aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/kernels/unidirectional_sequence_lstm.cc
blob: 89d57e45993af996fa67121cf2fe5dd1bc65640e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <limits>

#include "tensorflow/contrib/lite/c/builtin_op_data.h"
#include "tensorflow/contrib/lite/c/c_api_internal.h"
#include "tensorflow/contrib/lite/kernels/activation_functor.h"
#include "tensorflow/contrib/lite/kernels/internal/kernel_utils.h"
#include "tensorflow/contrib/lite/kernels/internal/tensor_utils.h"
#include "tensorflow/contrib/lite/kernels/kernel_util.h"
#include "tensorflow/contrib/lite/kernels/lstm_eval.h"
#include "tensorflow/contrib/lite/kernels/op_macros.h"

namespace tflite {
namespace ops {
namespace builtin {
namespace unidirectional_sequence_lstm {

// Input Tensors of size {max_time, n_batch, n_input}
constexpr int kInputTensor = 0;

// Input weight tensors of size: {n_cell, n_input}
constexpr int kInputToInputWeightsTensor = 1;  // Optional
constexpr int kInputToForgetWeightsTensor = 2;
constexpr int kInputToCellWeightsTensor = 3;
constexpr int kInputToOutputWeightsTensor = 4;

// Recurrent weight tensors of size {n_cell, n_output}
constexpr int kRecurrentToInputWeightsTensor = 5;  // Optional
constexpr int kRecurrentToForgetWeightsTensor = 6;
constexpr int kRecurrentToCellWeightsTensor = 7;
constexpr int kRecurrentToOutputWeightsTensor = 8;

// Peephole weights tensors of size {n_cell}, representing a diagonal matrix.
constexpr int kCellToInputWeightsTensor = 9;    // Optional
constexpr int kCellToForgetWeightsTensor = 10;  // Optional
constexpr int kCellToOutputWeightsTensor = 11;  // Optional

// Gates bias tensors of size {n_cell}
constexpr int kInputGateBiasTensor = 12;  // Optional
constexpr int kForgetGateBiasTensor = 13;
constexpr int kCellGateBiasTensor = 14;
constexpr int kOutputGateBiasTensor = 15;

// Projection weight tensor of size {n_output, n_cell}
constexpr int kProjectionWeightsTensor = 16;  // Optional
// Projection bias tensor of size {n_output}
constexpr int kProjectionBiasTensor = 17;  // Optional

// Stateful input tensors that are variables and will be modified by the Op.
// Activation state tensor of size {n_batch, n_output}
constexpr int kInputActivationStateTensor = 18;
// Cell state tensor of size {n_batch, n_cell}
constexpr int kInputCellStateTensor = 19;

// Output tensors.
constexpr int kOutputTensor = 0;

// Temporary tensors
enum TemporaryTensor {
  kScratchBuffer = 0,
  kInputQuantized = 1,
  kOutputStateQuantized = 2,
  kCellStateQuantized = 3,
  kScalingFactors = 4,
  kProductScalingFactors = 5,
  kRecoveredCellWeights = 6,
  kNumTemporaryTensors = 7
};

void* Init(TfLiteContext* context, const char* buffer, size_t length) {
  auto* scratch_tensor_index = new int();
  context->AddTensors(context, kNumTemporaryTensors, scratch_tensor_index);
  return scratch_tensor_index;
}

void Free(TfLiteContext* context, void* buffer) {
  delete reinterpret_cast<int*>(buffer);
}

// Check that input tensor dimensions matches with each other.
TfLiteStatus CheckInputTensorDimensions(TfLiteContext* context,
                                        TfLiteNode* node, int n_input,
                                        int n_output, int n_cell) {
  const auto* params = reinterpret_cast<TfLiteLSTMParams*>(node->builtin_data);

  // Making sure clipping parameters have valid values.
  // == 0 means no clipping
  //  > 0 means clipping
  TF_LITE_ENSURE(context, params->cell_clip >= 0);
  TF_LITE_ENSURE(context, params->proj_clip >= 0);

  const TfLiteTensor* input_to_input_weights =
      GetOptionalInputTensor(context, node, kInputToInputWeightsTensor);
  if (input_to_input_weights) {
    TF_LITE_ENSURE_EQ(context, input_to_input_weights->dims->size, 2);
    TF_LITE_ENSURE_EQ(context, input_to_input_weights->dims->data[0], n_cell);
    TF_LITE_ENSURE_EQ(context, input_to_input_weights->dims->data[1], n_input);
  }

  const TfLiteTensor* input_to_forget_weights =
      GetInput(context, node, kInputToForgetWeightsTensor);
  TF_LITE_ENSURE_EQ(context, input_to_forget_weights->dims->size, 2);
  TF_LITE_ENSURE_EQ(context, input_to_forget_weights->dims->data[0], n_cell);
  TF_LITE_ENSURE_EQ(context, input_to_forget_weights->dims->data[1], n_input);

  const TfLiteTensor* input_to_cell_weights =
      GetInput(context, node, kInputToCellWeightsTensor);
  TF_LITE_ENSURE_EQ(context, input_to_cell_weights->dims->size, 2);
  TF_LITE_ENSURE_EQ(context, input_to_cell_weights->dims->data[0], n_cell);
  TF_LITE_ENSURE_EQ(context, input_to_cell_weights->dims->data[1], n_input);

  const TfLiteTensor* recurrent_to_input_weights =
      GetOptionalInputTensor(context, node, kRecurrentToInputWeightsTensor);
  if (recurrent_to_input_weights) {
    TF_LITE_ENSURE_EQ(context, recurrent_to_input_weights->dims->size, 2);
    TF_LITE_ENSURE_EQ(context, recurrent_to_input_weights->dims->data[0],
                      n_cell);
    TF_LITE_ENSURE_EQ(context, recurrent_to_input_weights->dims->data[1],
                      n_output);
  }

  const TfLiteTensor* recurrent_to_forget_weights =
      GetInput(context, node, kRecurrentToForgetWeightsTensor);
  TF_LITE_ENSURE_EQ(context, recurrent_to_forget_weights->dims->size, 2);
  TF_LITE_ENSURE_EQ(context, recurrent_to_forget_weights->dims->data[0],
                    n_cell);
  TF_LITE_ENSURE_EQ(context, recurrent_to_forget_weights->dims->data[1],
                    n_output);

  const TfLiteTensor* recurrent_to_cell_weights =
      GetInput(context, node, kRecurrentToCellWeightsTensor);
  TF_LITE_ENSURE_EQ(context, recurrent_to_cell_weights->dims->size, 2);
  TF_LITE_ENSURE_EQ(context, recurrent_to_cell_weights->dims->data[0], n_cell);
  TF_LITE_ENSURE_EQ(context, recurrent_to_cell_weights->dims->data[1],
                    n_output);

  // We make sure the input-gate's parameters are either both present (regular
  // LSTM) or not at all (CIFG-LSTM).
  const bool cifg_weights_all_or_none =
      ((input_to_input_weights != nullptr) &&
       (recurrent_to_input_weights != nullptr)) ||
      ((input_to_input_weights == nullptr) &&
       (recurrent_to_input_weights == nullptr));
  TF_LITE_ENSURE(context, cifg_weights_all_or_none == true);

  const TfLiteTensor* cell_to_input_weights =
      GetOptionalInputTensor(context, node, kCellToInputWeightsTensor);
  if (cell_to_input_weights) {
    TF_LITE_ENSURE_EQ(context, cell_to_input_weights->dims->size, 1);
    TF_LITE_ENSURE_EQ(context, cell_to_input_weights->dims->data[0], n_cell);
  }

  const TfLiteTensor* cell_to_forget_weights =
      GetOptionalInputTensor(context, node, kCellToForgetWeightsTensor);
  if (cell_to_forget_weights) {
    TF_LITE_ENSURE_EQ(context, cell_to_forget_weights->dims->size, 1);
    TF_LITE_ENSURE_EQ(context, cell_to_forget_weights->dims->data[0], n_cell);
  }

  const TfLiteTensor* cell_to_output_weights =
      GetOptionalInputTensor(context, node, kCellToOutputWeightsTensor);
  if (cell_to_output_weights) {
    TF_LITE_ENSURE_EQ(context, cell_to_output_weights->dims->size, 1);
    TF_LITE_ENSURE_EQ(context, cell_to_output_weights->dims->data[0], n_cell);
  }

  // Making sure the peephole weights are there all or none.
  const bool use_cifg = (input_to_input_weights == nullptr);
  const bool peephole_weights_all_or_none =
      ((cell_to_input_weights != nullptr || use_cifg) &&
       (cell_to_forget_weights != nullptr) &&
       (cell_to_output_weights != nullptr)) ||
      ((cell_to_input_weights == nullptr) &&
       (cell_to_forget_weights == nullptr) &&
       (cell_to_output_weights == nullptr));
  TF_LITE_ENSURE(context, peephole_weights_all_or_none == true);

  // Make sure the input gate bias is present only when not a CIFG-LSTM.
  const TfLiteTensor* input_gate_bias =
      GetOptionalInputTensor(context, node, kInputGateBiasTensor);
  if (use_cifg) {
    TF_LITE_ENSURE_EQ(context, input_gate_bias, nullptr);
  } else {
    TF_LITE_ENSURE_EQ(context, input_gate_bias->dims->size, 1);
    TF_LITE_ENSURE_EQ(context, input_gate_bias->dims->data[0], n_cell);
  }

  const TfLiteTensor* forget_gate_bias =
      GetInput(context, node, kForgetGateBiasTensor);
  TF_LITE_ENSURE_EQ(context, forget_gate_bias->dims->size, 1);
  TF_LITE_ENSURE_EQ(context, forget_gate_bias->dims->data[0], n_cell);

  const TfLiteTensor* cell_bias = GetInput(context, node, kCellGateBiasTensor);
  TF_LITE_ENSURE_EQ(context, cell_bias->dims->size, 1);
  TF_LITE_ENSURE_EQ(context, cell_bias->dims->data[0], n_cell);

  const TfLiteTensor* output_gate_bias =
      GetInput(context, node, kOutputGateBiasTensor);
  TF_LITE_ENSURE_EQ(context, output_gate_bias->dims->size, 1);
  TF_LITE_ENSURE_EQ(context, output_gate_bias->dims->data[0], n_cell);

  const TfLiteTensor* projection_weights =
      GetOptionalInputTensor(context, node, kProjectionWeightsTensor);
  if (projection_weights) {
    TF_LITE_ENSURE_EQ(context, projection_weights->dims->size, 2);
    TF_LITE_ENSURE_EQ(context, projection_weights->dims->data[0], n_output);
    TF_LITE_ENSURE_EQ(context, projection_weights->dims->data[1], n_cell);
  }

  const TfLiteTensor* projection_bias =
      GetOptionalInputTensor(context, node, kProjectionBiasTensor);
  if (projection_bias) {
    TF_LITE_ENSURE_EQ(context, projection_bias->dims->size, 1);
    TF_LITE_ENSURE_EQ(context, projection_bias->dims->data[0], n_output);
  }

  // Making sure the projection tensors are consistent:
  // 1) If projection weight is not present, then projection bias should not be
  // present.
  // 2) If projection weight is present, then projection bias is optional.
  // TODO(ghodrat): make sure this is correct.
  const bool projecton_tensors_consistent =
      ((projection_weights != nullptr) || (projection_bias == nullptr));
  TF_LITE_ENSURE(context, projecton_tensors_consistent == true);

  return kTfLiteOk;
}

// Resize the output and  state tensors based on the sizes of the input tensors.
// Allocate a temprory scratch tensor. Also check that the sizes of the input
// tensors match each other.
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
  int* scratch_tensor_index = reinterpret_cast<int*>(node->user_data);

  // Check we have all the inputs and outputs we need.
  TF_LITE_ENSURE_EQ(context, node->inputs->size, 20);
  TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);

  // Inferring batch size, number of outputs and sequence length and
  // number of cells from the input tensors.
  const TfLiteTensor* input = GetInput(context, node, kInputTensor);
  TF_LITE_ENSURE_EQ(context, input->type, kTfLiteFloat32);
  TF_LITE_ENSURE(context, input->dims->size > 1);
  const int max_time = input->dims->data[0];
  const int n_batch = input->dims->data[1];
  const int n_input = input->dims->data[2];

  const TfLiteTensor* input_to_output_weights =
      GetInput(context, node, kInputToOutputWeightsTensor);
  const int n_cell = input_to_output_weights->dims->data[0];
  TF_LITE_ENSURE_EQ(context, input_to_output_weights->dims->size, 2);
  TF_LITE_ENSURE_EQ(context, input_to_output_weights->dims->data[1], n_input);

  const TfLiteTensor* recurrent_to_output_weights =
      GetInput(context, node, kRecurrentToOutputWeightsTensor);
  TF_LITE_ENSURE_EQ(context, recurrent_to_output_weights->dims->size, 2);
  TF_LITE_ENSURE_EQ(context, recurrent_to_output_weights->dims->data[0],
                    n_cell);
  const int n_output = recurrent_to_output_weights->dims->data[1];

  // Check that input tensor dimensions matches with each other.
  TF_LITE_ENSURE_OK(context, CheckInputTensorDimensions(context, node, n_input,
                                                        n_output, n_cell));

  // Get the pointer to output, activation_state and cell_state buffer tensors.
  TfLiteTensor* output = GetOutput(context, node, kOutputTensor);

  TfLiteTensor* activation_state =
      GetVariableInput(context, node, kInputActivationStateTensor);
  TfLiteTensor* cell_state =
      GetVariableInput(context, node, kInputCellStateTensor);

  // Check the shape of input state tensors.
  // These tensor may be 1D or 2D. It's fine as long as the total size is
  // correct.
  TF_LITE_ENSURE_EQ(context, NumElements(activation_state), n_batch * n_output);
  TF_LITE_ENSURE_EQ(context, NumElements(cell_state), n_batch * n_cell);

  // Resize the output tensors.
  TfLiteIntArray* output_size = TfLiteIntArrayCreate(3);
  output_size->data[0] = max_time;
  output_size->data[1] = n_batch;
  output_size->data[2] = n_output;
  TF_LITE_ENSURE_OK(context,
                    context->ResizeTensor(context, output, output_size));

  // The weights are of consistent type, so it suffices to check one.
  // TODO(mirkov): create a utility/macro for this check, so all Ops can use it.
  const bool is_hybrid_op = (input_to_output_weights->type == kTfLiteUInt8 &&
                             input->type == kTfLiteFloat32);

  TfLiteIntArrayFree(node->temporaries);
  if (is_hybrid_op) {
    node->temporaries = TfLiteIntArrayCreate(kNumTemporaryTensors);
  } else {
    node->temporaries = TfLiteIntArrayCreate(1);
  }
  node->temporaries->data[0] = *scratch_tensor_index;

  // Create a scratch buffer tensor.
  TfLiteTensor* scratch_buffer = GetTemporary(context, node, kScratchBuffer);
  scratch_buffer->type = input->type;
  scratch_buffer->allocation_type = kTfLiteArenaRw;

  const TfLiteTensor* input_to_input_weights =
      GetOptionalInputTensor(context, node, kInputToInputWeightsTensor);
  const bool use_cifg = (input_to_input_weights == nullptr);
  TfLiteIntArray* scratch_buffer_size = TfLiteIntArrayCreate(2);
  scratch_buffer_size->data[0] = n_batch;
  if (use_cifg) {
    // Reserving space for Cell, Forget, Output gates
    scratch_buffer_size->data[1] = n_cell * 3;
  } else {
    // Reserving space for Input, Cell, Forget, Output gates
    scratch_buffer_size->data[1] = n_cell * 4;
  }
  TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scratch_buffer,
                                                   scratch_buffer_size));

  if (is_hybrid_op) {
    // Allocate temporary tensors to store quantized values of input,
    // activation_state and cell_state tensors.
    node->temporaries->data[kInputQuantized] =
        *scratch_tensor_index + kInputQuantized;
    TfLiteTensor* input_quantized =
        GetTemporary(context, node, kInputQuantized);
    input_quantized->type = kTfLiteUInt8;
    input_quantized->allocation_type = kTfLiteArenaRw;
    if (!TfLiteIntArrayEqual(input_quantized->dims, input->dims)) {
      TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(input->dims);
      TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized,
                                                       input_quantized_size));
    }
    node->temporaries->data[kOutputStateQuantized] =
        *scratch_tensor_index + kOutputStateQuantized;
    TfLiteTensor* activation_state_quantized =
        GetTemporary(context, node, kOutputStateQuantized);
    activation_state_quantized->type = kTfLiteUInt8;
    activation_state_quantized->allocation_type = kTfLiteArenaRw;
    if (!TfLiteIntArrayEqual(activation_state_quantized->dims,
                             activation_state->dims)) {
      TfLiteIntArray* activation_state_quantized_size =
          TfLiteIntArrayCopy(activation_state->dims);
      TF_LITE_ENSURE_OK(
          context, context->ResizeTensor(context, activation_state_quantized,
                                         activation_state_quantized_size));
    }
    node->temporaries->data[kCellStateQuantized] =
        *scratch_tensor_index + kCellStateQuantized;
    TfLiteTensor* cell_state_quantized =
        GetTemporary(context, node, kCellStateQuantized);
    cell_state_quantized->type = kTfLiteUInt8;
    cell_state_quantized->allocation_type = kTfLiteArenaRw;
    if (!TfLiteIntArrayEqual(cell_state_quantized->dims, cell_state->dims)) {
      TfLiteIntArray* cell_state_quantized_size =
          TfLiteIntArrayCopy(cell_state->dims);
      TF_LITE_ENSURE_OK(context,
                        context->ResizeTensor(context, cell_state_quantized,
                                              cell_state_quantized_size));
    }

    // Allocate temporary tensors to store scaling factors and product scaling
    // factors. The latter is a convenience storage which allows to quantize
    // a vector once (which produces the scaling factors) and multiply it with
    // different matrices (which requires multiplying the scaling factors with
    // the scaling factor of the matrix).
    node->temporaries->data[kScalingFactors] =
        *scratch_tensor_index + kScalingFactors;
    TfLiteTensor* scaling_factors =
        GetTemporary(context, node, kScalingFactors);
    scaling_factors->type = kTfLiteFloat32;
    scaling_factors->allocation_type = kTfLiteArenaRw;
    TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1);
    scaling_factors_size->data[0] = n_batch;
    if (!TfLiteIntArrayEqual(scaling_factors->dims, scaling_factors_size)) {
      TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors,
                                                       scaling_factors_size));
    }
    node->temporaries->data[kProductScalingFactors] =
        *scratch_tensor_index + kProductScalingFactors;
    TfLiteTensor* prod_scaling_factors =
        GetTemporary(context, node, kProductScalingFactors);
    prod_scaling_factors->type = kTfLiteFloat32;
    prod_scaling_factors->allocation_type = kTfLiteArenaRw;
    TfLiteIntArray* prod_scaling_factors_size = TfLiteIntArrayCreate(1);
    prod_scaling_factors_size->data[0] = n_batch;
    if (!TfLiteIntArrayEqual(prod_scaling_factors->dims,
                             prod_scaling_factors_size)) {
      TF_LITE_ENSURE_OK(context,
                        context->ResizeTensor(context, prod_scaling_factors,
                                              prod_scaling_factors_size));
    }

    // Allocate a temporary tensor to store the recovered cell weights. Since
    // this is used for diagonal matrices, only need to store n_cell values.
    node->temporaries->data[kRecoveredCellWeights] =
        *scratch_tensor_index + kRecoveredCellWeights;
    TfLiteTensor* recovered_cell_weights =
        GetTemporary(context, node, kRecoveredCellWeights);
    recovered_cell_weights->type = kTfLiteFloat32;
    recovered_cell_weights->allocation_type = kTfLiteArenaRw;
    TfLiteIntArray* recovered_cell_weights_size = TfLiteIntArrayCreate(1);
    recovered_cell_weights_size->data[0] = n_cell;
    if (!TfLiteIntArrayEqual(recovered_cell_weights->dims,
                             recovered_cell_weights_size)) {
      TF_LITE_ENSURE_OK(context,
                        context->ResizeTensor(context, recovered_cell_weights,
                                              recovered_cell_weights_size));
    }
  }
  return kTfLiteOk;
}

TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
  const auto* params =
      reinterpret_cast<TfLiteUnidirectionalSequenceLSTMParams*>(
          node->builtin_data);
  const TfLiteTensor* input = GetInput(context, node, kInputTensor);

  const TfLiteTensor* input_to_input_weights =
      GetOptionalInputTensor(context, node, kInputToInputWeightsTensor);
  const TfLiteTensor* input_to_forget_weights =
      GetInput(context, node, kInputToForgetWeightsTensor);
  const TfLiteTensor* input_to_cell_weights =
      GetInput(context, node, kInputToCellWeightsTensor);
  const TfLiteTensor* input_to_output_weights =
      GetInput(context, node, kInputToOutputWeightsTensor);

  const TfLiteTensor* recurrent_to_input_weights =
      GetOptionalInputTensor(context, node, kRecurrentToInputWeightsTensor);
  const TfLiteTensor* recurrent_to_forget_weights =
      GetInput(context, node, kRecurrentToForgetWeightsTensor);
  const TfLiteTensor* recurrent_to_cell_weights =
      GetInput(context, node, kRecurrentToCellWeightsTensor);
  const TfLiteTensor* recurrent_to_output_weights =
      GetInput(context, node, kRecurrentToOutputWeightsTensor);

  const TfLiteTensor* cell_to_input_weights =
      GetOptionalInputTensor(context, node, kCellToInputWeightsTensor);
  const TfLiteTensor* cell_to_forget_weights =
      GetOptionalInputTensor(context, node, kCellToForgetWeightsTensor);
  const TfLiteTensor* cell_to_output_weights =
      GetOptionalInputTensor(context, node, kCellToOutputWeightsTensor);

  const TfLiteTensor* input_gate_bias =
      GetOptionalInputTensor(context, node, kInputGateBiasTensor);
  const TfLiteTensor* forget_gate_bias =
      GetInput(context, node, kForgetGateBiasTensor);
  const TfLiteTensor* cell_bias = GetInput(context, node, kCellGateBiasTensor);
  const TfLiteTensor* output_gate_bias =
      GetInput(context, node, kOutputGateBiasTensor);

  const TfLiteTensor* projection_weights =
      GetOptionalInputTensor(context, node, kProjectionWeightsTensor);
  const TfLiteTensor* projection_bias =
      GetOptionalInputTensor(context, node, kProjectionBiasTensor);

  // Index the scratch buffers pointers to the global scratch buffer.
  TfLiteTensor* scratch_buffer = GetTemporary(context, node, /*index=*/0);

  TfLiteTensor* activation_state =
      GetVariableInput(context, node, kInputActivationStateTensor);
  TfLiteTensor* cell_state =
      GetVariableInput(context, node, kInputCellStateTensor);

  TfLiteTensor* output = GetOutput(context, node, kOutputTensor);

  // Copy out the LSTM specific params so they can be passed in the function.
  TfLiteLSTMParams lstm_params;
  lstm_params.activation = params->activation;
  lstm_params.cell_clip = params->cell_clip;
  lstm_params.proj_clip = params->proj_clip;

  switch (input_to_output_weights->type) {
    case kTfLiteFloat32: {
      return lstm_eval::EvalFloat(
          input, input_to_input_weights, input_to_forget_weights,
          input_to_cell_weights, input_to_output_weights,
          recurrent_to_input_weights, recurrent_to_forget_weights,
          recurrent_to_cell_weights, recurrent_to_output_weights,
          cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights,
          /*aux_input=*/nullptr,
          /*aux_input_to_input_weights=*/nullptr,
          /*aux_input_to_forget_weights=*/nullptr,
          /*aux_input_to_cell_weights=*/nullptr,
          /*aux_input_to_output_weights=*/nullptr, input_gate_bias,
          forget_gate_bias, cell_bias, output_gate_bias, projection_weights,
          projection_bias, &lstm_params, /*forward_sequence=*/true,
          /*output_offset=*/0, scratch_buffer, activation_state, cell_state,
          output);
    }
    case kTfLiteUInt8: {
      TfLiteTensor* input_quantized = GetTemporary(context, node, /*index=*/1);
      TfLiteTensor* activation_state_quantized =
          GetTemporary(context, node, /*index=*/2);
      TfLiteTensor* cell_state_quantized =
          GetTemporary(context, node, /*index=*/3);
      TfLiteTensor* scaling_factors = GetTemporary(context, node, /*index=*/4);
      TfLiteTensor* prod_scaling_factors =
          GetTemporary(context, node, /*index=*/5);
      TfLiteTensor* recovered_cell_weights =
          GetTemporary(context, node, /*index=*/6);
      return lstm_eval::EvalHybrid(
          input, input_to_input_weights, input_to_forget_weights,
          input_to_cell_weights, input_to_output_weights,
          recurrent_to_input_weights, recurrent_to_forget_weights,
          recurrent_to_cell_weights, recurrent_to_output_weights,
          cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights,
          /*aux_input=*/nullptr,
          /*aux_input_to_input_weights=*/nullptr,
          /*aux_input_to_forget_weights=*/nullptr,
          /*aux_input_to_cell_weights=*/nullptr,
          /*aux_input_to_output_weights=*/nullptr, input_gate_bias,
          forget_gate_bias, cell_bias, output_gate_bias, projection_weights,
          projection_bias, &lstm_params, /*forward_sequence=*/true,
          /*output_offset=*/0, scratch_buffer, scaling_factors,
          prod_scaling_factors, recovered_cell_weights, input_quantized,
          /*aux_input_quantized=*/nullptr, activation_state_quantized,
          cell_state_quantized, activation_state, cell_state, output);
    }
    default:
      context->ReportError(context, "Type %d is not currently supported.",
                           input_to_output_weights->type);
      return kTfLiteError;
  }
  return kTfLiteOk;
}
}  // namespace unidirectional_sequence_lstm

TfLiteRegistration* Register_UNIDIRECTIONAL_SEQUENCE_LSTM() {
  static TfLiteRegistration r = {unidirectional_sequence_lstm::Init,
                                 unidirectional_sequence_lstm::Free,
                                 unidirectional_sequence_lstm::Prepare,
                                 unidirectional_sequence_lstm::Eval};
  return &r;
}

}  // namespace builtin
}  // namespace ops
}  // namespace tflite