aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/kernels/unidirectional_sequence_rnn.cc
blob: 744ee7c109adcb71dbb1d0dc9604d08354add570 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <limits>

#include "tensorflow/contrib/lite/c/builtin_op_data.h"
#include "tensorflow/contrib/lite/c/c_api_internal.h"
#include "tensorflow/contrib/lite/kernels/activation_functor.h"
#include "tensorflow/contrib/lite/kernels/internal/kernel_utils.h"
#include "tensorflow/contrib/lite/kernels/kernel_util.h"
#include "tensorflow/contrib/lite/kernels/op_macros.h"

namespace tflite {
namespace ops {
namespace builtin {
namespace unidirectional_sequence_rnn {

// Input tensors.
constexpr int kInputTensor = 0;
constexpr int kWeightsTensor = 1;
constexpr int kRecurrentWeightsTensor = 2;
constexpr int kBiasTensor = 3;
constexpr int kHiddenStateTensor = 4;

// Output tensor.
constexpr int kOutputTensor = 0;

void* Init(TfLiteContext* context, const char* buffer, size_t length) {
  auto* scratch_tensor_index = new int;
  context->AddTensors(context, /*tensors_to_add=*/3, scratch_tensor_index);
  return scratch_tensor_index;
}

void Free(TfLiteContext* context, void* buffer) {
  delete reinterpret_cast<int*>(buffer);
}

TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
  // Check we have all the inputs and outputs we need.
  TF_LITE_ENSURE_EQ(context, node->inputs->size, 5);
  TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);

  const TfLiteTensor* input = GetInput(context, node, kInputTensor);
  const TfLiteTensor* input_weights = GetInput(context, node, kWeightsTensor);
  const TfLiteTensor* recurrent_weights =
      GetInput(context, node, kRecurrentWeightsTensor);
  const TfLiteTensor* bias = GetInput(context, node, kBiasTensor);
  const TfLiteTensor* hidden_state =
      GetInput(context, node, kHiddenStateTensor);

  // Check all the parameters of tensor match within themselves and match the
  // input configuration.
  auto* params = reinterpret_cast<TfLiteSequenceRNNParams*>(node->builtin_data);
  const bool time_major = params->time_major;
  const int batch_size =
      (time_major) ? input->dims->data[1] : input->dims->data[0];
  const int max_time =
      (time_major) ? input->dims->data[0] : input->dims->data[1];
  const int num_units = input_weights->dims->data[0];
  TF_LITE_ASSERT_EQ(input->dims->data[2], input_weights->dims->data[1]);
  TF_LITE_ASSERT_EQ(input_weights->dims->data[0], bias->dims->data[0]);
  TF_LITE_ASSERT_EQ(recurrent_weights->dims->data[0], bias->dims->data[0]);
  TF_LITE_ASSERT_EQ(recurrent_weights->dims->data[1], bias->dims->data[0]);
  TF_LITE_ENSURE_EQ(context, input->type, kTfLiteFloat32);
  TF_LITE_ENSURE_EQ(context, input_weights->type, recurrent_weights->type);
  TF_LITE_ENSURE_EQ(context, NumDimensions(hidden_state), 2);
  TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[0], batch_size);
  TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[1], num_units);

  TfLiteTensor* output = GetOutput(context, node, kOutputTensor);

  // Resize output.
  TfLiteIntArray* output_size_array = TfLiteIntArrayCreate(3);
  output_size_array->data[0] = (time_major) ? max_time : batch_size;
  output_size_array->data[1] = (time_major) ? batch_size : max_time;
  output_size_array->data[2] = num_units;
  TF_LITE_ENSURE_OK(context,
                    context->ResizeTensor(context, output, output_size_array));

  // Allocate temporary tensors to store quantized values of input and
  // hidden_state tensors.
  if (input->type == kTfLiteFloat32 && input_weights->type == kTfLiteUInt8) {
    int* scratch_tensor_index = reinterpret_cast<int*>(node->user_data);
    TfLiteIntArrayFree(node->temporaries);
    node->temporaries = TfLiteIntArrayCreate(3);
    node->temporaries->data[0] = *scratch_tensor_index;
    TfLiteTensor* input_quantized = GetTemporary(context, node, /*index=*/0);
    input_quantized->type = kTfLiteUInt8;
    input_quantized->allocation_type = kTfLiteArenaRw;
    if (!TfLiteIntArrayEqual(input_quantized->dims, input->dims)) {
      TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(input->dims);
      TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized,
                                                       input_quantized_size));
    }
    node->temporaries->data[1] = *scratch_tensor_index + 1;
    TfLiteTensor* hidden_state_quantized =
        GetTemporary(context, node, /*index=*/1);
    hidden_state_quantized->type = kTfLiteUInt8;
    hidden_state_quantized->allocation_type = kTfLiteArenaRw;
    if (!TfLiteIntArrayEqual(hidden_state_quantized->dims,
                             hidden_state->dims)) {
      TfLiteIntArray* hidden_state_quantized_size =
          TfLiteIntArrayCopy(hidden_state->dims);
      TF_LITE_ENSURE_OK(context,
                        context->ResizeTensor(context, hidden_state_quantized,
                                              hidden_state_quantized_size));
    }
    node->temporaries->data[2] = *scratch_tensor_index + 2;
    TfLiteTensor* scaling_factors = GetTemporary(context, node, /*index=*/2);
    scaling_factors->type = kTfLiteFloat32;
    scaling_factors->allocation_type = kTfLiteArenaRw;
    TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1);
    scaling_factors_size->data[0] = batch_size;
    if (!TfLiteIntArrayEqual(scaling_factors->dims, scaling_factors_size)) {
      TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors,
                                                       scaling_factors_size));
    }
  }
  return kTfLiteOk;
}

TfLiteStatus EvalFloat(const TfLiteTensor* input,
                       const TfLiteTensor* input_weights,
                       const TfLiteTensor* recurrent_weights,
                       const TfLiteTensor* bias,
                       const TfLiteSequenceRNNParams* params,
                       TfLiteTensor* hidden_state, TfLiteTensor* output) {
  // Initialize the pointer bias.
  const float* bias_ptr = bias->data.f;

  const bool time_major = params->time_major;
  const int batch_size =
      (time_major) ? input->dims->data[1] : input->dims->data[0];
  const int max_time =
      (time_major) ? input->dims->data[0] : input->dims->data[1];
  const int num_units = input_weights->dims->data[0];
  const int input_size = input->dims->data[2];

  // Initialize input_weights and recurrent_weights.
  const float* input_weights_ptr = input_weights->data.f;
  const float* recurrent_weights_ptr = recurrent_weights->data.f;

  if (time_major) {
    // Initialize the pointer to hidden state.
    float* hidden_state_ptr_batch = hidden_state->data.f;
    // Unroll the sequence and use batch operations for efficiency.
    for (int s = 0; s < max_time; s++) {
      // Initialize the pointer to input and output.
      const float* input_ptr_batch =
          input->data.f + s * input_size * batch_size;
      float* output_ptr_batch = output->data.f + s * num_units * batch_size;

      kernel_utils::RnnBatchStep(input_ptr_batch, input_weights_ptr,
                                 recurrent_weights_ptr, bias_ptr, input_size,
                                 num_units, batch_size, params->activation,
                                 hidden_state_ptr_batch, output_ptr_batch);
    }
  } else {
    // For each batch
    for (int b = 0; b < batch_size; b++) {
      // Initialize the pointer to hidden state.
      float* hidden_state_ptr_batch = hidden_state->data.f + b * num_units;
      for (int s = 0; s < max_time; s++) {
        // Initialize the pointer to input and output.
        const float* input_ptr_batch =
            input->data.f + b * input_size * max_time + s * input_size;
        float* output_ptr_batch =
            output->data.f + b * num_units * max_time + s * num_units;

        kernel_utils::RnnBatchStep(
            input_ptr_batch, input_weights_ptr, recurrent_weights_ptr, bias_ptr,
            input_size, num_units, /*batch_size=*/1, params->activation,
            hidden_state_ptr_batch, output_ptr_batch);
      }
    }
  }
  return kTfLiteOk;
}

TfLiteStatus EvalHybrid(
    const TfLiteTensor* input, const TfLiteTensor* input_weights,
    const TfLiteTensor* recurrent_weights, const TfLiteTensor* bias,
    const TfLiteSequenceRNNParams* params, TfLiteTensor* input_scratch,
    TfLiteTensor* hidden_state_scratch, TfLiteTensor* scaling_factors,
    TfLiteTensor* hidden_state, TfLiteTensor* output) {
  const bool time_major = params->time_major;
  const int batch_size =
      (time_major) ? input->dims->data[1] : input->dims->data[0];
  const int max_time =
      (time_major) ? input->dims->data[0] : input->dims->data[1];
  const int num_units = input_weights->dims->data[0];
  const int input_size = input->dims->data[2];

  // Initialize the pointer bias.
  const float* bias_ptr = bias->data.f;
  // Initialize input_weights and recurrent_weights.
  const int8_t* input_weights_ptr =
      reinterpret_cast<const int8_t*>(input_weights->data.uint8);
  const int8_t* recurrent_weights_ptr =
      reinterpret_cast<const int8_t*>(recurrent_weights->data.uint8);
  // Get the scale of the quantized weights.
  float input_weights_scale = input_weights->params.scale;
  float recurrent_weights_scale = recurrent_weights->params.scale;
  // Initialize temporary storage for quantized values.
  int8_t* quantized_input_ptr =
      reinterpret_cast<int8_t*>(input_scratch->data.uint8);
  int8_t* quantized_hidden_state_ptr =
      reinterpret_cast<int8_t*>(hidden_state_scratch->data.uint8);
  float* scaling_factors_ptr = scaling_factors->data.f;

  if (time_major) {
    // Initialize the pointer to hidden state.
    float* hidden_state_ptr_batch = hidden_state->data.f;
    // Unroll the sequence and use batch operations for efficiency.
    for (int s = 0; s < max_time; s++) {
      // Initialize the pointer to input and output.
      const float* input_ptr_batch =
          input->data.f + s * input_size * batch_size;
      float* output_ptr_batch = output->data.f + s * num_units * batch_size;

      kernel_utils::RnnBatchStep(
          input_ptr_batch, input_weights_ptr, input_weights_scale,
          recurrent_weights_ptr, recurrent_weights_scale, bias_ptr, input_size,
          num_units, batch_size, params->activation, quantized_input_ptr,
          quantized_hidden_state_ptr, scaling_factors_ptr,
          hidden_state_ptr_batch, output_ptr_batch);
    }
  } else {
    // For each batch
    for (int b = 0; b < batch_size; b++) {
      // Initialize the pointer to hidden state.
      float* hidden_state_ptr_batch = hidden_state->data.f + b * num_units;
      for (int s = 0; s < max_time; s++) {
        // Initialize the pointer to input and output.
        const float* input_ptr_batch =
            input->data.f + b * input_size * max_time + s * input_size;
        float* output_ptr_batch =
            output->data.f + b * num_units * max_time + s * num_units;

        kernel_utils::RnnBatchStep(
            input_ptr_batch, input_weights_ptr, input_weights_scale,
            recurrent_weights_ptr, recurrent_weights_scale, bias_ptr,
            input_size, num_units, /*batch_size=*/1, params->activation,
            quantized_input_ptr, quantized_hidden_state_ptr,
            scaling_factors_ptr, hidden_state_ptr_batch, output_ptr_batch);
      }
    }
  }
  return kTfLiteOk;
}

TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
  auto* params = reinterpret_cast<TfLiteSequenceRNNParams*>(node->builtin_data);

  const TfLiteTensor* input = GetInput(context, node, kInputTensor);
  const TfLiteTensor* input_weights = GetInput(context, node, kWeightsTensor);
  const TfLiteTensor* recurrent_weights =
      GetInput(context, node, kRecurrentWeightsTensor);
  const TfLiteTensor* bias = GetInput(context, node, kBiasTensor);
  // The hidden_state is a variable input tensor that can be modified.
  TfLiteTensor* hidden_state =
      const_cast<TfLiteTensor*>(GetInput(context, node, kHiddenStateTensor));
  TfLiteTensor* output = GetOutput(context, node, kOutputTensor);

  switch (input_weights->type) {
    case kTfLiteFloat32:
      return EvalFloat(input, input_weights, recurrent_weights, bias, params,
                       hidden_state, output);
    case kTfLiteUInt8: {
      // TODO(mirkov): implement eval with quantized inputs as well.
      TfLiteTensor* input_quantized = GetTemporary(context, node, 0);
      TfLiteTensor* hidden_state_quantized = GetTemporary(context, node, 1);
      TfLiteTensor* scaling_factors = GetTemporary(context, node, 2);
      return EvalHybrid(input, input_weights, recurrent_weights, bias, params,
                        input_quantized, hidden_state_quantized,
                        scaling_factors, hidden_state, output);
    }
    default:
      context->ReportError(context, "Type %d not currently supported.",
                           input_weights->type);
      return kTfLiteError;
  }
  return kTfLiteOk;
}

}  // namespace unidirectional_sequence_rnn

TfLiteRegistration* Register_UNIDIRECTIONAL_SEQUENCE_RNN() {
  static TfLiteRegistration r = {
      unidirectional_sequence_rnn::Init, unidirectional_sequence_rnn::Free,
      unidirectional_sequence_rnn::Prepare, unidirectional_sequence_rnn::Eval};
  return &r;
}

}  // namespace builtin
}  // namespace ops
}  // namespace tflite