaggregated outputs.

    I.e. we are outputting from a fused stub, but we need to make it compatible
    with the unfused original graph so we insert an unpack. Ideally in a later
    stage the unpack -> pack sequences will be removed.

    Args:
      fused_op_name: The name of the stub we are in the process of fusing.
      output_index: The output output_index this object represents.
      out_graphdef: The graphdef we are in the process of buildings

    Returns:
      The type of the aggregated output (so we can finish building the stub
      op).
    """
    flattened = self.flatten_nodes()
    if len(flattened) == 1:
      temp_op = _LiteSingleOperand(flattened[0])
      return temp_op.aggregate_and_return_name_for_output(
          fused_op_name, output_index, out_graphdef)
    else:
      stack_node = _node_def_pb2.NodeDef()
      stack_node.op = "Unpack"
      stack_node.name = "OpHintUnstack-%s" % flattened[0].name
      stack_node.attr["num"].i = len(flattened)
      output_type = flattened[0].attr["T"].type
      stack_node.attr["T"].type = output_type
      stack_node.input.append(_tensorflow_output_name(
          fused_op_name, output_index))
      out_graphdef.node.extend([stack_node])

      for idx, discrete in enumerate(flattened):
        output_node = _copy.deepcopy(discrete)
        del output_node.input[:]
        output_node.input.append(_tensorflow_output_name(stack_node.name, idx))
        out_graphdef.node.extend([output_node])

      return output_type

  def __str__(self):
    s = "\t\t\tAGGREGATE %s\n" % self.aggregation
    for sort, val in self.names.iteritems():
      s += "\t\t\t%d: %s\n" % (sort, val)
    return s


class _LiteFuncCall(object):
  """Represent a TensorFlow Lite custom function.

  This is uses to accumulate found hints in the graphdef into a single
  conceptual unit.

  Properties:
    self.inputs: inputs to the op (hash from index # to argument)
    self.outputs: outputs to the op (hash from index # to argument)
    self.function_name: the tflite custom op name to use
    self.uuid: a unique call id for this particular call  (i.e.
      multiple function calls would have the same function_name but different
      uuids.
    self.params: A param name to key value for op constant data. I.e. for
      axis on a reduction, strides on a convolution, etc.
  """

  def __init__(self):
    self.inputs = {}
    self.outputs = {}
    self.function_name = None
    self.uuid = None
    self.params = {}

  def flattened_inputs_and_outputs(self):
    """Return a list of inputs and outputs in a flattened format.

    Returns:
      Tuple of (inputs, outputs). where input and output i a list of names.
    """
    def _flatten(input_or_output_dict):
      flattened_items = []
      for item in input_or_output_dict.values():
        flattened_items.extend(item.flatten())
      return flattened_items

    return _flatten(self.inputs), _flatten(self.outputs)

  def __str__(self):
    def format_args(items):
      s = ""
      for idx, item in items.iteritems():
        s += ("\t\t%d:\n" % idx) + str(item)
      return s

    inputs_str = "\tInputs\n" + format_args(self.inputs)
    outputs_str = "\tOutputs\n" + format_args(self.outputs)

    return ("tflite function %s call %s\n\tinputs:\n\t\t%s\n\toutputs:\n\t\t%s"
            % (self.function_name, self.uuid, inputs_str, outputs_str))


def _find_all_hints_in_graph_def(graphdef):
  """Look at the current default graph and return a list of LiteFuncCall objs.

  Args:
    graphdef: A TensorFlow graph_def to look for LiteFuncCalls.
  Returns:
    a list of `LifeFuncCall` objects in the form

  """
  func_calls = _collections.defaultdict(_LiteFuncCall)

  for node in graphdef.node:
    attr = node.attr
    # This is an op hint if it has a FUNCTION_UUID_ATTR, otherwise skip
    uuid = attr[OpHint.FUNCTION_UUID_ATTR].s
    if (OpHint.FUNCTION_UUID_ATTR not in attr
        or not attr[OpHint.FUNCTION_UUID_ATTR].s):
      continue

    # Start building function
    call_def = func_calls[uuid]
    call_def.uuid = uuid
    call_def.function_name = attr[OpHint.FUNCTION_NAME_ATTR].s
    # Get sorting and aggregation information

    sort = (attr[OpHint.FUNCTION_SORT_INDEX_ATTR].i
            if OpHint.FUNCTION_SORT_INDEX_ATTR in attr else None)
    if sort == -1: sort = None
    aggregation = None
    if OpHint.FUNCTION_AGGREGATE_ATTR in attr:
      aggregation = attr[OpHint.FUNCTION_AGGREGATE_ATTR].s

    # Add the input or output
    def put_operand(stuff, index, sort, operand, aggregation):
      """Add a given index into the function structure."""
      if sort is None:
        stuff[index] = _LiteSingleOperand(operand)
      else:
        if index not in stuff:
          stuff[index] = _LiteAggregateOperand(aggregation)
        stuff[index].add(sort, operand)

    if OpHint.FUNCTION_INPUT_INDEX_ATTR in attr:
      put_operand(call_def.inputs, attr[OpHint.FUNCTION_INPUT_INDEX_ATTR].i,
                  sort, node, aggregation)
    if OpHint.FUNCTION_OUTPUT_INDEX_ATTR in attr:
      put_operand(call_def.outputs, attr[OpHint.FUNCTION_OUTPUT_INDEX_ATTR].i,
                  sort, node, aggregation)

    # Remember attributes
    for a in attr:
      if a.startswith("_tflite_attr_"):
        call_def.params[a.replace("_tflite_attr_,", "")] = attr[a].tensor

  return func_calls


def _tensor_name_base(full_tensor_name):
  """Removes the device assignment code from a tensor.

  e.g. _tensor_name_base("foo:3") => "foo"

  Args:
    full_tensor_name: A tensor name that is annotated with a device placement
      (this is what tensor flow introspection gives).
  Returns:
    A name without any device assignment.
  """
  if full_tensor_name.startswith("^"):
    return full_tensor_name[1:]
  return full_tensor_name.split(":")[0]


def _tensorflow_output_name(tensor_name, output_index):
  return tensor_name if output_index == 0 else "%s:%d" % (tensor_name,
                                                          output_index)


# TODO(aselle): This should be converted to grappler in the future.
def _check_subgraph_closed(n, reachable_by_input, input_nodes_set,
                           name_to_input_name):
  """Checks to make sure node only connects to predecessor graph through inputs.

  Args:
    n: Node to check
    reachable_by_input: Nodes that are reachable by all inputs of subgraph
    input_nodes_set: The set of nodes that are "inputs".
    name_to_input_name: Maps from name to the list of inputs.

  Raises:
    TypeError: If the given node uses items past inputs directly.
  """
  next_to_visit = [n]
  visited = set()
  while next_to_visit:
    current_node = next_to_visit.pop()
    visited.add(current_node)
    if (current_node in reachable_by_input
        and current_node not in input_nodes_set):
      raise TypeError(
          "Node %s uses input %s not in input_nodes." % (n, current_node))
    if current_node not in input_nodes_set:
      next_to_visit += [
          input_node for input_node in name_to_input_name[current_node]
          if input_node not in visited
      ]


# TODO(aselle): This should be converted to grappler in the future.
def _convert_single_op_hint_to_stub(call, graph_def):
  """Given a graph_def, converts `call` into a stub and returns a new graph_def.

  Args:
    call: A single function call to be converted.
    graph_def: A graph_def to use as input (that hass call obviously).
  Returns:
    A new transformed graph-def that has call as a stub (single op).

  Note: after this process, the graph_def can no longer be loaded into
      the tensorflow runtime, so all future manipulations are done in graph_def
      level.
  """
  name_to_input_name, name_to_node, name_to_seq_num = _extract_graph_summary(
      graph_def)
  input_names, output_names = call.flattened_inputs_and_outputs()

  reachable_by_input = _bfs_for_reachable_nodes(input_names, name_to_input_name)
  reachable_by_output = _bfs_for_reachable_nodes(output_names,
                                                 name_to_input_name)
  input_nodes_set = set(input_names)
  output_nodes_set = set(output_names)
  nodes_after_fuse = []
  nodes_deleted_by_fuse = set()
  # Classify each node. We want to keep everything reachable by input, but
  # we don't know if things that are not reachable by output or input (things
  # after fusing).
  for node in graph_def.node:
    n = _tensor_name_base(node.name)
    if n in reachable_by_output:
      if n not in reachable_by_input and n not in output_nodes_set:
        # n is an internal node. Check to make sure it is really internal.
        # TODO(aselle): this could be done more efficiently by flooding
        # the graph first.
        _check_subgraph_closed(n, reachable_by_input, input_nodes_set,
                               name_to_input_name)
        nodes_deleted_by_fuse.add(n)
    elif n not in reachable_by_input:
      # n is a node that after all the fusings, so keep it.
      nodes_after_fuse.append(n)
    else:
      # n is a node that is randomly in the graph but not connected to
      # the chain of dependencies.
      pass

  # Make a new graphdef with all the pre-input and input nodes
  out = _graph_pb2.GraphDef()
  reachable_by_input_sorted = sorted(
      list(reachable_by_input), key=lambda n: name_to_seq_num[n])
  for node in reachable_by_input_sorted:
    out.node.extend([_copy.deepcopy(name_to_node[node])])

  # Create any stacks to aggregate arguments into to a single input
  # i.e. for static_rnn's.
  # TODO(aselle): Check that the inputs are complete i.e. 0 to n-1
  sorted_input_indices = list(call.inputs.keys())
  sorted_input_indices.sort()
  sorted_output_indices = list(call.outputs.keys())
  sorted_output_indices.sort()
  new_node = _node_def_pb2.NodeDef()
  # Delegate to each operand to produce the proper new input for this stub node.
  # In particular, an aggregate input will now be a Pack of some previously
  # non-fused things.
  for input_index in sorted_input_indices:
    inputs = call.inputs[input_index]
    new_node.input.append(inputs.aggregate_and_return_name_for_input(out))
  new_node.attr[OpHint.TFLITE_INPUT_INDICES].list.i.extend(sorted_input_indices)

  # Ceate the function
  new_node.op = call.function_name
  new_node.name = call.uuid
  out.node.extend([new_node])

  # Now call each output argument to give them a chance to make the proper
  # output type and add it to our new_node.
  output_dtypes = []
  for output_index in sorted_output_indices:
    output = call.outputs[output_index]
    output_dtype = (
        output.aggregate_and_return_name_for_output(new_node.name, output_index,
                                                    out))
    output_dtypes.append(output_dtype)
  new_node.attr["_output_types"].list.type[:] = output_dtypes
  # TODO(aselle): what is right here?
  new_node.attr["_output_quantized"].b = False

  # Add post output nodes that do not depend on the outputs
  for n in nodes_after_fuse:
    should_keep = True
    for input_name in name_to_input_name[n]:
      if input_name in nodes_deleted_by_fuse:
        should_keep = False
    if should_keep:
      out.node.extend([_copy.deepcopy(name_to_node[n])])

  # Misc. graph_def data that needs copying.
  out.library.CopyFrom(graph_def.library)
  out.versions.CopyFrom(graph_def.versions)

  return out


# TODO(aselle): This should be converted to grappler in the future.
def _remove_one_redundant_stack_unstack(in_graph_def):
  """Removes a stack->unstack pattern from in_graph_def in a returned graph.

  Args:
    in_graph_def: Graph def to use as input.
  Returns:
    Simplified tuple (graph_def, changed_something) where changed_something
    is true if anything was done.
  """
  name_to_input_name, name_to_node, name_to_seq_num = _extract_graph_summary(
      in_graph_def)
  del name_to_seq_num

  # TODO(aselle): Make this not hardcoded.
  do_generic_pack_unpack = True

  out = _graph_pb2.GraphDef()
  out.library.CopyFrom(in_graph_def.library)
  out.versions.CopyFrom(in_graph_def.versions)
  for n in in_graph_def.node:
    node_name = _tensor_name_base(n.name)
    if not node_name.startswith("OpHintStack") and not n.op.startswith("Pack"):
      continue
    next_to_visit = [node_name]
    visited = set()

    unpack_nodes = set()
    pack_node = node_name

    # Find a pattern of unstack connected to a stack (with identities
    # in between.
    matches_pattern = True
    is_hint_created_stack = False
    while next_to_visit:
      current_node_name = next_to_visit[0]
      visited.add(current_node_name)
      del next_to_visit[0]
      node = name_to_node[current_node_name]
      is_op_hint_stack = node.name.startswith("OpHintStack")
      is_op_hint_unstack = node.name.startswith("OpHintUnstack")
      if (node.op == "Identity" or is_op_hint_stack
          or (do_generic_pack_unpack and node.op == "Pack")):
        is_hint_created_stack |= is_op_hint_stack
        next_to_visit += [
            input_node for input_node in name_to_input_name[current_node_name]
            if input_node not in visited
        ]
      elif (is_op_hint_unstack
            or (do_generic_pack_unpack and node.op == "Unpack")):
        unpack_nodes.add(node.name)
        is_hint_created_stack &= is_op_hint_unstack
      else:
        matches_pattern = False
        break
      visited.add(node.name)

    if matches_pattern and len(unpack_nodes) == 1:
      pack_node = node_name

      # Check to see if anyone depends on the intermediate identity or the
      # Unstacked form
      no_external_dependency = True
      for other_n in in_graph_def.node:
        if other_n.name in visited: continue
        for input_tensor in name_to_input_name[other_n.name]:
          input_op = _tensor_name_base(input_tensor)
          if input_op in visited and input_op != pack_node:
            no_external_dependency = False
      # Proceed with the substitution if the stack/unstack pair was created
      # through hints, or that it was not, but nobody is consuming things
      # between the stack and unstack.
      if is_hint_created_stack or no_external_dependency:
        end = unpack_nodes.pop()
        end_input = name_to_node[end].input[0]
        # All nodes that depend on the final stack need to be redone to use
        for other_n in in_graph_def.node:
          node_name = _tensor_name_base(other_n.name)
          if node_name not in visited:
            new_node = _copy.deepcopy(other_n)
            new_node.input[:] = [
                (end_input if stripped == pack_node else
                 non_stripped) for stripped, non_stripped in zip(
                     name_to_input_name[node_name], new_node.input[:])
            ]
            out.node.extend([new_node])
        return out, True
  return in_graph_def, False


def _remove_redundant_stack_unstack(graph_def):
  curr = graph_def
  del graph_def
  changed_stuff = True
  while changed_stuff:
    curr, changed_stuff = _remove_one_redundant_stack_unstack(curr)
  return curr


def _convert_op_hints_to_stubs_helper(
    graph_def, write_callback=lambda sess, graph_def: None):
  """Converts a graph_def to a new graph_def where all op hints are stubbed.

  Args:
    graph_def: A graph def that we should convert.
    write_callback: A function pointer that can be used to write intermediate
      steps of graph transformation (optional).
  Returns:
    A new stubbed graph_def.
  """

  hints = _find_all_hints_in_graph_def(graph_def)
  curr_graph_def = graph_def
  del graph_def  # prevent using graph_def again (common source of error)
  for hint in _six.itervalues(hints):
    curr_graph_def = _convert_single_op_hint_to_stub(
        hint, curr_graph_def)
    write_callback(curr_graph_def, "initial")
  # The stubbing process can create stacks/unstacks in the case of LSTMs
  # remove them.
  curr_graph_def = _remove_redundant_stack_unstack(curr_graph_def)
  return curr_graph_def


def convert_op_hints_to_stubs(session=None,
                              graph_def=None,
                              write_callback=lambda graph_def, comments: None):
  """Converts a graphdef with LiteOp hints into stub operations.

  This is used to prepare for toco conversion of complex intrinsic usages.
  Note: only one of session or graph_def should be used, not both.

  Args:
    session: A TensorFlow session that contains the graph to convert.
    graph_def: A graph def that we should convert.
    write_callback: A function pointer that can be used to write intermediate
      steps of graph transformation (optional).
  Returns:
    A new graphdef with all ops contained in OpHints being replaced by
    a single op call with the right parameters.
  Raises:
    ValueError: If both session and graph_def are provided.
  """

  if session is not None and graph_def is not None:
    raise ValueError("Provide only one of session and graph_def.")

  if session is not None:
    return _convert_op_hints_to_stubs_helper(session.graph_def, write_callback)
  elif graph_def is not None:
    return _convert_op_hints_to_stubs_helper(graph_def, write_callback)
  else:
    raise ValueError("Must specify session or graph_def as input.")


_allowed_symbols = [
    "OpHint", "convert_op_hints_to_stubs", "convert_op_hints_to_stubs_new"
]
remove_undocumented(__name__, _allowed_symbols)